
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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I. Other Esoterica... 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A.  Overview 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# Generally, to modify DLMF's source files, you'll need 
#  * a checkout of DLMF's sources 
# To build a pdf of the Handbook 
#  * a recent texlive installation 
# To build the website 
#  * LaTeXML 
#  * a working build directory 
# To Test the website 
#  * a tomcat installation 
#  * optionally apache httpd 
# See the following sections for more details. 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
B. Cleanup 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# Note that the dlmf materials are BIG! 
#  * dlmf cvs checkout: ~4.5Gig   in ~/dlmf 
#  * build directory  : ~4.5Gig   in orion:/local/dlmf/$USER/dlmf 
#  * war file         : ~1.0Gig   in orion:/local/dlmf/$USER/*.war 
# 



# So, if you are regularly working with dlmf it makes sense to keep 
# the files available.  But if you will not be modifying or building 
# for a "long" time, especially if it is just a one-shot experiment, 
# you really should remove materials you won't need. 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C. Working with DLMF's repository 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# Currently all of DLMF's files are stored in a CVS repository on 
#  math-idev.cam.nist.gov. 
 
#====================================================================== 
# 1. Checking out DLMF from its cvs repository 
#====================================================================== 
               This step is to get a copy of the DLMF files 
               in your directory--Its a checkout using CVS 
 
# Before you do anything, you'll need all the DLMF documents, programs 
# and data.  I'll assume that you run this in your home directory 
# so that all files end up under ~/dlmf 
 
cd ~ 
cvs -d :ext:math-idev.cam.nist.gov:/local/cvs/dlmf checkout dlmf  
 
# Note that this currently contains ~4.5GB of data 
# so consider if you need it, and where you put it! 
 
#====================================================================== 
# 2. Updating DLMF 
#====================================================================== 
# Before carrying out any of the following operations, 
# such as building the site, or committing your own changes, 
# consider that you may want to update your local copy of dlmf 
# to pick up any recent changes that others have made. 
 
cd ~/dlmf 
cvs -q update 
 
# This will update any files that were committed since the time 
# you last updated (shown prefixed with "U" or "P"), 
# or will merge those changes with any you have made. If there 
# is a conflict with those 2 sets of changes, it will prefix with 
# "C" and you will need to find sections in those files marked like 
#    <<<<<<  (filename) 
#    your changes 
#    ====== 
#    other changes 
#    >>>>>> (latest revision number) 
# You'll have to edit and figure out which changes are best 
# before committing your changes. 
# 
# Otherwise, files that are locally modified will be marked with "M"; 



# those are files you'll want to commit (see below). 
 
#====================================================================== 
# 3. Comparing changed files 
#====================================================================== 
# Now that you've modified a file (or fixed conflicts), you'll want 
# to commit it to the repository.  But first, you'll probably want 
# to verify that you've changed what you wanted: 
 
cd ~/dlmf 
cvs diff whatever/got/changed 
 
# will show those changes in a diff like format. 
 
#====================================================================== 
#  4. Committing changed files 
#====================================================================== 
# Now, that you've verified the changed files, and ideally after verifying 
# that they are valid, that the site and/or book still compile, 
# you will want to commit those changes to the repository: 
 
cd ~/dlmf 
cvs -q update 
cvs commit -m "comment about what changed and why" whatever/got/changed 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# D. Getting & Updating LaTeXML from it's repository. 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# LaTeXML is currently stored on GitHub (https://github.com). 
# You can find out about installing & running LaTeXML in general at 
#     http://dlmf.nist.gov/LaTeXML/ 
# 
# Note that when we build on orion, we're NOT using the latexml in 
# my home directory, but a separate "safe" checkout on orion at: 
#   /local/dlmf/LaTeXML. 
# I usually will have updated it when I'm convinced that it is "safe"; 
# so these sections are for an overview. 
 
#====================================================================== 
# 1. Checking out LaTeXML 
#====================================================================== 
# To check out a copy of LaTeXML from github, do: 
                   How to get your own copy of LaTeXML 
cd /local/dlmf 
git clone https://github.com/brucemiller/LaTeXML.git 
cd LaTeXML 
perl Makefile.PL 
make 
make test 
 
#====================================================================== 
# 2. Updating LaTeXML 



#====================================================================== 
# When building the website, you may want to update LaTeXML first 
# (if you have write permissions) 
 
cd /local/dlmf/LaTeXML 
git pull 
# if there were _added_ files, run this: 
perl Makefile.PL 
# If there were any changes, run these: 
make 
make test 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# E. To make Book.pdf 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# Note that you may want to update your dlmf checkout; see above; 
# Note that you don't need LaTeXML. 
# You will need to be on a machine with a relatively recent TeX-live; 
# eg Fedora, NOT Centos (or Scientific-Linux?) 
#  --- try hyacinth.cam.nist.gov 
 
