
#%%
Various ESSENTIAL Mini-How-To's
#%%
Topics:
A. ​Overview
B.​ ​Cleanup
C. ​Working with DLMF's repository
 ​ ​1. Checking out DLMF
 2. Updating DLMF
 3. Comparing changed files to the repository
 4. Committing changed files back into the repository
D. ​Getting & Updating LaTeXML
 ​1. Checking out LaTeXML
 2. Updating LaTeXML
E​. ​Make book.pdf
 ​ 1. Basics
 2. Updating the Labels
F. ​Build a Draft DLMF Website
 ​1. Basic building
 2. Important makesite options:
 3. Publishing the draft
G. ​Make a Public Release of DLMF Website
 1. Preliminaries
 2. Building the Public Release
 3. Publishing the release
 4. Bookkeeping for Posterity
H. ​Setup a DLMF Server​ ​(including demo server on laptop)
I. ​Other Esoterica​.​..
#%%

#%%
A. ​Overview
#%%
Generally, to modify DLMF's source files, you'll need
* a checkout of DLMF's sources
To build a pdf of the Handbook
* a recent texlive installation
To build the website
* LaTeXML
* a working build directory
To Test the website
* a tomcat installation
* optionally apache httpd
See the following sections for more details.

#%%
B​. Cleanup
#%%
Note that the dlmf materials are BIG!
* dlmf cvs checkout: ~4.5Gig in ~/dlmf
* build directory : ~4.5Gig in orion:/local/dlmf/$USER/dlmf
* war file : ~1.0Gig in orion:/local/dlmf/$USER/*.war

So, if you are regularly working with dlmf it makes sense to keep
the files available. But if you will not be modifying or building
for a "long" time, especially if it is just a one-shot experiment,
you really should remove materials you won't need.

#%%
C. ​Working with DLMF's repository
#%%
Currently all of DLMF's files are stored in a CVS repository on
math-idev.cam.nist.gov.

#==
1. Checking out DLMF from its cvs repository
#==
 This step is to get a copy of the DLMF files
 in your directory--Its a checkout using CVS

Before you do anything, you'll need all the DLMF documents, programs
and data. I'll assume that you run this in your home directory
so that all files end up under ~/dlmf

cd ~
cvs -d :ext:math-idev.cam.nist.gov:/local/cvs/dlmf checkout dlmf

Note that this currently contains ~4.5GB of data
so consider if you need it, and where you put it!

#==
2. Updating DLMF
#==
Before carrying out any of the following operations,
such as building the site, or committing your own changes,
consider that you may want to update your local copy of dlmf
to pick up any recent changes that others have made.

cd ~/dlmf
cvs -q update

This will update any files that were committed since the time
you last updated (shown prefixed with "U" or "P"),
or will merge those changes with any you have made. If there
is a conflict with those 2 sets of changes, it will prefix with
"C" and you will need to find sections in those files marked like
<<<<<< (filename)
your changes
======
other changes
>>>>>> (latest revision number)
You'll have to edit and figure out which changes are best
before committing your changes.

Otherwise, files that are locally modified will be marked with "M";

those are files you'll want to commit (see below).

#==
3. Comparing changed files
#==
Now that you've modified a file (or fixed conflicts), you'll want
to commit it to the repository. But first, you'll probably want
to verify that you've changed what you wanted:

cd ~/dlmf
cvs diff whatever/got/changed

will show those changes in a diff like format.

#==
​4. Committing changed files
#==
Now, that you've verified the changed files, and ideally after verifying
that they are valid, that the site and/or book still compile,
you will want to commit those changes to the repository:

cd ~/dlmf
cvs -q update
cvs commit -m "comment about what changed and why" whatever/got/changed

#%%
D. ​Getting & Updating LaTeXML from it's repository​.
#%%
LaTeXML is currently stored on GitHub (https://github.com).
You can find out about installing & running LaTeXML in general at
http://dlmf.nist.gov/LaTeXML/

Note that when we build on orion, we're NOT using the latexml in
my home directory, but a separate "safe" checkout on orion at:
/local/dlmf/LaTeXML.
I usually will have updated it when I'm convinced that it is "safe";
so these sections are for an overview.

