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ABSTRACT
Mathematical formulae represent complex semantic information

in a concise form. Especially in Science, Technology, Engineering,

and Mathematics, mathematical formulae are crucial to commu-

nicate information, e.g., in scientific papers, and to perform com-

putations using computer algebra systems. Enabling computers to

access the information encoded in mathematical formulae requires

machine-readable formats that can represent both the presentation

and content, i.e., the semantics, of formulae. Exchanging such infor-

mation between systems additionally requires conversion methods

for mathematical representation formats. We analyze how the se-

mantic enrichment of formulae improves the format conversion

process and show that considering the textual context of formulae

reduces the error rate of such conversions. Our main contributions

are: (1) providing an openly available benchmark dataset for the

mathematical format conversion task consisting of a newly cre-

ated test collection, an extensive, manually curated gold standard

and task-specific evaluation metrics; (2) performing a quantitative

evaluation of state-of-the-art tools for mathematical format con-

versions; (3) presenting a new approach that considers the textual

context of formulae to reduce the error rate for mathematical for-

mat conversions. Our benchmark dataset facilitates future research

on mathematical format conversions as well as research on many

problems in mathematical information retrieval. Because we an-

notated and linked all components of formulae, e.g., identifiers,

operators and other entities, to Wikidata entries, the gold standard

can, for instance, be used to train methods for formula concept

discovery and recognition. Such methods can then be applied to

improve mathematical information retrieval systems, e.g., for se-

mantic formula search, recommendation of mathematical content,

or detection of mathematical plagiarism.
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1 INTRODUCTION
In STEM disciplines, i.e., Science, Technology, Engineering, and

Mathematics, mathematical formulae are ubiquitous and crucial to

communicate information in documents, such as scientific papers,

and to perform computations in computer algebra systems (CAS).

Mathematical formulae represent complex semantic information

in a concise form that is independent of natural language. These

characteristicsmakemathematical formulae particularly interesting

features to be considered by information retrieval systems.

In the digital libraries context, major information retrieval appli-

cations for mathematical formulae include search and recommender

systems as well as systems that support humans in understanding

and applying mathematical formulae, e.g., by visualizing mathemat-

ical functions or providing auto completion and error correction

functionality in typesetting and CAS.

However, the extensive, context-dependent polysemy and poly-

morphism of mathematical notation is a major challenge to ex-

posing the knowledge encoded in mathematical formulae to such

systems. The amount of mathematical concepts, e.g., mathemat-

ical structures, relations and principles, is much larger than the

set of mathematical symbols available to represent these concepts.

Therefore, the meaning of mathematical symbols varies in different

contexts, e.g., in different documents, and potentially even in the

same context. Identical mathematical formulae, even in the same

document, do not necessarily represent the same mathematical

concepts. Identifiers are prime examples of mathematical polysemy.

For instance, while the identifier E commonly denotes energy in

physics, E commonly refers to expected value in statistics.

Polymorphism of mathematical symbols is another ubiquitous

phenomenon of mathematical notation. For example, whether the

operator · denotes a scalar multiplication or a vector multiplication

depends on the type of the elements that the operator is applied

to. Opposed to programming languages, which handle polymor-

phism by explicitly providing type information about objects to the

compiler, e.g., to check and call methods offered by the specific ob-

jects, mathematical symbols mostly denote such type information

implicitly so that they need to be reasoned from the context.

Humans account for the inherent polysemy and polymorphism

of mathematical notation by defining context-dependent meanings
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of mathematical symbols in the text that surrounds formulae, e.g.,

for identifiers, subscripts and superscripts, brackets, and invisible

operators. Without such explanations, determining the meaning of

symbols is challenging, even for mathematical experts. For example,

reliably determining whether [a,b] represents an interval or the

commutator [a,b] = ab − ba in ring theory requires information

on whether [] represent the Dirac brackets.
Enabling computers to access the full information encoded in

mathematical formulae mandates machine-readable representa-

tion formats that capture both the presentation, i.e., the notational

symbols and their spacial arrangement, and the content, i.e., the

semantics, of mathematical formulae. Likewise, exchanging mathe-

matical formulae between applications, e.g., CAS, requires methods

to convert and semantically enrich different representation formats.

The Mathematical Markup Language (MathML) allows one to en-

code both presentation and content information in a standardized

and extensible way (cf. Section 3).

Despite the availability of MathML, most Digital Mathematical

Libraries (DML) currently exclusively use presentation languages,

such as TeX and LaTeX to represent mathematical content. On

the other hand, CAS, such as MAPLE, Mathematica or SageMath
1
,

typically use representation formats that include more content in-

formation about mathematical formulae to enable computations.

The conversion between representation formats entails many con-

ceptual and technical challenges, which we describe in more detail

in Section 2. Despite the availability of numerous conversion tools,

the inherent challenges of the conversion process result in a high

error rate and often lossy conversion of mathematical formulae in

different representation formats.

To push forward advances in research on mathematical format

conversion, we make the following contributions, which we de-

scribe in the subsequent sections:

(1) We provide an openly available benchmark dataset to evaluate

tools for mathematical format conversion (cf. Section 3). The

dataset includes:

• a new test collection covering diverse research areas in

multiple STEM disciplines;

• an extensive, manually curated gold standard that includes

annotations for both presentation and content information

of mathematical formulae;

• tools to facilitate the future extension of the gold standard

by visually supporting human annotators; and

• metrics to quantitatively evaluate the quality of mathemat-

ical format conversions.