#====================================================================== 
# 1.Basics 
#====================================================================== 
# Assuming that ~/dlmf/bin is in your path, you simply need to run: 
 
cd ~/dlmf 
DLMFtex book 
 
# If things really get screwed up, try removing all *.aux files, then retry. 
# Also, if it appears to hang, it may be that DLMFtex is inadvertently 
# hiding an error message (it tries to hide the voluminous output of latex) 
# use the "-v" option to let it print all that stuff out. 
 
# IMPORTANT!!! 
# If you have been modifying the chapter content and see a message 
# from DLMFtex like: 
#   Normally the label=>refnum associations should NOT change 
#   ... 
# ESPECIALLY watch for 
#    "The following labels are now missing" 
# and 
#    "The following labels have changed refnums" 
# PLEASE consult the following subsection. 
 
#====================================================================== 
# 2.Updating the Labels 
#====================================================================== 
# It is IMPORTANT that every chapter, section, equation, table,... 
# is PERMANENTLY associated with a specific reference number 
# so that people can safely refer to Equation 1.2.3. 
# 



# This means that additions have to be made only in places 
# that don't affect the numbering of following material 
# (such as at the end of sections).  And deletions either 
# have to only delete non-numbered material, or leave 
# "stubs" that preserve the number of the missing object. 
 
# To monitory this, we keep a record of the internal labels 
# (used in latex \label) and thier associated reference numbers 
# (the visible number) in the file 
#      ~/dlmf/etc/labels.fixed 
# which is kept under CVS.  When running DLMFtex, the new 
# set of associations are compared to the fixed one and 
# reports the differences. 
# 
# Thus, if you have been modifying the chapter content and see 
# a message from DLMFtex like: 
#   Normally the label=>refnum associations should NOT change 
#   ... 
# ESPECIALLY watch for 
#    "The following labels are now missing" 
# and 
#    "The following labels have changed refnums" 
# You should VERY CAREFULLY examine the modified sources, the 
# message and output to determine if it is caused by inappropriately 
# placed insertions or deletions.  Insertions _can_ be made 
# in such a way to not cause renumbering of following material. 
# 
# If the changes ARE appropriate (typically should only be 
# additions), then you will want to update the record and commit 
# it to CVS: 
 
cd ~/dlmf 
cp labels.tmp etc/labels.fixed 
cvs commit -m "Explanation here" etc/labels.fixed 
 
# BUT PLEASE: work with me or someone else knowledgeable on this!!!! 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# F. Build a Draft DLMF Website 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# We'll first go through building a draft version of the website. 
# Building a formal release (see below) uses many of the same steps, 
# and generally you will want to have tested a draft first, anyway. 
# 
# First consider whether you need to update DLMF or LaTeXML (see above): 
# 
# In the common case, you will ssh onto orion to do the builds. 
# If you haven't already done this, you should copy my local.conf 
# file into your ~/dlmf/etc 
 
   cp ~miller/dlmf/etc/local.conf ~/dlmf/etc/local.conf 
 



# ALSO, we will now be packaging up a draft version of DLMF 
# to be placed on the external server, but visible under 
#  http://dlmf.nist.gov/draft/ 
 
#====================================================================== 
# 1.Basic building 
#====================================================================== 
# The basic command for building the DLMF website is: 
 
makesite [options] 
 
# This will convert the TeX and other sources in ~/dlmf 
# into a tomcat webapp in a directory on orion at 
#    /local/dlmf/$USER/dlmf 
# where $USER is your username. 
# 
# makesite attempts to work like "make" in that it will build the 
# entire site from scratch if it has not yet been built 
# (which may take 1-2 hours), but generally will only reprocess 
# files that have changed since the last time you ran it, 
# which goes much quicker. 
# 
# Sometimes it overlooks indirect dependences, however, 
# and some of the options described below will force it to 
# As a last resort, removing all files under /local/dlmf/$USER/dlmf 
# will make it build from scratch, which always should work. 
# 
# Note also that in order for makesite to create errata.pdf, 
# you should have made a book.pdf at least once 
# in order for the appropriate *.aux files to be present. 
 
