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ABSTRACT
Mathematical notation, i.e., the writing system used to communi-
cate concepts in mathematics, encodes valuable information for
a variety of information search and retrieval systems. Yet, math-
ematical notations remain mostly unutilized by today’s systems.
In this paper, we present the first in-depth study on the distribu-
tions of mathematical notation in two large scientific corpora: the
open access arXiv (2.5B mathematical objects) and the mathemati-
cal reviewing service for pure and applied mathematics zbMATH
(61M mathematical objects). Our study lays a foundation for future
research projects on mathematical information retrieval for large
scientific corpora. Further, we demonstrate the relevance of our
results to a variety of use-cases. For example, to assist semantic
extraction systems, to improve scientific search engines, and to
facilitate specialized math recommendation systems.

The contributions of our presented research are as follows: (1)
we present the first distributional analysis of mathematical formu-
lae on arXiv and zbMATH; (2) we retrieve relevant mathematical
objects for given textual search queries (e.g., linking P (α,β )n (x) with
‘Jacobi polynomial’); (3) we extend zbMATH’s search engine by pro-
viding relevant mathematical formulae; and (4) we exemplify the
applicability of the results by presenting auto-completion for math
inputs as the first contribution to math recommendation systems.
To expedite future research projects, we have made available our
source code and data.
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1 INTRODUCTION
Taking into account mathematical notation in the literature leads to
a better understanding of scientific literature on theWeb and allows
one to make use of semantic information in specialized Information
Retrieval (IR) systems. Nowadays applications in Math Information
Retrieval (MathIR) [15], such as search engines [7, 17, 18, 22, 24,
27, 31], semantic extraction systems [23, 36, 37], recent efforts in
math embeddings [10, 13, 25, 44], and semantic tagging of math
formulae [6, 43] either consider an entire equation as one entity or
only focus on single symbols. Since math expressions often contain
meaningful and important subexpressions, these applications could
benefit from an approach that lies between the extremes of exam-
ining only individual symbols or considering an entire equation as
one entity. Consider for example, the explicit definition for Jacobi
polynomials [8, (18.5.7)]
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The interesting components in this equation are P (α,β )n (x) on the
left-hand side, and the appearance of the gamma function Γ(s)
on the right-hand side, implying a direct relationship between
Jacobi polynomials and the gamma function. Considering the entire
expression as a single object misses this important relationship.
On the other hand, focusing on single symbols can result in the
misleading interpretation of Γ as a variable and Γ(α + n + 1) as
a multiplication between Γ and (α + n + 1). A system capable of
identifying the important components, such as P (α,β )n (x) or Γ(α +
n+1), is therefore desirable. Hereafter, we define these components
as Mathematical Objects of Interest (MOIs) [13].

The importance of math objects is a somewhat imprecise descrip-
tion and thus difficult to measure. Currently, not much effort has
been made in identifying meaningful subexpressions. Kristianto
et al. [23] introduced dependency graphs between formulae. With
this approach, they were able to build dependency graphs of math-
ematical expressions, but only if the expressions appeared as single
expressions in the context. For example, if Γ(α +n + 1) appears as a
stand-alone expression in the context, the algorithm will declare a
dependency with Equation (1). However, it is more likely that differ-
ent forms, such as Γ(s), appear in the context. Since this expression
does not match any subexpression in Equation (1), the approach
cannot establish a connection with Γ(s). Kohlhase et al. studied
in [19–21] another approach to identify essential components in
formulae. They performed eye-tracking studies to identify impor-
tant areas in rendered mathematical formulae. While this is an
interesting approach that allows one to learn more about the in-
sights of human behaviors of reading and understanding math, it
is inaccessible for extensive studies.

This paper presents the first extensive frequency distribution
study of mathematical equations in two large scientific corpora, the
e-Print archive arXiv.org (hereafter referred to as arXiv1) and the
international reviewing service for pure and applied mathematics
zbMATH2. We will show that math expressions, similar to words in
natural language corpora, also obey Zipf’s law [33], and therefore
follows a Zipfian distribution. Related research projects observed a
relation to Zipf’s law for single math symbols [6, 36]. In the context
of quantitative linguistics, Zipf’s law states that given a text corpus,
the frequency of any word is inversely proportional to its rank
in the frequency table. Motivated by the similarity to linguistic
properties, we will present a novel approach for ranking formulae
by their relevance via a customized version of the ranking function
BM25 [34]. We will present results that can be easily embedded
in other systems in order to distinguish between common and
uncommon notations within formulae. Our results lay a foundation
for future research projects in MathIR.

Fundamental knowledge on frequency distributions of math for-
mulae is beneficial for numerous applications in MathIR, ranging
from educational purposes [40] to math recommendation systems,
search engines [7, 31], and even automatic plagiarism detection
systems [28, 29, 39]. For example, students can search for the con-
ventions to write certain quantities in formulae; document prepara-
tion systems can integrate an auto-completion or auto-correction
service for math inputs; search or recommendation engines can

1https://arxiv.org/ [Accessed: Sep. 1, 2019]
2https://zbmath.org [Accessed: Sep. 1, 2019]

adjust their ranking scores with respect to standard notations; and
plagiarism detection systems can estimate whether two identical
formulae indicate potential plagiarism or are just using the con-
ventional notations in a particular subject area. To exemplify the
applicability of our findings, we present a textual search approach to
retrieve mathematical formulae. Further, we will extend zbMATH’s
faceted search by providing facets of mathematical formulae ac-
cording to a given textual search query. Lastly, we present a simple
auto-completion system for math inputs as a contribution towards
advancing mathematical recommendation systems. Further, we
show that the results provide useful insights for plagiarism detec-
tion algorithms. We provide access to the source code, the results,
and extended versions of all of the figures appearing in this paper
at https://github.com/ag-gipp/FormulaCloudData.
Related Work: Today, mathematical search engines index formu-
lae in a database. Much effort has been undertaken to make this
process as efficient as possible in terms of precision and runtime
performance [7, 17, 26, 27, 45]. The generated databases naturally
contain the information required to examine the distributions of
the indexed mathematical formulae. Yet, no in-depth studies of
these distributions have been undertaken. Instead, math search
engines focus on other aspects, such as devising novel similarity
measures and improving runtime efficiency. This is because the goal
of math search engines is to retrieve relevant (i.e., similar) formulae
which correspond to a given search query that partially [24, 26, 31]
or exclusively [7, 17, 18] contains formulae. However, for a fun-
damental study of distributions of mathematical expressions, no
similarity measures nor efficient lookup or indexing is required.
Thus, we use the general-purpose query language XQuery and em-
ploy the BaseX3 implementation. BaseX is a free open-source XML
database engine, which is fully compatible with the latest XQuery
standard [14, 41]. Since our implementations rely on XQuery, we
are able to switch to any other database which allows for processing
via XQuery.