#==
1. Checking out LaTeXML
#==
To check out a copy of LaTeXML from github, do:
 How to get your own copy of LaTeXML
cd /local/dlmf
git clone https://github.com/brucemiller/LaTeXML.git
cd LaTeXML
perl Makefile.PL
make
make test

#==
2. Updating LaTeXML

#==
When building the website, you may want to update LaTeXML first
(if you have write permissions)

cd /local/dlmf/LaTeXML
git pull
if there were _added_ files, run this:
perl Makefile.PL
If there were any changes, run these:
make
make test

#%%
E. ​To make Book.pdf
#%%
Note that you may want to update your dlmf checkout; see above;
Note that you don't need LaTeXML.
You will need to be on a machine with a relatively recent TeX-live;
eg Fedora, NOT Centos (or Scientific-Linux?)
--- try hyacinth.cam.nist.gov

#==
1.Basics
#==
Assuming that ~/dlmf/bin is in your path, you simply need to run:

cd ~/dlmf
DLMFtex book

If things really get screwed up, try removing all *.aux files, then retry.
Also, if it appears to hang, it may be that DLMFtex is inadvertently
hiding an error message (it tries to hide the voluminous output of latex)
use the "-v" option to let it print all that stuff out.

IMPORTANT!!!
If you have been modifying the chapter content and see a message
from DLMFtex like:
Normally the label=>refnum associations should NOT change
...
ESPECIALLY watch for
"The following labels are now missing"
and
"The following labels have changed refnums"
PLEASE consult the following subsection.

#==
2.Updating the Labels
#==
It is IMPORTANT that every chapter, section, equation, table,...
is PERMANENTLY associated with a specific reference number
so that people can safely refer to Equation 1.2.3.

This means that additions have to be made only in places
that don't affect the numbering of following material
(such as at the end of sections). And deletions either
have to only delete non-numbered material, or leave
"stubs" that preserve the number of the missing object.

To monitory this, we keep a record of the internal labels
(used in latex \label) and thier associated reference numbers
(the visible number) in the file
~/dlmf/etc/labels.fixed
which is kept under CVS. When running DLMFtex, the new
set of associations are compared to the fixed one and
reports the differences.

Thus, if you have been modifying the chapter content and see
a message from DLMFtex like:
Normally the label=>refnum associations should NOT change
...
ESPECIALLY watch for
"The following labels are now missing"
and
"The following labels have changed refnums"
You should VERY CAREFULLY examine the modified sources, the
message and output to determine if it is caused by inappropriately
placed insertions or deletions. Insertions _can_ be made
in such a way to not cause renumbering of following material.

If the changes ARE appropriate (typically should only be
additions), then you will want to update the record and commit
it to CVS:

cd ~/dlmf
cp labels.tmp etc/labels.fixed
cvs commit -m "Explanation here" etc/labels.fixed

BUT PLEASE: work with me or someone else knowledgeable on this!!!!

#%%
F. ​Build a Draft DLMF Website
#%%
We'll first go through building a draft version of the website.
Building a formal release (see below) uses many of the same steps,
and generally you will want to have tested a draft first, anyway.

First consider whether you need to update DLMF or LaTeXML (see above):

In the common case, you will ssh onto orion to do the builds.
If you haven't already done this, you should copy my local.conf
file into your ~/dlmf/etc

 cp ~miller/dlmf/etc/local.conf ~/dlmf/etc/local.conf

ALSO, we will now be packaging up a draft version of DLMF
to be placed on the external server, but visible under
http://dlmf.nist.gov/draft/

#==
1.Basic building
#==
The basic command for building the DLMF website is:

makesite [options]

This will convert the TeX and other sources in ~/dlmf
into a tomcat webapp in a directory on orion at
/local/dlmf/$USER/dlmf
where $USER is your username.

makesite attempts to work like "make" in that it will build the
entire site from scratch if it has not yet been built
(which may take 1-2 hours), but generally will only reprocess
files that have changed since the last time you ran it,
which goes much quicker.