#====================================================================== 
# Important makesite options: 
#====================================================================== 
 
# You can get a (brief) overview of all options by running: 
 
makesite --help 
 
# When you know you've got new or significantly changed citations 
# (so it knows it needs to rebuild the bibliography) 
 
   --force=scan --force=paginate 
 
# that causes it to clear out and rebuild the database 
# (which records all labels, references, citations, cross links, etc) 
# Since it causes the xml pages to be remade, you'll automatically get 
# the html pages remade.  Otherwise, continue on. 
 
# To force the (various kinds of) html pages to get remade 
# (but not necessarily preceding computations) 



 
   --force=instanciate 
 
#====================================================================== 
# Publishing the draft: How to make the .WAR file and push it out 
#====================================================================== 
# After you've built dlmf and verified it looks good, you 
# may want to publish it to 
#   http://dlmf.nist.gov/draft/ 
# so that Adri can see it, or that we all can have access from home 
# to test using different OS or browsers. 
 
# First, create a war (Web ARchive) file by running 
 
makesite war 
 
# This takes a few minutes and will create the file: 
#   /local/dlmf/$USER/dlmf-draft.war 
# You can publish this to dlmf.nist.gov (aka muggle) bu running: 
 
push-dlmf-draft /local/dlmf/$USER/dlmf-draft.war 
 
# (where you, of course, substitute your username for $USER) 
# After it has finished copying, and after a minute, the draft 
# should be visible at 
#    http://dlmf.nist.gov/draft/ 
# 
# Note that when a draft is near ready for release, you probably 
# should go ahead and prepare news items, errata and set the 
# RELEASE_VERSION, and RELEASE_DATE as described in the next section. 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# G. Make a new public Version or Release: 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# We will assume that you have built and tested a Draft version of 
# the site before proceeding to make a public release. 
 
#====================================================================== 
# 1. Preliminaries 
#====================================================================== 
# Before building you will want to take several steps: 
#  (1) Choose a VERSION_NUMBER and RELEASE_DATE; 
#      Think of the version number as: 
#          Edition.Printing.Update 
#      except that Printing and Update start from 0. 
#      For typical updates, we just increment the 3rd number. 
#      Likewise, choose a release date, typically a couple of 
#      days in the future, to allow for final testing, announcing, whatever. 
#  
#      Before building, update 
#          dlmf/etc/dev.conf 
#      (or whichever conf you're using) 



#      to modify the values of "version " and "timestamp" 
#      Also make sure the date & release used in the errata 
#      and news item match! 
# 
#  (2) If it is worth making a release, it is worth explaining why; 
#      Add a short note about the release by prepending an item to 
#          dlmf/about/news/index.tex 
#      That item should mention the release version and date. 
#      If the changes are non-trivial, you should include a link to 
#      the errata like 
#          see \longref{errata:VERSION_NUMBER} for details 
#      substituting the actual version number for VERSION_NUMBER. 
#  
#  (3) A new release should have a new section in the errata, 
#      even if only to say "Several minor improvements were made.". 
#      Prepend a section to 
#          dlmf/front/errata.tex 
#      See the file for format and examples; in particular, be sure 
#      to use the VERSION_NUMBER and RELEASE_DATE in the section title, 
#      and add a label: 
#        \label{errata:VERSION_NUMBER} 
#  (4) Refresh book.pdf (see above), if necessary so the *.aux files are fresh; 
#      these are used in making errata.pdf! 
# 
# Also, you obviously want to update your dlmf from CVS, 
# but you should also be sure to commit all local changes, as well. 
 
#====================================================================== 
# 2. Building the Public Release 
#====================================================================== 
# In order to be sure that the release is "clean & fresh", 
# I typically remove the previously made draft before building: 
 
rm -rf /local/dlmf/$USER/dlmf 
 
# By default, you'll get various "DRAFT" indicators in the webpages 
# the --nodraft option eliminates this. 
 
makesite --nodraft war 
 
#[ASIDE: you _could_ avoid removing & rebuilding from scratch by 
# replacing the previous 2 command with the single: 
 
makesite --force=instanciate --nodraft war 
# ] 
 
# This should create a fresh version of the site on orion in 
#   /local/dlmf/$USER/dlmf 
# as well as a new war file at 
#   /local/dlmf/$USER/dlmf-YYYYMMDD.war 
# where YYYYMMDD is be the release date. 
 