2 DATA PREPARATION
LATEX is the de facto standard for the preparation of academic
manuscripts in the fields of mathematics and physics [11]. Since
LATEX allows for advanced customizations and even computations,
it is challenging to process. For this reason, LATEX expressions are
unsuitable for an extensive distribution analysis of mathematical
notations. For mathematical expressions on the web, the XML for-
mattedMathML4 is the current standard, as specified by the World
Wide Web Consortium (W3C). The tree structure and the fixed
standard, i.e., MathML tags, cannot be changed, thus making this
data format reliable. Several available tools are able to convert from
LATEX toMathML [35] and various databases are able to index XML
data. Thus, for this study, we have chosen to focus on MathML. In
the following, we investigate the databases arXMLiv (08/2018) [12]
and zbMATH5 [38].

The arXMLiv dataset (≈1.2 million documents) contains HTML5
versions of the documents from the e-Print archive arXiv.org.
The HTML5 documents were generated from the TEX sources

3http://basex.org/ [Accessed: Sep. 2019]; We used BaseX 9.2 for our experiments.
4https://www.w3.org/TR/MathML3/ [Accessed: Sep. 1, 2019]
5https://zbmath.org/ [Accessed: Sep. 1, 2019]
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via LATExml [30]. LATExml converted all mathematical expressions
intoMathML with parallel markup, i.e., presentation and content
MathML. In this study we only consider the subsets no-problem
and warning, which generated no errors during the conversion pro-
cess. Nonetheless, the MathML data generated still contains some
errors or falsely annotated math. For example, we discovered sev-
eral instances of affiliation and footnotes, SVG6 and other unknown
tags, encoded in MathML. Regarding the footnotes, we presumed
that authors falsely usedmathematical environments for generating
footnote or affiliation marks. We used the TEX string, provided as an
attribute in the MathML data, to filter out expressions that match
the string ‘{}^{*}’, where ‘*’ indicates any possible expression. In
addition, we filtered out SVG and other unknown tags. We assume
that these expressions were generated by mistake due to limitations
of LATExml. The final arXiv dataset consisted of 841,008 documents
which contained at least one mathematical formula. The dataset
contained a total of 294,151,288 mathematical expressions.

In addition to arXiv, we investigated zbMATH, an international
reviewing service for pure and applied mathematics which con-
tains abstracts and reviews of articles, hereafter uniformly called
abstracts, mainly from the domains of pure and applied mathemat-
ics. The abstracts in zbMATH are formatted in TEX [38]. To be able to
compare arXiv and zbMATH, we manually generated MathML via
LATExml for each mathematical formula in zbMATH and performed
the same filters as used for the arXiv documents. The zbMATH
dataset contained 2,813,451 abstracts, of which 1,349,297 contained
at least one formula. In total, the dataset contained 11,747,860 for-
mulae. Even though the total number of formulae is smaller com-
pared to arXiv, we hypothesize that math formulae in abstracts are
particularly meaningful.

2.1 Data Wrangling
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ics. The abstracts in zbMATH are formatted in TEX [40]. To be able to
compare arXiv and zbMATH, we manually generated MathML via
LATExml for each mathematical formula in zbMATH and performed
the same filters as used for the arXiv documents. The zbMATH
dataset contained 2,813,451 abstracts, of which 1,349,297 contained
at least one formula. In total, the dataset contained 11,747,860 for-
mulae. Even though the total number of formulae is smaller com-
pared to arXiv, we hypothesize that math formulae in abstracts are
particularly meaningful.

2.1 Data Wrangling
Listing 1: MathML
representation of
P
(α ,β )
n (x).
1 <math><mrow>
2 <msubsup>
3 <mi>P</mi>
4 <mi>n</mi>
5 <mrow>
6 <mo>(</mo>
7 <mi>α</mi>
8 <mo>,</mo>
9 <mi>β</mi>
10 <mo>)</mo>
11 <mo></mo>
12 </mrow>
13 </msubsup>
14 <mo></mo>
15 <mrow>
16 <mo>(</mo>
17 <mi>x</mi>
18 <mo>)</mo>
19 </mrow>
20 </mrow></math>

Since we focused on the frequency distri-
butions of visual expressions, we only con-
sidered presentational MathML (pMML).
Rather than normalizing the pMML data,
e.g., via MathMLCan [9], which would also
change the tree structure and visual core el-
ements in pMML, we only eliminated the at-
tributes. These attributes are used for minor
visual changes, e.g., stretched parentheses or
inline limits of sums and integrals. Thus, for
this first study, we preserved the core struc-
ture of the pMML data, which might provide
insightful statistics for the MathML commu-
nity to further cultivate the standard. After
extracting all MathML expressions, filtering
out falsely annotated math and SVG tags, and
eliminating unnecessary attributes and anno-
tations, the datasets required 83GB of disk
space for arXiv and 6GB for zbMATH, respectively.

In the following, we indexed the data via BaseX. The indexed
datasets required a disk space of 143.9GB in total (140GB for arXiv
and 3.9GB for zbMATH). Due to the limitations7 of databases in
BaseX, it was necessary to split our datasets into smaller subsets.
We split the datasets according to the 20 major article categories of
arXiv8 and classifications of zbMATH. To increase performance, we
use BaseX in a server-client environment. We experienced perfor-
mance issues in BaseX when multiple clients repeatedly requested
data from the same server in short intervals. We determined that
the best workaround for this issue was to launch BaseX servers for
each database, i.e., each category/classification.

Mathematical expressions often consist of multiple meaning-
ful subexpressions, which we defined as MOIs. However, without
further investigation of the context, it is impossible to determine
meaningful subexpressions. As a consequence, every equation is a
potential MOI on its own and potentially consists of multiple other
MOIs. For an extensive frequency distributional analysis, we aim
to discover all possible mathematical objects. Hence, we split every
formula into its components. SinceMathML is an XML data format
(essentially a tree-structured format), we define subexpressions of
equations as subtrees of itsMathML format.
7A detailed overview of the limitations of BaseX databases can be found at http:
//docs.basex.org/wiki/Statistics [Accessed: Sep. 1, 2019].
8The arXiv categories astro-ph (astro physics), cond-mat (condensed matter), and math
(mathematics) were still too large for a single database. Thus, we split those categories
into two equally sized parts.