Sometimes it overlooks indirect dependences, however,
and some of the options described below will force it to
As a last resort, removing all files under /local/dlmf/$USER/dlmf
will make it build from scratch, which always should work.

Note also that in order for makesite to create errata.pdf,
you should have made a book.pdf at least once
in order for the appropriate *.aux files to be present.

#==
Important makesite options:
#==

You can get a (brief) overview of all options by running:

makesite --help

When you know you've got new or significantly changed citations
(so it knows it needs to rebuild the bibliography)

 --force=scan --force=paginate

that causes it to clear out and rebuild the database
(which records all labels, references, citations, cross links, etc)
Since it causes the xml pages to be remade, you'll automatically get
the html pages remade. Otherwise, continue on.

To force the (various kinds of) html pages to get remade
(but not necessarily preceding computations)

 --force=instanciate

#==
Publishing the draft: How to make the .WAR file and push it out
#==
After you've built dlmf and verified it looks good, you
may want to publish it to
http://dlmf.nist.gov/draft/
so that Adri can see it, or that we all can have access from home
to test using different OS or browsers.

First, create a war (Web ARchive) file by running

makesite war

This takes a few minutes and will create the file:
/local/dlmf/$USER/dlmf-draft.war
You can publish this to dlmf.nist.gov (aka muggle) bu running:

push-dlmf-draft /local/dlmf/$USER/dlmf-draft.war

(where you, of course, substitute your username for $USER)
After it has finished copying, and after a minute, the draft
should be visible at
http://dlmf.nist.gov/draft/

Note that when a draft is near ready for release, you probably
should go ahead and prepare news items, errata and set the
RELEASE_VERSION, and RELEASE_DATE as described in the next section.

#%%
​G. Make a new public Version or Release:
#%%
We will assume that you have built and tested a Draft version of
the site before proceeding to make a public release.

#==
​1. Preliminaries
#==
Before building you will want to take several steps:
(1) Choose a VERSION_NUMBER and RELEASE_DATE;
Think of the version number as:
Edition.Printing.Update
except that Printing and Update start from 0.
For typical updates, we just increment the 3rd number.
Likewise, choose a release date, typically a couple of
days in the future, to allow for final testing, announcing, whatever.

Before building, update
dlmf/etc/dev.conf
(or whichever conf you're using)

to modify the values of "version " and "timestamp"
Also make sure the date & release used in the errata
and news item match!

(2) If it is worth making a release, it is worth explaining why;
Add a short note about the release by prepending an item to
dlmf/about/news/index.tex
That item should mention the release version and date.
If the changes are non-trivial, you should include a link to
the errata like
see \longref{errata:VERSION_NUMBER} for details
substituting the actual version number for VERSION_NUMBER.

(3) A new release should have a new section in the errata,
even if only to say "Several minor improvements were made.".
Prepend a section to
dlmf/front/errata.tex
See the file for format and examples; in particular, be sure
to use the VERSION_NUMBER and RELEASE_DATE in the section title,
and add a label:
\label{errata:VERSION_NUMBER}
(4) Refresh book.pdf (see above), if necessary so the *.aux files are fresh;
these are used in making errata.pdf!

Also, you obviously want to update your dlmf from CVS,
but you should also be sure to commit all local changes, as well.

#==
​2. Building the Public Release
#==
In order to be sure that the release is "clean & fresh",
I typically remove the previously made draft before building:

rm -rf /local/dlmf/$USER/dlmf

By default, you'll get various "DRAFT" indicators in the webpages
the --nodraft option eliminates this.

makesite --nodraft war

#[ASIDE: you _could_ avoid removing & rebuilding from scratch by
replacing the previous 2 command with the single:

makesite --force=instanciate --nodraft war
]

This should create a fresh version of the site on orion in
/local/dlmf/$USER/dlmf
as well as a new war file at
/local/dlmf/$USER/dlmf-YYYYMMDD.war
where YYYYMMDD is be the release date.