# You can make a final test it out on 
      http://orion.cam.nist.gov/dlmf/ 
# (or wherever your builds are usually seen) 
 
#====================================================================== 
# 3. Publishing the release 
#====================================================================== 
 
#====================================================================== 
# Publish on dlmf.nist.gov 
#====================================================================== 
################################################### 
# For security, these steps can only be done by:  # 
#    Chris Schanzle <schanzle@nist.gov>           # 
#    Don Koss <donald.koss@nist.gov>              # 
################################################### 
# But I'll outline them for the overview. 
# Carry out the same steps as for testing on dlmf-dev, 
# except use host muggle.nist.gov (the actual host name of dlmf.nist.gov) 
# 
# Ideally this should be done on BOTH math-dev.nist.gov 
# and muggle.nist.gov (which serves dlmf.nist.gov) 
 
# Copy the war file to the server. 
 
scp dlmf-YYYYMMMDD.war miller@muggle.nist.gov:/local/home/miller/ 
 
# Login & install it 
 
ssh miller@muggle.nist.gov 
sudo chown mcsdweb:mcsdweb dlmf-YYYYMMDD.war 
sudo cp /local/home/miller/dlmf-YYYYMMDD.war /local/tomcat5 
 
# and get it running 
 
sudo rm /local/tomcat5/webapps/dlmf.war 
sudo ln -s /local/tomcat5/dlmf-YYYYMMDD.war  /local/tomcat5/webapps/dlmf.war 
 
# and probably should remove the local copy, so it doesn't waste backups... 
rm /local/home/miller/dlmf-YYYYMMDD.war 
 
# After a minute or so, tomcat should have rescanned the war file, so 
#  TEST IT!!! 
# http://dlmf-dev.nist.gov/ or 
# http://dlmf.nist.gov/ 
 
#====================================================================== 
# 4. Bookkeeping for Posterity 
#====================================================================== 
# After you're sure everything actually works, 
# make sure you've saved everything back in cvs (see above), 



# you'll want to do some bookkeeping so that later on we 
# can figure out what a particular release was made of. 
 
# Store a copy of the war file on orion in /local/dlmf/archive 
 
cp /local/dlmf/$USER/dlmf-YYYYMMDD.war /local/dlmf/archive 
 
# AND, you should "tag" the current revisions of everything 
# in dlmf as being associated with the current VERSION_NUMBER! 
# Given that the VERISON_NUMBER is of the form EDITION.PRINTING.UPDATE, 
# use the following command to tag the current set of files: 
 
cvs tag -R dlmf-EDITION-PRINTING-UPDATE 
 
# (ie. substitute "-" for ".") 
 
# Or if a couple of days have past, use the remote, dated form: 
cvs rtag -D YYYY-MM-DD dlmf-EDITION-PRINTING-UPDATE dlmf 
 
# If you were making another printing or edition of the printed book, 
# you should also mark the version using: 
 
cvs tag -R hmf-EDITION-PRINTING-UPDATE 
 
# where hmf stands for "Handbook of Mathematical Functions" 
 
#---------------------------------------------------------------------- 
# Incidentally: 
#   You can list the tags on a specific file by doing, eg.: 
cvs status -v book.tex 
#   You can check out a copy of everything as it was 
# for a particular tagged version, say, 1.0.2, by doing: 
cvs checkout -r dlmf-1-0-2 
 
# Or, to compare the current revision of a file with the 
# way it was in version 1.0.2, you can say 
cvs diff -r dlmf-1-0-2 somefile 
 
#---------------------------------------------------------------------- 
# As an aside, LaTeXML is in an git repository, not cvs, 
# and so the tagging setup is different. 
# Actually, I need to check how to do tagging in git. 
 
# For svn, it was the following: 
# Go to the svn/LaTeXML directory (where you'll find ./trunk) 
# copy the current set of files into the tag directory and commit 
 
svn copy trunk tags/dlmf-1-0-2 
svn commit -m "created dlmf-1-0-2 tag" tags 
 
# Tagging a revision "after the fact" is like 



svn copy -r <rev> http://<repo>/ http://<repo>/tags/<tag> -m <commit-comment> 
 
# To see all tags: 
svn list http://<repo>/tags/ 
# to show the tag message: 
svn log --limit 1 http://<repo>/tags/<tag> 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# H. To setup a DLMF Server (including demo server on laptop) 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# The short form is: 
#   (1) install java 
#   (2) install tomcat 
#   (3) drop a dlmf.war into the Right Place. 
#   That's it. 
# A slightly more sophisticated/secure installation has apache 
# proxy for tomcat (which runs "behind" it) 
#   (4) install apache 
#   (5) configure apache to proxy serve: 
# See linux install, below for details. 
# 
# More detailed explanation for specific platforms follows, 
# and assumes you've built an appropriate war file (see above), 
# or found one at 
#   dlmf-dev.nist.gov:/local/tomcat5/dlmf-YYYYMMDD.war 
# or 
#   orion.cam.nist.gov:/local/dlmf/archive/dlmf-YYYYMMDD.war 
 