(2) We perform an extensive, quantitative evaluation of state-of-

the-art tools formathematical format conversion and provide an

automated evaluation framework that easily allows rerunning

the evaluation in future research (cf. Section 4).

(3) We propose a novel approach to mathematical format conver-

sion (cf. Section 5). The approach imitates the human sense-

making process for mathematical content by analyzing the

1
The mention of specific products, trademarks, or brand names is for purposes of

identification only. Such mention is not to be interpreted in any way as an endorsement

or certification of such products or brands by the National Institute of Standards and

Technology, nor does it imply that the products so identified are necessarily the best

available for the purpose. All trademarks mentioned herein belong to their respective

owners.

textual context of formulae for information that helps link sym-

bols in formulae to a knowledge base, in our case Wikidata, to

determine the semantics of formulae.

2 BACKGROUND & RELATEDWORK
In the following, we use the Riemann hypothesis (1) as an example

to explain typical challenges of converting different representation

formats of mathematical formulae:

ζ (s) = 0 ⇒ ℜs =
1

2

∨ ℑs = 0. (1)

We will focus on the representation of the formula in LaTeX and in

the format of the CAS Mathematica. LaTeX is a common language

for encoding the presentation of mathematical formulae. In con-

trast to LaTeX, Mathematica’s representation focuses on making

formulae computable. Hence the content must be encoded, i.e., both

the structure and the semantics of mathematical formulae must be

taken into consideration.

In LaTeX, the Riemann hypothesis can be expressed using the

following string:

\zeta(s) = 0 \Rightarrow \Re s = \frac12 \lor \Im s=0.
In Mathematica, the Riemann hypothesis can be represented as:

Implies[Equal[Zeta[s], 0], Or[Equal[Re[s], Rational[1,
2]], Equal[Im[s], 0]]].

The conversion between these two formats is challenging due

to a range of conceptual and technical differences.

First, the grammars underlying the two representation formats

greatly differ. LaTeX uses the unrestricted grammar of the TeX type-

setting system. The entire set of commands can be re-defined and

extended at runtime, which means that TeX effectively allows its

users to change every character used for the markup, including the

\ character typically used to start commands. The large degree of

freedom of the TeX grammar significantly complicates recognizing

even the most basic tokens contained in mathematical formulae. In

difference to LaTeX, CAS use a significantly more restrictive gram-

mar consisting of a predefined set of keywords and set rules that

govern the structure of expressions. For example in Mathematica,

function arguments must always be enclosed in square brackets

and separated by commas.

Second, the extensive differences in the grammars of the two

languages are reflected in the resulting expression trees. Similar

to parse trees in natural language, the syntactic rules of mathe-

matical notation, such as operator precedence and function scope,

determine a hierarchical structure for mathematical expressions

that can be understood, represented, and processed as a tree. The

mathematical expression trees of formulae consist of functions or

operators and their arguments. We used nested square brackets to

denote levels of the tree and Arabic numbers in a gray font to indi-

cate individual tokens in the markup. For the LaTeX representation

of the Riemann hypothesis, the expression tree is:[
ζ 1

l
(2
l
s3
l
)4
l
=5

l
0
6

l
⇒7

l
ℜ8

l
s9
l
=10

l

[
11

·
·
1
12

l
2
13

l

]
∨14

l
ℑ15

l
s16
l
=17

l
0
18

l

]
.

The tree consists of 18 nodes, i.e., tokens, with a maximum depth

of two (for the fraction command \frac12). The expression tree of

the Mathematica expression consists of 16 tokens with a maximum



depth of five:19⇒
[
20

=

[
21

ζ s
22

l

]
0
23

n

] [
24

∨

[
25

=

[
26

ℜs27
l

] [
28

Q1
29

n
2
30

n

] ] [
31

=

[
32

ℑs
33

l

]
0
34

n

] ] .
The higher complexity of the Mathematica expression reflects that a

CAS represents the content structure of the formula, which is deeply

nested. In contrast, LaTeX exclusively represents the presentational

layout of the Riemann hypothesis, which is almost linear.

For the given example of the Riemann hypothesis, finding align-

ments between the tokens in both representations and converting

one representation into the other is possible. In fact, Mathematica

and other CAS offer a direct import of TeX expressions, which we

evaluate in Section 4.

However, aside from technical obstacles, such as reliably de-

termining tokens in TeX expressions, conceptual differences also

prevent a successful conversion between presentation languages,

such as TeX, and content languages. Even if there was only one

generally accepted presentation language, e.g., a standardized TeX

dialect, and only one generally accepted content language, e.g.,

a standardized input language for CAS, an accurate conversion

between the representation formats could not be guaranteed.

The reason is that neither the presentation language, nor the con-

tent language always provides all required information to convert

an expression to the respective language. This can be illustrated

by the simple expression: F (a + b) = Fa + Fb. The inherent con-
tent ambiguity of F prevents a deterministic conversion from the

presentation language to a content language. F might, for example,

represent a number, a matrix, a linear function or even a symbol.