Listing 1 illustrates a Jacobi polynomial P (α ,β )n (x) in pMML. The
<mo> element on line 14 contains the invisible times UTF-8 character.
By definition, the <math> element is the root element of MathML
expressions. Since we cut off all other elements besides pMML
nodes, each <math> element has one and only one child element9.
Thus, we define the child element of the <math> element as the root
of the expression. Starting from this root element, we explore all
subexpressions. For this study, we presume that every meaningful
mathematical object (i.e., MOI) must contain at least one identifier.

Hence, we only study subtrees which contain at least one <mi>
node. Identifiers, in the sense of MathML, are ‘symbolic names or
arbitrary text’ 10, e.g., single Latin or Greek letters. Identifiers do not
contain special characters (other than Greek letters) or numbers. As
a consequence, arithmetic expressions, such as (1+2)2, or sequences
of special characters and numbers, such as {1, 2, ...} ∩ {−1}, will
not appear in our distributional analysis. However, if a sequence
or arithmetic expression consists of an identifier somewhere in the
pMML tree (such as in {1, 2, ...} ∩A), the entire expression will be
recognized. The Jacobi polynomial P (α ,β )n (x), therefore consists of
the following subexpressions: P (α ,β )n , (α, β), (x), and the single iden-
tifiers P , n, α , β , and x . The entire expression is also a mathematical
object. Hence, we take entire expressions with an identifier into
account for our analysis. In the following, the set of subexpressions
will be understood to include the expression itself.

For our experiments, we also generated a string representation
of the MathML data. The string is generated recursively by ap-
plying one of two rules for each node: (i) if the current node is a
leaf, the node-tag and the content will be merged by a colon, e.g.,
<mi>x</mi> will be converted to mi:x; (ii) otherwise the node-tag
wraps parentheses around its content and separates the children by
a comma, e.g., <mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>
will be converted to mrow(mo:(,mi:x,mo:)). Furthermore, the
special UTF-8 characters for invisible times (U+2062) and function
application (U+2061) are replaced by ivt and fa, respectively. For
example, the gamma function with argument x + 1, Γ(x + 1) would
be represented by

mrow(mi:Γ,mo:ivt,mrow(mo:(,mrow(mi:x,mo:+,mn:1),mo:))). (2)

Between Γ and (x + 1), there would most likely be the special char-
acter for invisible times rather than for function application, because
LATExml is not able to parse Γ as a function. Note that this string con-
version is a bijective mapping. The string representation reduces
the verbose XML format to a more concise presentation. Thus, an
equivalence check between two expressions is more efficient.
2.2 Complexity of Math
Mathematical expressions can become complex and lengthy. The
tree structure of MathML allows us to introduce a measure that
reflects the complexity of mathematical expressions. More complex
expressions usually consist of more extensively nested subtrees
in theMathML data. Thus, we define the complexity of a mathe-
matical expression by the maximum depth of the MathML tree. In
XML the content of a node and its attributes are commonly inter-
preted as children of the node. Thus, we define the depth of a single
node as 1 rather than 0, i.e., single identifiers, such as <mi>P</mi>,
9Sequences are always nested in an <mrow> element.
10https://www.w3.org/TR/MathML3/chapter3.html [Accessed: Sep. 1, 2019]
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use BaseX in a server-client environment. We experienced perfor-
mance issues in BaseX when multiple clients repeatedly requested
data from the same server in short intervals. We determined that
the best workaround for this issue was to launch BaseX servers for
each database, i.e., each category/classification.
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arbitrary text’ 10, e.g., single Latin or Greek letters. Identifiers do not
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a consequence, arithmetic expressions, such as (1+2)2, or sequences
of special characters and numbers, such as {1, 2, ...} ∩ {−1}, will
not appear in our distributional analysis. However, if a sequence
or arithmetic expression consists of an identifier somewhere in the
pMML tree (such as in {1, 2, ...} ∩A), the entire expression will be
recognized. The Jacobi polynomial P (α,β )n (x), therefore consists of
the following subexpressions: P (α,β )n , (α , β), (x), and the single iden-
tifiers P , n, α , β , and x . The entire expression is also a mathematical
object. Hence, we take entire expressions with an identifier into
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will be understood to include the expression itself.

For our experiments, we also generated a string represen-
tation of the MathML data. The string is generated recur-
sively by applying one of two rules for each node: (i) if
the current node is a leaf, the node-tag and the content

7A detailed overview of the limitations of BaseX databases can be found at http:
//docs.basex.org/wiki/Statistics [Accessed: Sep. 1, 2019].
8The arXiv categories astro-ph (astro physics), cond-mat (condensed matter), and math
(mathematics) were still too large for a single database. Thus, we split those categories
into two equally sized parts.
9Sequences are always nested in an <mrow> element.
10https://www.w3.org/TR/MathML3/chapter3.html [Accessed: Sep. 1, 2019]
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will be merged by a colon, e.g., <mi>x</mi> will be con-
verted to mi:x; (ii) otherwise the node-tag wraps parentheses
around its content and separates the children by a comma, e.g.,
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow> will be con-
verted to mrow(mo:(,mi:x,mo:)). Furthermore, the special UTF-8
characters for invisible times (U+2062) and function application
(U+2061) are replaced by ivt and fa, respectively. For example, the
gamma function with argument x+1, Γ(x+1)would be represented
by

mrow(mi:Γ,mo:ivt,mrow(mo:(,mrow(mi:x,mo:+,mn:1),mo:))). (2)

Between Γ and (x + 1), there would most likely be the special char-
acter for invisible times rather than for function application, because
LATExml is not able to parse Γ as a function. Note that this string con-
version is a bijective mapping. The string representation reduces
the verbose XML format to a more concise presentation. Thus, an
equivalence check between two expressions is more efficient.

2.2 Complexity of Math
Mathematical expressions can become complex and lengthy. The
tree structure of MathML allows us to introduce a measure that
reflects the complexity of mathematical expressions. More complex
expressions usually consist of more extensively nested subtrees
in theMathML data. Thus, we define the complexity of a mathe-
matical expression by the maximum depth of the MathML tree. In
XML the content of a node and its attributes are commonly inter-
preted as children of the node. Thus, we define the depth of a single
node as 1 rather than 0, i.e., single identifiers, such as <mi>P</mi>,
have a complexity of 1. The Jacobi polynomial from Listing 1 has a
complexity of 4.