You can make a final test it out on
 http://orion.cam.nist.gov/dlmf/
(or wherever your builds are usually seen)

#==
​3. Publishing the release
#==

#==
Publish on dlmf.nist.gov
#==

For security, these steps can only be done by: #
Chris Schanzle <schanzle@nist.gov> #
Don Koss <donald.koss@nist.gov> #

But I'll outline them for the overview.
Carry out the same steps as for testing on dlmf-dev,
except use host muggle.nist.gov (the actual host name of dlmf.nist.gov)

Ideally this should be done on BOTH math-dev.nist.gov
and muggle.nist.gov (which serves dlmf.nist.gov)

Copy the war file to the server.

scp dlmf-YYYYMMMDD.war miller@muggle.nist.gov:/local/home/miller/

Login & install it

ssh miller@muggle.nist.gov
sudo chown mcsdweb:mcsdweb dlmf-YYYYMMDD.war
sudo cp /local/home/miller/dlmf-YYYYMMDD.war /local/tomcat5

and get it running

sudo rm /local/tomcat5/webapps/dlmf.war
sudo ln -s /local/tomcat5/dlmf-YYYYMMDD.war /local/tomcat5/webapps/dlmf.war

and probably should remove the local copy, so it doesn't waste backups...
rm /local/home/miller/dlmf-YYYYMMDD.war

After a minute or so, tomcat should have rescanned the war file, so
TEST IT!!!
http://dlmf-dev.nist.gov/ or
http://dlmf.nist.gov/

#==
​4. Bookkeeping for Posterity
#==
After you're sure everything actually works,
make sure you've saved everything back in cvs (see above),

you'll want to do some bookkeeping so that later on we
can figure out what a particular release was made of.

Store a copy of the war file on orion in /local/dlmf/archive

cp /local/dlmf/$USER/dlmf-YYYYMMDD.war /local/dlmf/archive

AND, you should "tag" the current revisions of everything
in dlmf as being associated with the current VERSION_NUMBER!
Given that the VERISON_NUMBER is of the form EDITION.PRINTING.UPDATE,
use the following command to tag the current set of files:

cvs tag -R dlmf-EDITION-PRINTING-UPDATE

(ie. substitute "-" for ".")

Or if a couple of days have past, use the remote, dated form:
cvs rtag -D YYYY-MM-DD dlmf-EDITION-PRINTING-UPDATE dlmf

If you were making another printing or edition of the printed book,
you should also mark the version using:

cvs tag -R hmf-EDITION-PRINTING-UPDATE

where hmf stands for "Handbook of Mathematical Functions"

#--
Incidentally:
You can list the tags on a specific file by doing, eg.:
cvs status -v book.tex
You can check out a copy of everything as it was
for a particular tagged version, say, 1.0.2, by doing:
cvs checkout -r dlmf-1-0-2

Or, to compare the current revision of a file with the
way it was in version 1.0.2, you can say
cvs diff -r dlmf-1-0-2 somefile

#--
As an aside, LaTeXML is in an git repository, not cvs,
and so the tagging setup is different.
Actually, I need to check how to do tagging in git.

For svn, it was the following:
Go to the svn/LaTeXML directory (where you'll find ./trunk)
copy the current set of files into the tag directory and commit

svn copy trunk tags/dlmf-1-0-2
svn commit -m "created dlmf-1-0-2 tag" tags

Tagging a revision "after the fact" is like

svn copy -r <rev> http://<repo>/ http://<repo>/tags/<tag> -m <commit-comment>

To see all tags:
svn list http://<repo>/tags/
to show the tag message:
svn log --limit 1 http://<repo>/tags/<tag>

#%%
H. To setup a DLMF Server (including demo server on laptop)
#%%
The short form is:
(1) install java
(2) install tomcat
(3) drop a dlmf.war into the Right Place.
That's it.
A slightly more sophisticated/secure installation has apache
proxy for tomcat (which runs "behind" it)
(4) install apache
(5) configure apache to proxy serve:
See linux install, below for details.