#====================================================================== 
# Linux 
#====================================================================== 
# On linux, it is best just to install tomcat using the standard package 
# manager; It will install whatever dependencies, like java, that are needed. 
# (note: on Centos, you may have to say tomcat5 in the following) 
# On RPM based systems, use yum: 
 
sudo yum install tomcat 
 
# Now copy the war file to tomcat's webapp directory: 
 
sudo cp dlmf-YYYYMMDD.war /var/lib/tomcat/webapps/dlmf.war 
 
# After a few minutes, it should be available at 
 
http://localhost:8080/dlmf 
 
#---------------------------------------------------------------------- 
# Running apache as proxy for tomcat 
#---------------------------------------------------------------------- 
# It may be worth installing httpd and serving dlmf through it. 
# (certainly more secure on a public server) 
 



sudo yum install httpd 
 
# Create a configuration file, say /etc/httpd/conf.d/dlmf-tomcat.conf, 
# containing : 
 
ProxyRequests Off 
ProxyPass /dlmf/ http://localhost:8080/dlmf/ 
ProxyPassReverse /dlmf/ http://localhost:8080/dlmf/ 
 
# Now, you should see dlmf at: 
 
http://localhost/dlmf/ 
 
#====================================================================== 
# Mac 
#====================================================================== 
# Offhand, I don't know actually, but it must be similar to 
# the Linux; maybe there's a macport of tomcat? 
 
#====================================================================== 
# Windows 
#====================================================================== 
# Get JAVA: 
#   Unless you've already got at least a Java 6 aka 1.6 version; 
#   Go to 
#       http://java.com/en/download/manual.jsp 
#   Download & install the latest current Windows version. 
# 
#   If they give lots of choices ("beans", development kits, 
#   "enterprise edition", etc.), a JRE version is fine. 
#   (unless you plan to do your own development) 
# 
# Get TOMCAT: 
#   Go to 
#       http://tomcat.apache.org/ 
#   and choose the latest Tomcat 6.x.x version 
#   (we haven't yet tested Tomcat 7) 
#   Download and install an appropriate version from 
#       "Binary Distributions/Core"  
# 
#   When running the installer, it may ask 
#   which java to use: make sure it uses a nice 
#   fresh one, if you installed one above. 
# 
#   IMPORTANT: You'll get some sort of tomcat manager 
#   application. Run this and find "Tomcat Properties" 
#   (or maybe the application _is_ Tomcat properties..) 
#   You'll get a window with several tabs. 
#   Under "Java" tab, find a box called "Java Options" 
#   Click in that box and go to the end. 
#   Add a new line that contains: 
#      -Dfile.encoding=UTF-8 



#    and save or whatever you need to do. 
 
# Install dlmf.war 
#   (1) Run the tomcat manager/tomcat properties and  
#      make sure tomcat is stopped (click "Stop"). 
#   (2) Find the directory where tomcat got installed 
#        <wherever>/apache-tomcat-6.x.x/webapps 
#   (3) If you've installed dlmf before,  
#       delete dlmf.war and any directory dlmf in webapps 
#   (4) copy dlmf.war to the webapps. 
#   (5) Run the tomcat manager/tomcat properties and  
#      make start tomcat (click "Start"). 
# 
#  Then, point your browser at 
#     http://localhost:8080/dlmf/ 
# 
#  and hopefully you're there, and everthing works! 
#  Enjoy! 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# I. Other Esoterica... 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# A reminder of where to find the needed java jar files. 
# The following jar files are used in the java runtime and need 
# to be placed in 
# 
#      dlmf/web/WEB-INF/lib 
# 
#  === LUCENE: Search engine === 
#  Download lucene-java from http://lucene.apache.org/, untar 
#  Find the appropriate lucene*.jar, EG. 
#    lucene-core-1.9.1.jar  
# 
#  === XERCES: XML Parser === 
#  I've explicitly included xerce's (the xml parser) jars so that we have 
#  the catalog resolver available (apparently not incldued with tomcat) 
 
#  Download from Xerces-J-bin from http://xerces.apache.org/, untar 
#  Find: 
#    xercesImpl.jar 
#    xml-apis.jar 
#    resolver.jar 
 
#  === XALAN: XSLT Transformer === 
#  I've explicitly included xalan's (the xslt engine) jars so that 
#  extension functions are available. 
 
#  Download Xalan-J-bin from http://xalan.apache.org/, untar 
#  Find: 
#    serializer.jar 
#    xalan.jar 
#    xsltc.jar 