We perform the extraction of subexpressions from MathML
in BaseX. The algorithm for the extraction process is written in
XQuery. The algorithm traverses recursively downwards from the
root to the leaves. In each iteration, it checks whether there is an
identifier, i.e., <mi> element, among the descendants of the current
node. If there is no such element, the subtree will be ignored. It
seems counterintuitive to start from the root and check if an identi-
fier is among the descendants rather than starting at each identifier
and traversing upwards to the root. If an XQuery requests a node
in BaseX, BaseX loads the entire subtree of the requested node into
the cache (up to a specified size). If the algorithm traverses upwards
through the MathML tree, the XQuery will trigger database re-
quests in every iteration. Hence, the downwards implementation
performs better, since there is only one database request for every
expression rather than for every subexpression.

Since we only minimize the pMML data rather than normalizing
it, two identically rendered expressions may have different com-
plexities. For instance, <mrow><mi>x</mi></mrow> consists of two
distinct subexpressions, but both of them are displayed the same.
Another problem often appears for arrays or similar visually compli-
cated structures. The extracted expressions are not necessarily log-
ical subexpressions. We will consider applying more advanced em-
bedding techniques such as special tokenizers [26], symbol layout
trees [7, 45], and a MathML normalization via MathMLCan [9] in
future research to overcome these issues.

Figure 1: Unique subexpressions for each complexity in
arXiv and zbMATH.

3 FREQUENCY DISTRIBUTIONS OF
MATHEMATICAL FORMULAE

By splitting each formula into subexpressions, we generated longer
documents and a bias towards low complexities. Note that, hereafter,
we only refer to the mathematical content of documents. Thus, the
length of a document refers to the number of math formulae—here
the number of subexpressions—in the document. After splitting ex-
pressions into subexpressions, arXiv consists of 2.5B and zbMATH
of 61M expressions, which raised the average document length to
2,982.87 for arXiv and 45.47 for zbMATH, respectively.

For calculating frequency distributions, we merged two subex-
pressions if their string representations were identical. Remember,
the string representation is unique for each MathML tree. After
merging, arXiv consisted of 350,206,974 unique mathematical subex-
pressions with a maximum complexity of 218 and an average com-
plexity of 5.01. For high complexities over 70, the formulae show
some erroneous structures that might be generated from LATExml by
mistake. For example, the expression with the highest complexity
is a long sequence of a polynomial starting with ‘P4(t1, t3, t7, t11) =’
followed by 690 summands. The complexity is caused by a high
number of unnecessarily deeply nested <mrow> nodes. The high-
est complexity with a minimum document frequency of two is 39,
which is a continued fraction. Since continued fractions are nested
fractions, they naturally have a large complexity. One of the most
complex expressions (complexity 20) with a minimum document
frequency of three was the formula
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©«· · ·
(

n∑
jm=1

��T (
ej1, ...,ejm

) ��qm ) qm−1
qm

· · ·
ª®®¬
q2
q3 ª®®®¬

q1
q2 ª®®®®®¬

1
q1

≤CKm,p,q ∥T ∥ .

(3)

In contrast, zbMATH only consisted of 8,450,496 unique expressions
with a maximum complexity of 26 and an average complexity of
3.89. One of the most complex expressions in zbMATH with a
minimum document frequency of three was

Mp (r , f ) =
(
1
2π

∫ 2π

0

���f (
reiθ

)���p dθ )1/p . (4)

As we expected, reviews and abstracts in zbMATH were generally
shorter and consisted of less complex mathematical formulae. The
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Category arXiv zbMATH
Documents 841,008 1,349,297
Formulae 294,151,288 11,747,860
Subexpressions 2,508,620,512 61,355,307
Unique Subexpressions 350,206,974 8,450,496
Average Document Length 2,982.87 45.47
Average Complexity 5.01 3.89
Maximum Complexity 218 26

Table 1: Dataset overview. Average Document Length is de-
fined as the average number of subexpressions per docu-
ment.

dataset also appeared to contain fewer erroneous expressions, since
expressions of complexity 25 are still readable and meaningful.

Figure 1 shows the ratio of unique subexpressions for each com-
plexity in both datasets. The figure illustrates that both datasets
share a peak at complexity four. Compared to zbMATH, the arXiv
expressions are slightly more evenly distributed over the different
levels of complexities. Interestingly, complexities one and two are
not dominant in either of the two datasets. Single identifiers only
make up 0.03% in arXiv and 0.12% in zbMATH, which is comparable
to expressions of complexity 19 and 14, respectively. This finding
illustrates the problem of capturing semantic meanings for single
identifiers rather than for more complex expressions [37]. It also
substantiates that entire expressions, if too complex, are not suitable
either for capturing the semantic meanings [23]. Instead, a mid-
dle ground is desirable, since the most unique expressions in both
datasets have a complexity between 3 and 5. Table 1 summarizes
the statistics of the examined datasets.

3.1 Zipf’s Law
In linguistics, it is well known that word distributions follow Zipf’s
Law [33], i.e., the r -th most frequent word has a frequency that
scales to

f (r ) ∝ 1
rα

(5)

with α ≈ 1. A better approximation can be applied by a shifted
distribution

f (r ) ∝ 1
(r + β)α , (6)

where α ≈ 1 and β ≈ 2.7. In a study on Zipf’s law, Piantadosi [33]
illustrated that not only words in natural language corpora follow
this law surprisingly accurately, but alsomany other human-created
sets. For instance, in programming languages, in biological systems,
and even in music. Since mathematical communication has derived
as the result of centuries of research, it would not be surprising if
mathematical notations would also follow Zipf’s law. The primary
conclusion of the law illustrates that there are some very common
tokens against a large number of symbols which are not used fre-
quently. Based on this assumption, we can postulate that a score
based on frequencies might be able to measure the peculiarity of
a token. The infamous TF-IDF ranking functions and their deriva-
tives [1, 34] have performed well in linguistics for many years and
are still widely used in retrieval systems [3]. However, since we
split every expression into its subexpressions, we generated an
anomalous bias towards shorter, i.e., less complex, formulae. Hence,
distributions of subexpressions may not obey Zipf’s law.

(a) Frequency Distributions (b) Complexity Distributions

Figure 2: Each figure illustrates the relationship between the
frequency ranks (x-axis) and the normalized frequency (y-
axis) in zbMATH (top) and arXiv (bottom). For arXiv, only
the first 8 million entries are plotted to be comparable with
zbMATH (≈ 8.5 million entries). Subfigure (a) shades the
hexagonal bins from green to yellow using a logarithmic
scale according to the number of math expressions that fall
into a bin. The dashed orange line represents Zipf’s distri-
bution (6). The values for α and β are provided in the plots.
Subfigure (b) shades the bins from blue to red according to
the maximum complexity in each bin.