More detailed explanation for specific platforms follows,
and assumes you've built an appropriate war file (see above),
or found one at
dlmf-dev.nist.gov:/local/tomcat5/dlmf-YYYYMMDD.war
or
orion.cam.nist.gov:/local/dlmf/archive/dlmf-YYYYMMDD.war

#==
Linux
#==
On linux, it is best just to install tomcat using the standard package
manager; It will install whatever dependencies, like java, that are needed.
(note: on Centos, you may have to say tomcat5 in the following)
On RPM based systems, use yum:

sudo yum install tomcat

Now copy the war file to tomcat's webapp directory:

sudo cp dlmf-YYYYMMDD.war /var/lib/tomcat/webapps/dlmf.war

After a few minutes, it should be available at

http://localhost:8080/dlmf

#--
Running apache as proxy for tomcat
#--
It may be worth installing httpd and serving dlmf through it.
(certainly more secure on a public server)

sudo yum install httpd

Create a configuration file, say /etc/httpd/conf.d/dlmf-tomcat.conf,
containing :

ProxyRequests Off
ProxyPass /dlmf/ http://localhost:8080/dlmf/
ProxyPassReverse /dlmf/ http://localhost:8080/dlmf/

Now, you should see dlmf at:

http://localhost/dlmf/

#==
Mac
#==
Offhand, I don't know actually, but it must be similar to
the Linux; maybe there's a macport of tomcat?

#==
Windows
#==
Get JAVA:
Unless you've already got at least a Java 6 aka 1.6 version;
Go to
http://java.com/en/download/manual.jsp
Download & install the latest current Windows version.

If they give lots of choices ("beans", development kits,
"enterprise edition", etc.), a JRE version is fine.
(unless you plan to do your own development)

Get TOMCAT:
Go to
http://tomcat.apache.org/
and choose the latest Tomcat 6.x.x version
(we haven't yet tested Tomcat 7)
Download and install an appropriate version from
"Binary Distributions/Core"

When running the installer, it may ask
which java to use: make sure it uses a nice
fresh one, if you installed one above.

IMPORTANT: You'll get some sort of tomcat manager
application. Run this and find "Tomcat Properties"
(or maybe the application _is_ Tomcat properties..)
You'll get a window with several tabs.
Under "Java" tab, find a box called "Java Options"
Click in that box and go to the end.
Add a new line that contains:
-Dfile.encoding=UTF-8

and save or whatever you need to do.

Install dlmf.war
(1) Run the tomcat manager/tomcat properties and
make sure tomcat is stopped (click "Stop").
(2) Find the directory where tomcat got installed
<wherever>/apache-tomcat-6.x.x/webapps
(3) If you've installed dlmf before,
delete dlmf.war and any directory dlmf in webapps
(4) copy dlmf.war to the webapps.
(5) Run the tomcat manager/tomcat properties and
make start tomcat (click "Start").

Then, point your browser at
http://localhost:8080/dlmf/

and hopefully you're there, and everthing works!
Enjoy!

#%%
​I. Other Esoterica​...
#%%
A reminder of where to find the needed java jar files.
The following jar files are used in the java runtime and need
to be placed in

dlmf/web/WEB-INF/lib

=== LUCENE: Search engine ===
Download lucene-java from http://lucene.apache.org/, untar
Find the appropriate lucene*.jar, EG.
lucene-core-1.9.1.jar

=== XERCES: XML Parser ===
I've explicitly included xerce's (the xml parser) jars so that we have
the catalog resolver available (apparently not incldued with tomcat)

Download from Xerces-J-bin from http://xerces.apache.org/, untar
Find:
xercesImpl.jar
xml-apis.jar
resolver.jar

=== XALAN: XSLT Transformer ===
I've explicitly included xalan's (the xslt engine) jars so that
extension functions are available.

Download Xalan-J-bin from http://xalan.apache.org/, untar
Find:
serializer.jar
xalan.jar
xsltc.jar