Without additional information, a correct conversion to a content

language is not guaranteed. On the other hand, the transformation

from content language to presentation language often depends on

the preferences of the author and the context. For example, authors

sometimes change the presentation of a formula to focus on specific

parts of the formula or improve its readability.

Another obstacle to conversions between typical presentation

languages and typical content languages, such as the formats of

CAS, are the restricted set of functions and the simpler grammars

that CAS offer. While TeX allows users to express the presentation

of virtually all mathematical symbols, thus denoting any mathe-

matical concept, CAS do not support all available mathematical

functions or structures. A significant problem related to the discrep-

ancy of the space of concepts expressible using presentationmarkup

and the implementation of such concepts in CAS are branch cuts.

Branch cuts are restrictions of the set of output values that CAS

impose for functions that yield ambiguous, i.e., multiple mathemati-

cally permissible outputs. One example is the complex logarithm [7,

eq. 4.2.1], which has an infinite set of permissible outputs resulting

from the periodicity of its inverse function. To account for this cir-

cumstance, CAS typically restrict the set of permissible outputs by

cutting the complex plane of permissible outputs. However, since

the method of restricting the set of permissible outputs varies be-

tween systems, identical inputs can lead to drastically different

results [5]. For example, multiple scientific publications address the

problem of accounting for branch cuts when entering expressions

in CAS, such as [8] for MAPLE.

Listing 1: MathML representation of the Riemann hypothe-
sis (1) (excerpt).
<math><semantics><mrow>. . .
<mo id="5" xref="20">=</mo>
<mn id="5" xref="21">0</mn>
<mo id="7" xref="19">⇒</ci>. . .</mrow>

<annotation−xml encoding="MathML−Content">
<apply><implies id="19" xref="7"/>
<apply><eq id="20" xref="5"/>. . .
<apply><csymbol id="21" xref="1" cd="wikidata">Q187235 . . .

</annotation−xml></semantics></math>

Our review of obstacles to the conversion of representation for-

mats for mathematical formulae highlights the need to store both
presentation and content information to allow for reversible trans-

formations. Mathematical representation formats that include pre-

sentation and content information can enable the reliable exchange

of information between typesetting systems and CAS.

MathML offers standardized markup functionality for both

presentation and content information. Moreover, the declarative

MathML XML format is relatively easy to parse and allows for cross

references between presentation language (PL) and content lan-

guage (CL) elements. Listing 1 represents excerpts of the MathML

markup for our example of the Riemann hypothesis (1). In this

excerpt, the PL token 7 corresponds to the CL token 19, PL token 5

corresponds to CL token 20, and so forth.

Combined presentation and content formats, such as MathML,

significantly improve the access to mathematical knowledge for

users of digital libraries. For example, including content informa-

tion of formulae can advance search and recommendation systems

for mathematical content. The quality of these mathematical infor-
mation retrieval systems crucially depends on the accuracy of the

computed document-query and document-document similarities.

Considering the content information of mathematical formulae can

improve these computations by:

(1) enabling the consideration of mathematical equivalence as a

similarity feature. Instead of exclusively analyzing presenta-

tion information as indexed, e.g., by considering the overlap in

presentational tokens, content information allows modifying

the query and the indexed information. For example, it would

become possible to recognize that the expressions a(bc +
d
c ) and

a(b+d )
c have a distance of zero.

(2) allowing the association of mathematical tokens with mathe-

matical concepts. For example, linking identifiers, such as E,m,

and c , to energy, mass, and speed of light, could enable searching

for all formulae that combine all or a subset of the concepts.

(3) enabling the analysis of structural similarity. The availability

of content information would enable the application of mea-

sures, such as derivatives of the tree edit distance, to discover

structural similarity, e.g., using λ-calculus. This functionality
could increase the capabilities of math-based plagiarism detec-
tion systems when it comes to identifying obfuscated instances

of reused mathematical formulae [11].

https://www.wikidata.org/w/index.php?title=Q187235&oldid=616744815


Content information could furthermore enable interactive sup-

port functions for consumers and producers of mathematical con-

tent. For example, readers of mathematical documents could be

offered interactive computations and visualizations of formulae

to accelerate the understanding of STEM documents. Authors of

mathematical documents could benefit from automated editing

suggestions, such as auto completion, reference suggestion, and

sanity checks, e.g., type and definiteness checking, similar to the

functionality of word processors for natural language texts.

Related Work
A variety of tools exist to convert format representations of math-

ematical formulae. However, to our knowledge, Kohlhase et al.

presented the only study that evaluated the conversion quality of

tools [26]. Unfortunately, many of the tools evaluated by Kohlhase

et al. are no longer available or out of date. Watt presents a strategy

to preserve formula semantics in TeX to MathML conversions. His

approach relies on encoding the semantics in custom TeX macros

rather than to expand the macros [27]. Padovani discusses the roles

of MathML and TeX elements for managing large repositories of

mathematical knowledge [15]. Nghiem et al. used statistical ma-

chine translation to convert presentation to content language [14].

However, they do not consider the textual context of formulae. We

will present detailed descriptions and evaluation results for specific

conversion approaches in Section 4.