Figure 2 visualizes a comparison between Zipf’s law and the
frequency distributions of mathematical subexpressions in arXiv
and zbMATH. The dashed orange line visualizes the power law (6).
The plots demonstrate that the distributions in both datasets obey
this power law. Interestingly, there is not much difference in the
distributions between both datasets. Both distributions seem to
follow the same power law, with α = 1.3 and β = 15.82. Moreover,
we can observe that the developed complexity measure seems to
be appropriate, since the complexity distributions for formulae
are similar to the distributions for the length of words [33]. In
other words, more complex formulae, as well as long words in
natural languages, are generally more specialized and thus appear
less frequent throughout the corpus. Note that colors of the bins
for complexities fluctuate for rare expressions because the color
represents the maximum rather than the average complexity in
each bin.

3.2 Analyzing and Comparing Frequencies
Figure 3 shows in detail the most frequently used mathematical ex-
pressions in arXiv for the complexities 1 to 5. The orange dashed line
visible in all graphs represents the normal Zipf’s law distribution
from Equation (5). We explore the total frequency values without
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Figure 3: Overview of the most frequent mathematical expressions in arXiv for complexities 1-5. The color gradient from
yellow to blue represents the frequency in the dataset. Zipf’s law (5) is represented by a dashed orange line.

any normalization. Thus, Equation (5) was multiplied by the highest
frequency for each complexity level to fit the distribution. The plots
in Figure 3 demonstrate that even though the parameter α varies
between 0.35 and 0.62, the distributions in each complexity class
also obey Zipf’s law.

The plots for each complexity class contain some interesting
fluctuations. We can spot a set of five single identifiers that are most
frequently used throughout arXiv: n, i , x , t , and k . Even though the
distributions follow Zipf’s law accurately, we can explore that these
five identifiers are proportionally more frequently used than other
identifiers and clearly separate themselves above the rest (notice
the large gap from k to a). All of the five identifiers are known
to be used in a large variety of scenarios. Surprisingly, one might
expect that common pairs of identifiers would share comparable
frequencies in the plots. However, typical pairs, such as x and y, or
α and β , possess a large discrepancy.

The plot of complexity two also reveals that two expressions are
proportionally more often used than others: (x) and (t). These two
expressions appear more than three times as often in the corpus
than any other expression of the same complexity. On the other
hand, the quantitative difference between (x) and (t) is negligible.
We may assume that arXiv’s primary domain, physics, causes the
quantitative disparity between (x), (t), and the other tokens. The
primary domain of the dataset becomes more clearly visible for
higher complexities, such as SU (2) (C311) or kms−1 (C4).

Another surprising property of arXiv is that symmetry groups,
such as SU (2), appear to play an essential role in the majority of ar-
ticles on arXiv, see SU (2) (C3), SU (2)L (C4), and SU (2) × SU (2)
(C5), among others. The plots of higher complexities12, which
we do not show here, made this even more noticeable. Given a

11We refer to a given complexity n with Cn, i.e., C3 refers to complexity 3.
12More plots showing higher complexities are available at https://github.com/ag-
gipp/FormulaCloudData

complexity of six, for example, the most frequently used expres-
sion was SU (2)L × SU (2)R , and for a complexity of seven it was
SU (3) × SU (2) ×U (1). Given a complexity of eight, ten out of the
top-12 expressions were from symmetry group calculations.

It is also worthwhile to compare expressions among different
levels of complexities. For instance, (x) and (t) appeared almost six
million times in the corpus, but f (x) (at position three in C3) was
the only expression which contained one of these most common
expressions. Note that subexpressions of variations, such as (x0),
(t0), or (t − t ′), do not match the expression of complexity two. This
may imply that (x), and especially (t), appear in many different
scenarios. Further, we can examine that even though (x) is a part of
f (x) in only approximately 3% of all cases, it is still the most likely
combination. These results are especially useful for recommenda-
tion systems that make use of math as input. Moreover, plagiarism
detection systems may also benefit from such a knowledge base. For
instance, it might be evident that f (x) is a very common expression,
but for automatic systems that work on a large scale, it is not clear
whether duplicate occurrences of f (x) or Ξ(x) should be scored
differently, e.g., in the case of plagiarism detection.

Figure 3 shows only the most frequently occurring expressions
in arXiv. Since we already explored a bias towards physics formu-
lae in arXiv, it is worth comparing the expressions present within
both datasets. Figure 4 compares the 25-top expressions for the
complexities one to four. In zbMATH, we discovered that com-
puter science and graph theory appeared as popular topics, see
for example G = (V ,E) (in C3 at position 20) and the Bachmann-
Landau notations in O(logn), O(n2), and O(n3) (C4 positions 2, 3,
and 19).

From Figure 4, we can also deduce useful information for MathIR
tasks which focus on semantic information. Current semantic ex-
traction tools [37] or LATEX parsers [35] still have difficulties dis-
tinguishing multiplications from function calls. For example as
mentioned before, LATExml [30] adds an invisible times character

https://github.com/ag-gipp/FormulaCloudData
https://github.com/ag-gipp/FormulaCloudData
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Figure 4: The top-25 most frequent expressions in arXiv (left) and zbMATH (right) for complexities 1-4. A line between both
sets indicates a matching set. Bold lines indicate that the matches share a similar rank (distance of 0 or 1).

C3 C4 C5 C6 C7
114.84 (n!) 129.44 i, j = 1, . . . ,n 119.21 Gal

(
Q/Q

)
110.83 (1 + |z |2)α 98.72 div

(
|∇u |p−2 ∇u

)
108.85 ϕ−1 108.52 xi j 112.55 | f (z)|p 105.69 f

(
reiθ

)
–

100.19 zn−1 108.50 Ûx = A(t)x 110.52
(
1 + |x |2

)
94.14 f (z) = z +

∑∞
n=2 anz

n –

100.06 (cn ) 106.66 |x − x0 | 109.19 | f (x)|p 92.33
(
|∇u |p−2 ∇u

)
–

100.05 B(G) 105.52 S2n+1 106.22 |∇u |2dx 87.27 (logn/log logn) –
99.87 log2 n 104.91 L2

(
R2

)
102.86 n(n − 1)/2 78.54 O (n log2 n) –

99.65 ξ (x) 103.70 Ûx = Ax + Bu 101.40 O(n−1) – –

Table 2: Top s(t ,D) scores, whereD is the set of all zbMATHdocuments with aminimumdocument frequency of 200,maximum
document frequency of 500k, and a minimum complexity of 3.

between f (x) rather than a function application. Investigating the
most frequently used terms in zbMATH in Table 4 reveals that u is
most likely considered to be a function in the dataset: u(t) (rank 8),
u(x) (rank 13), uxx (rank 16), u(0) (rank 17), |∇u | (rank 22). Manual
investigations of extended lists reveal even more hits: u0(x) (rank
30), −∆u (rank 32), and u(x , t) (rank 33). Since all eight terms are
among the most frequent 35 entries in zbMATH, it implies that u
can most likely be considered to imply a function in zbMATH. Of
course, this does not imply that u must always be a function in
zbMATH (see f (u) on rank 14 in C3), but this allows us to exploit
probabilities for improving MathIR performance. For instance, if
not stated otherwise, u could be interpreted as a function by de-
fault, which could help increase the precision of the aforementioned
tools.

Figure 4 also demonstrates that our two datasets diverge for
increasing complexities. Hence, we can assume that frequencies
of less complex formulae are more topic-independent. Conversely,
the more complex a math formula is, the more context-specific it
is. In the following, we will further investigate this assumption by
applying TF-IDF rankings on the distributions.

4 RELEVANCE RANKING FOR FORMULAE
Zipf’s law encourages the idea of scoring the relevance of words
according to their number of occurrences in the corpus and in the
documents. The family of BM25 ranking functions based on TF-IDF
scores are still widely used in several retrieval systems [3, 34]. Since
we demonstrated that mathematical formulae (and their subexpres-
sions) obey Zipf’s law in large scientific corpora, it appears intuitive
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Figure 5: Top-20 ranked expressions retrieved from a topic-specific subset of documents Dq . The search query q is given above
the plots. Retrieved formulae are annotated by a domain expert with green dots for relevant and red dots for non-relevant
hits. A line is drawn if a hit appears in both result sets. The line is colored in green when the hit was marked as relevant.

to also use TF-IDF rankings, such as a variant of BM25, to calculate
their relevance. In its original form [34], Okapi BM25 was calculated
as follows

bm25(t ,d) := (k + 1) IDF(t)TF(t ,d)
TF(t ,d) + k

(
1 − b + b |d |

AVGDL

) , (7)

where TF (t ,d) is the term frequency of t in the document d ,
|d | the length of the document d (in our case, the number of
subexpressions), AVGDL the average length of the documents in the
corpus (see Table 1), and IDF (t) is the inverse document frequency
of t , defined as

IDF(t) := log
N − n(t) + 1

2
n(t) + 1

2
, (8)

where N is the number of documents in the corpus and n(t) the
number of documents which contain the term t . By adding 1

2 , we
avoid log 0 and division by 0. The parameters k and b are free, with
b controlling the influence of the normalized document length and
k controlling the influence of the term frequency on the final score.
For our experiments, we chose the standard value k = 1.2 and a
high impact factor of the normalized document length via b = 0.95.

As a result of our subexpression extraction algorithm, we gener-
ated a bias towards low complexities. Moreover, longer documents
generally consist of more complex expressions. As demonstrated in
Section 2.1, a document that only consists of the single expression
P
(α,β )
n (x), i.e., the document had a length of one, would generate
eight subexpressions, i.e., it results in a document length of eight.
Thus, wemodify the BM25 score in Equation (7) to emphasize higher
complexities and longer documents. First, the average document
length is divided by the average complexity AVGC in the corpus
that is used (see Table 1), and we calculate the reciprocal of the
document length normalization to emphasize longer documents.

Moreover, in the scope of a single document, we want to empha-
size expressions that do not appear frequently in this document, but
are the most frequent among their level of complexity. Thus, less

arXiv zbMATH
Retrieved Doc. 40 200
Min. Hit Freq. 7 7

Min. DF 50 10
Max. DF 10k 10k

Table 3: Settings for the retrieval experiments.

complex expressions are ranked more highly if the document over-
all is not very complex. To achieve this weighting, we normalize
the term frequency of an expression t according to its complex-
ity c(t) and introduce an inverse term frequency according to all
expressions in the document

ITF(t ,d) := log
|d | − TF(t ,d) + 1

2
TF(t ,d) + 1

2
. (9)

Finally, we define the score s(t ,d) of a term t in a document d as

s(t ,d) := (k + 1) IDF(t) ITF(t ,d)TF(t ,d)
max

t ′∈d |c (t )
TF(t ′,d) + k

(
1 − b + b AVGDL

|d |AVGC

) . (10)

The TF-IDF ranking functions and the introduced s (t ,d) are used
to retrieve relevant documents for a given search query. However,
we want to retrieve relevant subexpressions over a set of docu-
ments. Thus, we define the score of a formula (mBM25) over a set
of documents as the maximum score over all documents

mBM25(t ,D) := max
d ∈D

s (t ,d), (11)

where D is a set of documents. We used Apache Flink [16] to
count the expressions and process the calculations. Thus, our im-
plemented system scales well for large corpora.

Table 2 shows the top-7 scored expressions, where D is the en-
tire zbMATH dataset. The retrieved expressions can be considered
as meaningful and real-world examples of MOIs, since most ex-
pressions are known for specific mathematical concepts, such as
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Riemann Zeta Function
C1 C2 C3 C4 C5 C6 TF-IDF mBM25

15,051 n 4,663 (s) 1,456 ζ (s) 349 ( 12 + it) 203 ζ ( 12 + it) 105 |ζ (1/2 + it)| ζ (s) ζ (1/2 + it)
11,709 s 2,460 (x) 340 σ + it 232 (1/2 + it) 166 ζ (1/2 + it) 88

��ζ ( 12 + it)�� ζ (1/2 + it) (1/2 + it)
9,768 x 2,163 (n) 310

∑∞
n=1 195 (σ + it) 124 ζ (σ + it) 81 |ζ (σ + it)| (1/2 + it) ( 12 + it)

8,913 k 1,485 (t) 275 (logT ) 136 1
2 + it 54 ζ (1 + it) 32 |ζ (1 + it)| 1

2 + it ζ ( 12 + it)
8,634 T 1,415 it 264 1/2 + it 97 s = σ + it 44 ζ (2n + 1) 22 |ζ (+it)| ( 12 + it) (σ + it)

Eigenvalue
C1 C2 C3 C4 C5 C6 TF-IDF mBM25

45,488 n 12,515 (x) 686 −∆u 218 |∇u |p−2 139 |∇u |p−2 ∇u 137
(
|∇u |p−2 ∇u

)
Ax = λBx − div

(
|∇u |p−2 ∇u

)
43,090 x 6,598 (t) 555 (n − 1) 218 −∆pu 68 −d2/dx2 35 −(py′)′ −∆p div

(
|∇u |p−2 ∇u

)
37,434 λ 4,377 λ1 521 |∇u | 133 W

1,p
0 (Ω) 51 A = (ai j ) 26 (|u ′ |p−2 u ′) P(λ) p = N+2

N−2
35,302 u 2,787 (Ω) 512 ai j 127 |∇u |2 46 − d2

dx 2 18 (ϕp (u ′))′ λk+1
(
ϕp (u ′)

) ′
22,460 t 2,725 Rn 495 u(x) 97 (ai j ) 45 u ∈W 1,p

0 (Ω) 18
∫
Ω
|∇u |2 dx λ1 > 0 λ ∈ (0, λ∗)

Table 4: The top-5 frequent mathematical expressions in the result set of zbMATH for the search queries ‘Riemann Zeta Func-
tion’ (top) and ‘Eigenvalue’ (bottom) grouped by their complexities (left) and the hits reordered according to their relevance
scores (right). The TF-IDF score was calculated with normalized term frequencies.