Youssef addressed the semantic enrichment of mathematical

formulae in presentation language. They developed an automated

tagger that parses LaTeX formulae and annotates recognized to-

kens very similarly to Part-Of-Speech (POS) taggers for natural

language [28]. Their tagger currently uses a predefined, context-

independent dictionary to identify and annotate formula compo-

nents. Schubotz et al. proposed an approach to semantically enrich

formulae by analyzing their textual context for the definitions of

identifiers [22, 24].

With their ‘math in the middle approach’, Dehaye et al. envi-

sion an entirely different approach to exchanging machine readable

mathematical expressions. In their vision, independent and en-

closed virtual research environments use a standardized format for

mathematics to avoid computions and transfers between different

systems. [6].

For an extensive review of format conversion and retrieval ap-

proaches for mathematical formulae, refer to [17, Chapter 2].

3 BENCHMARKING MATHML
This section presents MathMLben - a benchmark dataset for mea-

suring the quality of MathML markup of mathematical formulae ap-

pearing in a textual context. MathMLben is an improvement of the

gold standard provided by Schubotz et al. [21]. The dataset considers

recent discussions of the Intrenational Mathematical Knowledge of

Trust working group, in particular the idea of a ‘Semantic Capture

Language’ [10], which makes the gold standard more robust and

easily accessible. MathMLben:

• allows comparisons to prior works;

• covers a wide range of research areas in STEM literature;

• provides references tomanually annotated and correctedMathML

items that are compliant with the MathML standard;

• is easy to modify and extend, i.e., by external collaborators;

• includes default distance measures; and

• facilitates the development of converters and tools.

In Section 3.1, we present the test collection included in MathML-

ben. In Section 3.2, we present the encoding guidelines for the

human assessors and describe the tools we developed to support

assessors in creating the gold standard dataset. In Section 3.3, we

describe the similarity measures used to assess the markup quality.

3.1 Collection
Our test collection contains 305 formulae (more precisely, mathe-

matical expressions ranging from individual symbols to complex

multi-line formulae) and the documents in which they appear.

Expressions 1 to 100 correspond to the search targets used for

the ‘National Institute of Informatics Testbeds and Community for

Information access Research Project’ (NTCIR) 11 Math Wikipedia

Task [21]. This list of formulae has been used for formula search and

content enrichment tasks by at least 7 different research institutions.

The formulae were randomly sampled from Wikipedia and include

expressions with incorrect presentation markup.

Expressions 101 to 200 are random samples taken from the

NIST Digital Library of Mathematical Functions (DLMF) [7]. The

DLMF website contains 9,897 labeled formulae created from se-

mantic LaTeX source files [3, 4]. In contrast to the examples from

Wikipedia, all these formulae are from the mathematics research

field and exhibit high quality presentation markup. The formulae

were curated by renowned mathematicians and the editorial board

keeps improving the quality of the formulae’s markup
2
. Sometimes,

a labeled formula contains multiple equations. In such cases, we

randomly chose one of the equations.

Expressions 201 to 305were chosen from the queries of the NT-

CIR arXiv and NTCIR-12 Wikipedia datasets. 70% of these queries

originate from the arXiv [1] and 30% from a Wikipedia dump.

All data is openly available for research purposes and can be

obtained from: https://mathmlben.wmflabs.org
3
.

3.2 Gold Standard
We provide explicit markup with universal, context-independent

symbols in content MathML. Since the symbols from the default

content dictionary of MathML
4
alone were insufficient to cover

the range of semantics in our collection, we added the Wikidata

content dictionary [18]. As a result, we could refer to all Wikidata

items as symbols in a content tree. This approach has several ad-

vantages. Descriptions and labels are available in many languages.

Some symbols even have external identifiers, e.g., from the Wol-

fram Functions Site, or from stack-exchange topics. All symbols are

linked to Wikipedia articles, which offer extensive human-readable

descriptions. Finally, symbols have relations to other Wikidata

items, which opens a range of new research opportunities, e.g., for

improving the taxonomic distance measure [23].

OurWikidata-enhanced, yet standard-compliantMathMLmarkup,

facilitates the manual creation of content markup. To further sup-

port human assessors in creating content annotations, we extended

2
http://dlmf.nist.gov/about/staff

3
Visit https://mathmlben.wmflabs.org/about for a user guide.

4
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Table 1: Special content symbols added to LaTeXML for the
creation of the gold standard.

No rendering meaning example ID
1

[
x ,y

]
commutator 91

2 x
y
z tensor 43, 208, 226

3 x† adjoint 224, 277

4 x
′

transformation 20

5 x◦ degree 20

6 x (dim)
contraction 225

the VMEXT visualization tool [25] to develop a visual support tool

for creating and editing the MathMLBen gold standard.

For each formula, we saved the source document written in dif-

ferent dialects of LaTeX and converted it into content MathML

with parallel markup using LaTeXML [12, 9]. LaTeXML is a Perl

program that converts LaTeX documents to XML and HTML. We

chose LaTeXML, because it is the only tool that supports our seman-

tic macro set. We manually annotated our dataset, generated the

MathML representation, manually corrected errors in the MathML,

and linked the identifiers to Wikidata concept entries whenever

possible. Alternatively, one could initially generate MathML using

a CAS and then manually improve the markup.

Since there is no generally accepted definition of expression trees,

we made several design decision to create semantic representations

of the formulae in our dataset using MathML trees. In some cases,

we created new macros to be able to create a MathML tree for our

purposes using LaTeXML
5
. Table 1 lists the newly created macros.

Hereafter, we explain our decisions and give examples of formulae

in our dataset that were affected by the decisions.

• not assign Wikidata items to basic mathematical identifiers and

functions like factorial, \log, \exp, \times, \pi. Instead, we
left these annotations to the DLMF LaTeX macros, because they

represent the mathematical concept by linking to the definition

in the DLMF and LaTeXML creates valid and accurate content

MathML for these macros [GoldID 3, 11, 19, ...];

• split up indices and labels of elements as child nodes of the

element. For example, we represent i as a child node of p in

p_i [GoldID 29, 36, 43, ...];

• create a special macro to represent tensors, such as for Tα β
[GoldID 43], to represent upper and lower indices as child nodes

(see table 1);

• create a macro for dimensions of tensor contractions [GoldID

225], e.g., to distinguish the three dimensional contraction of

the metric tensor in д(3) from a power function (see table 1);

• chose one subexpression randomly if the original expression

contained lists of expressions [GoldID 278];

• remove equation labels, as they are not part of the formula itself.

For example, in

E =mc2, (⋆)

the (⋆) is the ignored label;

5
http://dlmf.nist.gov/LaTeXML/manual/customization/customization.latexml.html#

SS1.SSS0.Px1

• remove operations applied to entire equations, e.g., applying

the modulus. In such cases, we interpreted the modulus as a

constraint of the equation [GoldID 177];

• use additional macros (see table 1) to interpret complex conjuga-

tions, transformation signs, and degree-symbols as functional

operations (identifier is a child node of the operation symbol),

e.g., * or \dagger for complex conjugations [GoldID 224, 277],

S' for transformations [GoldID 20], 30^\circ for thirty degrees
[Gold ID 30];

• for formulae with multiple cases, render each case as a separate

branch [GoldID 49];

• render variables that are part of separate branches in bracket

notation. We implemented the Dirac Bracket commutator []

(omitting the index _\text{DB}) and an anticommutator by

defining new macros (see table 1). Thus, there is a distinction

between a (ring) commutator [a,b] = ab - ba and an anti-

commutator {a,b} = ab + ba, without further annotation of

Dirac or Poisson brackets [GoldID 91];

• use the command \operatorname{} for multi-character iden-

tifiers or operators [GoldID 22]. This markup is necessary, be-

cause most LaTeX parsers, including LaTeXML, interpret multi-

character expressions as multiplications of the characters. In

general, this interpretation is correct, since it is inconvenient

to use multi-character identifiers [2].

Some of these design decisions are debatable. For example, intro-

ducing a macro \identifiername{} to distinguish between multi-

character identifiers and operators might be advantageous to our

approach. However, introducing many highly specialized macros is

likely not a viable approach and exaggerated. A borderline example

in regard to this problem is ∆x [GoldID 280]. Formulae of this form

could be annotated as \operatorname{}, \identifiername{} or
more generally as \expressionname{}. We interpret ∆ as a differ-

ence applied to a variable, and render the expression as a function

call.

Similar cases of overfeeding the dataset with highly specialized

macros are bracket notations. For example, the bracket (Dirac)

notation, e.g., [GoldID 209], is mainly used in quantum physics.

The angle brackets for the Dirac notation, ⟨ and ⟩, and a vertical bar
| is already interpreted correctly as "latexml - quantum-operator-

product". However, a more precise distinction between a twofold

scalar product, e.g., ⟨a |b⟩, and a threefold expectation value, e.g.,

⟨a |A|a⟩, might become necessary in some scenarios to distinguish

between matrix elements and a scalar product.

We developed a Web application to create and cultivate the gold

standard entries, which is available at: https://mathmlben.wmflabs.

org/. The Graphical User Interface (GUI) provides the following

information for each Gold ID entry.

• Formula Name: the name of the formula (optional)

• Formula Type: either definition, equation, relation or General
Formula (if none of the previous names fit)

• Original Input TeX: the LaTeX expression extracted from the

source

• Corrected TeX: the manually corrected LaTeX expression

• Hyperlink: the hyperlink to the position of the formula in the

source

https://www.wikidata.org/wiki/2989763
https://mathmlben.wmflabs.org/91
https://www.wikidata.org/wiki/188524
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/208
https://mathmlben.wmflabs.org/226
https://www.wikidata.org/wiki/2051983
https://mathmlben.wmflabs.org/224
https://mathmlben.wmflabs.org/277
https://www.wikidata.org/wiki/Q12202238
https://mathmlben.wmflabs.org/20
https://www.wikidata.org/wiki/Q28390
https://mathmlben.wmflabs.org/20
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Figure 1: Graphical User Interface to support the creation of our gold standard. The interface provides several TeX input fields
(left) and a mathematical expression tree rendered by the VMEXT visualization tool (right).

• Semantic LaTeX Input: the manually created semantic ver-

sion of the corrected LaTeX field. This entry is used to generate

our MathML with Wikidata annotations.