Gal(Q/Q), which refers to the Galois group of Q over Q, or L2(R2),
which refers to the L2-space (also known as Lebesgue space) over
R2. However, a more topic-specific retrieval algorithm is desir-
able. To achieve this goal, we (i) retrieved a topic-specific subset
of documents Dq ⊂ D for a given textual search query q, and (ii)
calculated the scores of all expressions in the retrieved documents.
To generate Dq , we indexed the text sources of the documents
from arXiv and zbMATH via elasticsearch (ES)13 and performed the
pre-processing steps: filtering stop words, stemming, and ASCII-
folding14. Table 3 summarizes the settings we used to retrieve MOIs
from a topic-specific subset of documents Dq . We also set a mini-
mum hit frequency according to the number of retrieved documents
an expression appears in. This requirement filters out uncommon
notations.

Figure 5 shows the results for five search queries. We asked a
domain expert from the National Institute of Standards and Tech-
nology (NIST) to annotate the results as related (shown as green
dots in Figure 5) or non-related (red dots). We found that the results
range from good performances (e.g., for the Riemann zeta function)
to bad performances (e.g., beta function). For instance, the results
for the Riemann zeta function are surprisingly accurate, since we
could discover that parts of Riemann’s hypothesis15 were ranked
highly throughout the results (e.g., ζ ( 12 + it)). On the other hand,
for the beta function, we retrieved only a few related hits, of which
only one had a strong connection to the beta function B(x ,y). We
observed that the results were quite sensitive to the chosen settings
(see Table 3). For instance, according to the beta function, the mini-
mum hit frequency has a strong effect on the results, since many
expressions are shared among multiple documents. For arXiv, the

13https://github.com/elastic/elasticsearch [Accessed Sep. 2019]. We used version 7.0.0
14This means that non-ASCII characters are replaced by their ASCII counterparts or
will be ignored if no such counterpart exists.
15Riemann proposed that the real part of every non-trivial zero of the Riemann zeta
function is 1/2. If this hypothesis is correct, all the non-trivial zeros lie on the critical
line consisting of the complex numbers 1/2 + it .

expressions B(α , β) and B(x ,y) only appear in one document of
the retrieved 40. However, decreasing the minimum hit frequency
would increase noise in the results.

Even though we asked a domain expert to annotate the results
as relevant or not, there is still plenty of room for discussion.
For instance, (x + y) (rank 15 in zbMATH, ‘Beta Function’) is the
argument of the gamma function Γ(x + y) that appears in the defi-
nition of the beta function [8, (5.12.1)] B(x ,y) := Γ(x)Γ(y)/Γ(x +y).
However, this relation is weak at best, and thus might be considered
as not related. Other examples are Rez and Re(s), which play a cru-
cial role in the scenario of the Riemann hypothesis (all non-trivial
zeroes have Re(s) = 1

2 ). Again, this connection is not obvious, and
these expressions are often used in multiple scenarios. Thus, the
domain expert did not mark the expressions as being related.

Considering the differences in the documents, it is promising
to have observed a relatively high number of shared hits in the
results. Further, we were able to retrieve some surprisingly good
insights from the results, such as extracting the full definition of the
Riemann zeta function [8, (25.2.1)] ζ (s) := ∑∞

n=1
1
ns . Even though a

high number of shared hits seem to substantiate the reliability of
the system, there were several aspects that affected the outcome
negatively, from the exact definition of the search queries to re-
trieve documents via ES, to the number of retrieved documents, the
minimum hit frequency, and the parameters in mBM25.

5 APPLICATIONS
The presented results are beneficial for a variety of use-cases. In
the following, we will demonstrate and discuss several of the appli-
cations that we propose.
Extension of zbMATH’s SearchEngine: Formula search engines
are often counterintuitive when compared to textual search, since
the user must know how the system operates to enter a search
query properly (e.g., does the system supports LATEX inputs?). Ad-
ditionally, mathematical concepts can be difficult to capture using
only mathematical expressions. Consider, for example, someone

https://github.com/elastic/elasticsearch
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Auto-completion for ‘E =m’ Suggestions for ‘E = {m, c}’
Sug. Expression TF DF Sug. Expression TF DF
E =mc2 558 376 E =mc2 558 376
E =m coshθ 23 23 E = γmc2 39 38
E =mv0 7 7 E = γmec

2 41 36
E =m/

√
1 − Ûq2 12 6 E =m coshθ 23 23

E =m/
√
1 − β2 10 6 E = −mc2 35 17

E =mc2γ 6 6 E =
√
m2c4 + p2c2 10 8

Table 5: Suggestions to complete ‘E =m’ and ‘E = {m, c}’ (the
right-hand side containsm and c) with term and document
frequency based on the distributions of formulae in arXiv.

who wants to search for mathematical expressions that are related
to eigenvalues. A textual search query would only retrieve entire
documents that require further investigation to find related ex-
pressions. A mathematical search engine, on the other hand, is
impractical since it is not clear what would be a fitting search query
(e.g., Av = λv?). Moreover, formula and textual search systems for
scientific corpora are separated from each other. Thus, a textual
search engine capable of retrieving mathematical formulae can be
beneficial. Also, many search engines allow for narrowing down
relevant hits by suggesting filters based on the retrieved results.
This technique is known as faceted search. The zbMATH search
engine also provides faceted search, e.g., by authors, or year. Adding
facets for mathematical expressions allows users to narrow down
the results more precisely to arrive at specific documents.