• Preview of Corrected LaTeX: a preview of the corrected La-

TeX input field rendered as an SVG image in real time using

Mathoid [20], a service to generate SVGs and MathML from

LaTeX input. It is shown in the top right corner of the GUI.

• VMEXT Preview: the VMEXT field renders the expression

tree based on the content MathML. The symbol in each node is

associated with the symbol in the cross referenced presentation

MathML.

Figure 1 shows the GUI that allows to manually modify the

different formats of a formula. While the other fields are intended to

provide additional information, the pipeline to create and cultivate

a gold standard entry starts with the semantic LaTeX input field.

LaTeXML will generate content MathML based on this input and

VMEXT will render the generated content MathML afterwards. We

control the output by using the DLMF LaTeX macros [13] and our

developed extensions. The following list contains some example of

the DLMF LaTeX macros.

• \EulerGamma@{z}: Γ(z): gamma function,

• \BesselJ{\nu}@{z}: Jν (z): Bessel function of the first kind,

• \LegendreQ[\mu]{\nu}@{z}: Q
µ
ν (z):

associated Legendre function of the second kind,

• \JacobiP{\alpha}{\beta}{n}@{x}: P
(α,β )
n (x):

Jacobi polynomial.

The DLMF web pages, which we use as one of the sources for

our dataset, were generated from semantically enriched LaTeX

sources using LaTeXML. Since LaTeXML is capable to interpret

semantic macros, generates content MathML that can be controlled

with macros, and is easily extensible by new macros, we also used

LaTeXML to generate our gold standard. While the DLMF is a com-

pendium for special functions, we need to annotate every identifier

in the formula with semantic information. Therefore, we extended

the set of semantic macros.

In addition to the special symbols listed in Table 1, we created

macros to semantically enrich identifiers, operators, and other math-

ematical concepts by linking them to their Wikidata items. As

shown in Figure 1, the annotations are visualized using yellow info

boxes appearing on mouse over. The boxes show the Wikidata QID,

the name, and the description (if available) of the linked concept.

Aside from naming, classifying, and semantically annotating

each formula, we performed three other tasks:

• correcting the LaTeX string extracted from the sources;

• checking and correcting the MathML generated by LaTeXML

• visualizing the MathMl using VMEXT

Most of the extracted formulae contained concepts to improve

human readability of the source code, such as commented line

breaks, %\n, in long mathematical expressions, or special macros to

improve the displayed version of the formula, e.g., spacing macros,

delimiters, and scale settings, such as \!, \, or \>. Since they are

part of the expression, all of the tested tools (also LaTeXML) try to

include these formating improvements into the MathML markup.

For our gold standard, we focus on the pure semantic informa-

tion and forgo formating improvements related to displaying the

formula. The corrected TeX field shows the cleaned mathematical

LaTeX expression.

Using the corrected TeX field and the semantic macros, we were

able to adjust the MathML output using LaTeXML and verify it by

checking the visualization from VMEXT.



3.3 Evaluation Metrics
To quantify the conversion quality of individual tools, we computed

the similarity of each tool’s output and the manually created gold

standard. To define the similarity measures for this comparison,

we built upon our previous work [23], in which we defined and

evaluated four similarity measures: taxonomic distance, data type

hierarchy level, match depth, and query coverage. The measures

taxonomic distance and data type hierarchy level require the avail-

ability of a hierarchical ordering of mathematical functions and

objects. For our use case, we derived this hierarchical ordering

from the MathML content dictionary. The measures assign a higher

similarity score if matching formula elements belong to the same

taxonomic class. The match depth measure operates under the as-

sumption that matching elements, which are more deeply nested in

a formula’s content tree, i.e., farther away from the root node, are

less significant for the overall similarity of the formula, hence are

assigned a lower weight. The query coverage measure performs

a simple ‘bag of tokens’ comparison between two formulae and

assigns a higher score the more tokens the two formulae share.

In addition to these similarity measures, we also included the

tree edit distance. For this purpose, we adapted the robust tree edit

distance (RTED) implementation for Java [16]. We modified RTED

to accept any valid XML input and added math-specific ‘shortcuts’,

i.e., rewrite rules that generate lower distance scores than arbitrary

rewrites. For example, rewriting
a
b to ab−1 causes a significant

difference in the expression tree: Three nodes (∧,−, 1) are inserted
and one node is renamed ÷ → ·. The ‘costs’ for performing these

edits using the stock implementation of RTED are c = 3i + r .
However, the actual difference is an equivalence, which we think

should be assigned a cost of e < 3i + r .We set e < r < i .

4 EVALUATION CONTEXT-AGNOSTIC
CONVERSION TOOLS

This section presents the results of evaluating existing, context-

agnostic conversion tools for mathematical formulae using our

benchmark dataset MathMLben (cf. Section 3). We compare the dis-

tances between the presentation MathML and the content MathML

tree of a formula yielded by each tool to the respective trees of

formulae in the gold standard. We use the tree edit distance with

customized weights and math-specific shortcuts. The goal of short-

cuts is eliminating notational-inherent degrees of freedom, e.g.,

additional PL elements or layout blocks, such as mrow or mfenced.

4.1 Tool Selection
We compiled a list of available conversion tools from the W3C

6

wiki, from GitHub, and from questions about automated conversion

of mathematical LaTeX to MathML on Stack Overflow. We selected

the following converters:

• LaTeXML: can convert generic and semantically annotated La-

TeX expressions to XML/HTML/MathML. The tool is written in

Perl [12] and is actively maintained. LaTeXML was specifically

developed to generate the DLMF web page and can therefore

parse entire TeX documents. LaTeXML also supports conver-

sions to content MathML.

6
https://www.w3.org/wiki/Math_Tools

• LaTeX2MathML: is a small python project and is able to gener-

ate presentation MathML from generic LaTeX expressions
7
.

• Mathoid: is a service developed using Node.js, PhantomJS and

MathJax (a javascript display engine for mathematics) to gener-

ate SVGs and MathML from LaTeX input. Mathoid is currently

used to render mathematical formulae on Wikipedia [20].

• SnuggleTeX: is an open-source Java library developed at the

University of Edinburgh
8
. The tool allows to convert simple

LaTeX expression to XHTML and presentation MathML.

• MathToWeb: is an open-source Java-based web application that

generates presentation MathML from LaTeX expressions
9
.

• TeXZilla: is a javascript web application for LaTeX to MathML

conversion capable of handling Unicode characters
10
.

• Mathematical: is an application written in C and wrapped in

Ruby to provide a fast translation from LaTeX expressions to the

image formats SVG and PNG. The tool also provides translations

to presentation MathML
11
.

• CAS: we included a prominent CAS capable of parsing LaTeX

expressions.

• Part-of-Math (POM) Tagger: is a grammar-based LaTeX parser

that tags recognized tokens with information from a dictio-

nary [28]. The POM tagger is currently under development. In

this paper, we use the first version. In [5], this version was used

to provide translations LaTeX to the CAS MAPLE. In its current

state, the program offers no export to MathML. We developed

an XML exporter to be able to compare the tree provided by

the POM tagger with the MathML trees in the gold standard.

4.2 Testing framework
We developed a Java-based framework that calls the programs

to parse the corrected TeX input data from the gold standard to

presentation MathML, and, if applicable, to content MathML. In

case of the POM tagger, we parsed the input string to a general

XML document. We used the corrected TeX input format instead of

the originally extracted string expressions, see 3.2.

Executing the testing framework requires themanual installation

of the tested tools. The POM tagger is not yet publicly available.

4.3 Results
Figure 2 shows the averaged structural tree edit distances between

the presentation trees (blue) and content trees (orange) of the gener-

ated MathML files and the gold standard. To calculate the structural

tree edit distances, we used the RTED [16] algorithm with costs of

i = 1 for inserting, d = 1 for deleting and r = 0 for renaming nodes.

Furthermore, the Figure shows the total number of successful trans-

formations for the 305 expressions (black ticks). Note that we also

consider differences of the presentation tree to the gold standard as

deficits, because the mapping from LaTeX expressions to rendered

expressions is unique (as long as the same preambles are used). A

larger number indicates that more elements of an expression were

misinterpreted by the parser. However, certain differences between

presentation trees might be tolerable, e.g., reordering commutative

7
https://github.com/Code-ReaQtor/latex2mathml

8
https://www2.ph.ed.ac.uk/snuggletex/documentation/overview-and-features.html

9
https://www.mathtowebonline.com

10
https://fred-wang.github.io/TeXZilla

11
https://github.com/gjtorikian/mathematical

https://www.w3.org/wiki/Math_Tools
https://github.com/Code-ReaQtor/latex2mathml
https://www2.ph.ed.ac.uk/snuggletex/documentation/overview-and-features.html
https://www.mathtowebonline.com
https://fred-wang.github.io/TeXZilla
https://github.com/gjtorikian/mathematical
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expressions, while differences between content trees are more crit-

ical. Also note that improving content trees may not necessarily

improve presentation trees and vice versa. In case of f (x + y), the
content tree will change depending whether f represents a variable

or a function, while the presentation tree will be identical in both

cases. In contrast,
a
b ,

a/b, and a/b have different presentation trees,

while the content trees are identical.

Figure 3 illustrates the runtime performance of the tools. We

excluded the CAS from the runtime performance tests, because the

system is not primarily intended for parsing LaTeX expressions,

but for performing complex computations. Therefore, runtime com-

parisons between a CAS and conversion tools would not be rep-

resentative. We measured the times required to transform all 305

expressions in the gold standard and write the transformedMathML

to the storage cache. Note that the native code of Latex2MML, Math-

ematical and LaTeXML were called from the Java Virtual Machine

(JVM) and Mathoid was called through local web-requests, which

increased the runtime of these tools. The figure is scaled logarith-

mically. We would like to emphasize that LaTeXML is designed to

translate sets of LaTeX documents instead of single mathematical

expressions. Most of the other tools are lightweight engines.

In this benchmark, we focused on the structural tree distances

rather than on distances in semantics. While our gold standard

provides the information necessary to compare the extracted se-

mantic information, we will focus on this problem in future work

(see Section 6).