Our proposed system for extracting relevant expressions from sci-
entific corpora via mBM25 scores can be used to search for formulae
even with textual search queries, and to add more filters for faceted
search implementations. Table 4 shows two examples of such an ex-
tension for zbMATH’s search engine. Searching for ‘Riemann Zeta
Function’ and ‘Eigenvalue’ retrieved 4,739 and 25,248 documents
from zbMATH, respectively. Table 4 shows the most frequently used
mathematical expressions in the set of retrieved documents. It also
shows the reordered formulae according to a default TF-IDF score
(with normalized term frequencies) and our proposed mBM25 score.
The results can be used to add filters for faceted search, e.g., show
only the documents which contain u ∈W 1,p

0 (Ω). Additionally, the
search system now provides more intuitive textual inputs even for
retrieving mathematical formulae. The retrieved formulae are also
interesting by themselves, since they provide insightful information
on the retrieved publications. As already explored with our custom
document search system in Figure 5, the Riemann hypothesis is
also prominent in these retrieved documents.

The differences between TF-IDF and mBM25 ranking illustrates
the problem of an extensive evaluation of our system. From a
broader perspective, the hit Ax = λBx is highly correlated with the
input query ‘Eigenvalue’. On the other hand, the raw frequencies
revealed a prominent role of div(|∇u |p−2 ∇u). Therefore, the top
results of the mBM25 ranking can also be considered as relevant.
Math Notation Analysis: A faceted search system allows us to
analyze mathematical notations in more detail. For instance, we can
retrieve documents from a specific time period. This allows one to
study the evolution of mathematical notation over time [4], or for

identifying trends in specific fields. Also, we can analyze standard
notations for specific authors since it is often assumed that authors
prefer a specific notation style which may vary from the standard
notation in a field.
Math Recommendation Systems: The frequency distributions
of formulae can be used to realize effective math recommendation
tasks, such as type hinting or error-corrections. These approaches
require long training on large datasets, but may still generate
meaningless results, such as Gi = {(x ,y) ∈ Rn : xi = xi } [42].
We propose a simpler system which takes advantage of our fre-
quency distributions. We retrieve entries from our result database,
which contain all unique expressions and their frequencies. We
implemented a simple prototype that retrieves the entries via pat-
tern matching. Table 5 shows two examples. The left side of the
table shows suggested autocompleted expressions for the query
‘E=m’. The right side shows suggestions for ‘E=’, where the right-
hand side of the equation should containm and c in any order. A
combination using more advanced retrieval techniques, such as
similarity measures based on symbol layout trees [7, 45], would
enlarge the number of suggestions. This kind of autocomplete and
error-correction type-hinting system would be beneficial for vari-
ous use-cases, e.g., in educational software or for search engines as
a pre-processing step of the input.
Plagiarism Detection Systems: As previously mentioned, plagia-
rism detection systems [28, 29, 39] would benefit from a system
capable of distinguishing conventional from uncommon notations.
The approaches described by Meuschke et al. [29] outperform ex-
isting approaches by considering frequency distributions of single
identifiers (expressions of complexity one). Considering that single
identifiers make up only 0.03% of all unique expressions in arXiv,
we presume that better performance can be achieved by consider-
ing more complex expressions. The conferred string representation
also provides a simple format to embed complex expressions in
existing learning algorithms.

Expressions with high complexities that are shared among mul-
tiple documents may provide further hints to investigate poten-
tial plagiarisms. For instance, the most complex expression that
was shared among three documents in arXiv was Equation (3). A
complex expression being identical in multiple documents could
indicate a higher likelihood of plagiarism. Further investigation
revealed that similar expressions, e.g., with infinite sums, are fre-
quently used among a larger set of documents. Thus, the expression
seems to be a part of a standard notation that is commonly shared,
rather than a good candidate for plagiarism detection. Resulting
from manual investigations, we could identify the equation as part
of a concept called generalized Hardy-Littlewood inequality and
Equation (3) appears in the three documents [2, 5, 32]. All three
documents shared one author in common. Thus, this case also
demonstrates a correlation between complex mathematical nota-
tions and authorship.
Semantic Taggers and Extraction Systems:We previously men-
tioned that semantic extraction systems [23, 36, 37] and semantic
math taggers [6, 43] have difficulties in extracting the essential
components (MOIs) from complex expressions. Considering the
definition of the Jacobi polynomial in Equation (1), it would be
beneficial to extract the groups of tokens that belong together, such
as P (α,β )n (x) or Γ(α + m + 1). With our proposed search engine
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Figure 6: The top ranked expression for ‘Jacobi polynomial’
in arXiv and zbMATH. For arXiv, 30 documents were re-
trieved with a minimum hit frequency of 7.

for retrieving MOIs, we are able to facilitate semantic extraction
systems and semantic math taggers. Imagine such a system being
capable of identifying the term ‘Jacobi polynomial’ from the textual
context. Figure 6 shows the top relevant hits for the search query
‘Jacobi polynomial’ retrieved from zbMATH and arXiv. The results
contain several relevant and related expressions, such as the con-
straintsα , β > −1 and the weight function for the Jacobi polynomial
(1 − x)α (1 + x)β , which are essential properties of this orthogonal
polynomial. Based on these retrieved MOIs, the extraction systems
can adjust its retrieved math elements to improve precision, and
semantic taggers or a tokenizer could re-organize parse trees to
more closely resemble expression trees.

6 CONCLUSION & FUTUREWORK
In this study we showed that analyzing the frequency distribu-
tions of mathematical expressions in large scientific datasets can
provide useful insights for a variety of applications. We demon-
strated the versatility of our results by implementing prototypes
of a type-hinting system for math recommendations, an extension
of zbMATH’s search engine, and a mathematical retrieval system
to search for topic-specific MOIs. Additionally, we discussed the
potential impact and suitability in other applications, such as math
search engines, plagiarism detection systems, and semantic extrac-
tion approaches.We are confident that this project lays a foundation
for future research in the field of MathIR.

We plan on developing a web application which would provide
easy access to our frequency distributions, the MOI search engine,
and the type-hinting recommendation system. We hope that this
will further expedite related future research projects. Moreover, we
will use this web application for an online evaluation of our MOI
retrieval system. Since the level of agreement among annotators

will be predictably low, an evaluation by a large community is
desired.

In this first study, we preserved the core structure of theMathML
data which provided insightful information for the MathML com-
munity. However, this makes it difficult to properly merge formulae.
In future studies, we will normalize theMathML data via MathML-
Can [9]. In addition to this normalization, we will include wildcards
for investigating distributions of formula patterns rather than exact
expressions. This will allow us to study connections between math
objects, e.g., between Γ(z) and Γ(x + 1). This would further improve
our recommendation system and would allow for the identification
of regions for parameters and variables in complex expressions.
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