5 TOWARDS A CONTEXT-SENSITIVE
APPROACH

In this section, we present our new approach that combines textual

features, i.e., semantic information from the surrounding text, with

the converters to improve the outcome. Figure 4 illustrates the pro-

cess of creating the gold standard, evaluating conversions, and how

we plan to improve the converters with tree refinements (outside

the MathMLben box). Our improvement approach includes three

phases.

(1) In the first phase, the Mathematical Language Processing (MLP)

approach [24] extracts semantic information from the textual

context by providing identifier-definiens
12

pairs.

(2) The MLP annotations self-assess their reliability by annotate

each identifier-definiens pair with its probabilities. Often, the

methods do not find highly ranked semantic information. In

such cases, we combine the MLP results with a dictionary-

based method. In particular, we use the dictionaries from the

POM tagger [28] that associate context-free semantics with the

presentation tree. Since the dictionary entries are not ranked,

we use them to drop unmentioned identifier-definiens pairs

and choose the highest rank of the remaining pairs.

(3) Based on the chosen semantic information, we redefine the

content tree by reordering the nodes and subtrees.

Currently, the implementation is too immature to release it as a

semantic annotation package. Instead, we discuss the method using

the following selected examples that represent typical classes of

disambiguation problems:

• Invisible operator disambiguation for the times vs. apply special

case.

• Parameter vs. label disambiguation for subscripts.

• Einstein notation discovery.

• Multi-character operator discovery.

Learning special notations like the examples above is subject to

future work. However, we deem it reasonable to start with these

examples, since our manual investigation of the tree edit distances

12
In a definition, the definiendum is the expression to be defined and definiens is the

phrase that defines the definiendum. Identifier-definiens pairs are candidates for an

Identifier-definition, see [24] for a more detailed explanation.
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showed that such cases represented major reasons for errors in the

content MathML tree.

Previously, the MLP software was limited to extracting infor-

mation about identifiers, not general mathematical symbols. More-

over, the software was optimized for the Wikipedia dataset. We

thus expanded the software for this study to enable parsing pure

XHTML input as provided by the NTCIR tasks and the DLMF web-

site. Achieving this goal required realizing a component for symbol

identification. We chose the strategy of considering every simple

expression that is not an identifier as a candidate for a symbol.

For first experiments we tried to improve the output by LaTeXML,

since LaTeXML performs best in our tests and it was able to generate

content MathML. Moreover, with the newly developed semantic

macros, we are able to optimize MathML in a pre-processing step

by enhance the input LaTeX expression. In consequence, we do not

need to develop complex post-processing algorithms to manipulate

content MathML.

As part of this study, we created a custom style sheet that fixes

the following problems: (1) use of the power symbols for superscript

characters unless Einstein notation was discovered, (2) interpre-

tation of subscript indices as parameters, unless they are in text

mode. For text mode, the ensemble of main symbol and subscript

will be regarded as an identifier. (3) Symbols that are considered

as a ‘function’ are applied to the following identifier, rather than

being multiplied with the identifier.

First experiments using the refinement techniques have proven

to be very effective. We haven chosen a small set of 10 functions

for performing the refinements and to show the potential of the

techniques. Of those 10 cases, with simple regular expressionmatch-

ing, our MLP approach found 4 cases, where the highest ranked

identifier-definiens pair was ‘function’ for at least one identifier

in the formula. In these 4 cases, the distances of the content trees

decreased to zero with all previously explained refinements enabled.

While this is just a first indication for the suitability of our ap-

proach, it shows that the long chain of processing steps shows

promise. Therefore, we are actively working on the presented im-

provements and plan to focus on the task of learning how to gener-

ate mappings from the input PL encoding to CL encoding without

general rules for branch selection as we applied them so far.

6 CONCLUSION AND FUTUREWORK
We make available the first benchmark dataset to evaluate the con-

version of mathematical formulae between presentation and con-

tent formats. During the encoding process for our MathML-based

gold standard, we presented the conceptual and technical issues

that conversion tools for this task must address. Using the newly

created benchmark dataset, we evaluated popular context-agnostic

LaTeX-to-MathML converters. We found that many converters sim-

ply do not support the conversion from presentation to content

format, and those that did often yielded mathematically incorrect

content representations even for basic input data. These results

underscore the need for future research on mathematical format

conversions.

Of the tools we tested, LaTeXML yielded the best conversion

results, was easy to configure, and highly extensible. However, these

benefits come at the price of a slow conversion speed. Due to its



comparably low error rate, we chose to extend the LaTeXML output

with semantic enhancements.

Unfortunately, we failed to develop an automated method to

learn special notation. However, we could show that the applica-

tion of special selection rules improves the quality of the content

tree, i.e., allows choosing the most suitable tree from a selection of

candidates. While the implementation of a few selection rules fixes

nearly all issues we encountered in our test documents, the long

tail of rules shows the limitations of a rule-based approach.

Future Work. We will focus our future research on methods for

automated notation detection, because we consider this approach

as better suited and better scalable than implementing complex

systems of selection rules. We will extract the considered notational

features from the textual context of formulae and use them to extend

our previously proposed approach of constructing identifier name

spaces [24] towards constructing notational name spaces. We will

check the integrity of formed notational name spaces with methods

comparable to those proposed in our previous publication [19]

wherewe used physical units as sanity check, if semantic annotation

in the domain of physics are correct.
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