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We derive a generalization of the Rogers generating function for the continuous
g-ultraspherical /Rogers polynomials whose coefficient is a 2¢1 . From that expansion,
we derive corresponding specialization and limit transition expansions for the
continuous ¢g-Hermite, continuous ¢-Legendre, Laguerre, and Chebyshev polynomials
of the first kind. Using a generalized expansion of the Rogers generating function
in terms of the Askey—Wilson polynomials by Ismail & Simeonov whose coefficient
is a g¢7, we derive corresponding generalized expansions for the Wilson, continuous
g-Jacobi, and Jacobi polynomials. By comparing the coefficients of the Askey—
Wilson expansion to our continuous g-ultraspherical/Rogers expansion, we derive
a new quadratic transformation for basic hypergeometric functions which relates
an g7 to a 2¢1. We also obtain several definite integral representations which
correspond to the above mentioned expansions through the use of orthogonality.
Published by Elsevier Inc.

1. Introduction

In the context of generalized hypergeometric orthogonal polynomials, the first author and collaborators

developed in [5, (2.1)] a series rearrangement technique which we utilize in the present context to produce

a generalization of the generating function for the continuous g-ultraspherical/Rogers polynomials. This

technique is valid for a larger class of hypergeometric orthogonal polynomials. For instance, in [4], we
applied this same technique for the Jacobi polynomials and in [7], we extended this technique to many

generating functions for the Jacobi, Gegenbauer, Laguerre, and Wilson polynomials.

The series rearrangement technique combines a connection relation with a generating function, resulting

in a series with multiple sums. The order of summations are then rearranged and the result often simplifies

to produce a generalized generating function whose coefficients are given in terms of generalized or basic
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hypergeometric functions. This technique is especially productive when using connection relations with one
free parameter, since the connection coefficient is most often a product of Pochhammer or g-Pochhammer
symbols.

Basic hypergeometric orthogonal polynomials with more than one free parameter, such as the Askey—
Wilson polynomials, have multi-parameter connection relations. These connection relations are given by
single or multiple summation expressions. For the Askey—Wilson polynomials, the connection relation with
four free parameters is given as a basic double hypergeometric series. The fact that the four free parameter
connection coefficient for the Askey—Wilson polynomials is given by a double sum was known to Askey and
Wilson as far back as 1985 (see [17, Section 16.4]). When our series rearrangement technique is applied to
cases with more than one free parameter, the resulting coeflicients of the generalized generating function are
rarely given in terms of a basic hypergeometric series. The more general problem of generalized generating
functions with more than one free parameter requires the theory of multiple basic hypergeometric series
and is not treated in this paper.

Through analysis of an Askey-Wilson polynomial expansion due to Ismail & Simeonov [19], we con-
struct various expansions as follows. In Section 3, we construct an expansion for the Wilson polynomials.
In Section 4, we construct an expansion for the continuous ¢-Jacobi polynomials. In Section 5, we con-
struct expansions for the continuous g-ultraspherical/Rogers polynomials, derive some specialization and
limit transition formulas from the derived expansion, and prove a new quadratic transformation for ba-
sic hypergeometric functions. In Section 6, we compute some new definite integrals corresponding to our
derived generalized generating function expansions using orthogonality for the orthogonal polynomials we
have studied.

In addition to being of independent interest, this investigation was motivated by an application of gen-
eralized generating functions in the non-q regime [4,5]. This would be the generation of g-polyspherical
addition theorems in terms of a product of g-zonal harmonics. In order to compute these g-analogues, one
would need to derive a g-analogue of the addition theorem for the hyperspherical harmonics (see [30]; see
also [9, Section 10.2.1])

d
d_q

Cp (coswy) =

3!
(2n+d 2 r(4 ; %)

where, for a given value of n € Ny := {0}UN := {0}U{1,2,...}, C¥ is the Gegenbauer polynomial, K stands
for a set of (d — 2)-quantum numbers identifying normalized hyperspherical harmonics VX : S?=1 — C,
and 7 is the separation angle between two arbitrary vectors x,x’ € R%. The Gegenbauer polynomials can
be defined using the Gauss hypergeometric function [24, (18.5.9)], and in terms of a symmetric Jacobi
polynomial P,(LO"B)7 [20, (9.8.19)],

Ch () = (21)n 2F1(—n,2u+n; 1_;5) _ (@2

(=%, 1—3)
Pn 2 2 (x). 1.1
S @ (1)

One would also need g-analogues of a fundamental solution of the polyharmonic equation, and Laplace’s

expansion
1 > l -1
—_— = 02 cos
Ix — x/||4—2 ; Tl+d 2 (cos7),

which is the ¢ T 17 limit of the generating function for the continuous g-ultraspherical /Rogers polynomials,
hereafter referred to as the Rogers generating function (see (3.3) below). These analogues do not exist in
the literature, however they may be found by using material from [12], [16], [23, Section 3], which we will
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attempt in future publications. Addition theorems for the continuous g-ultraspherical/Rogers polynomials
should also be useful here [22].

2. Preliminaries

Throughout the paper, we adopt the following notation to indicate sequential positive and negative
elements, in a list of elements, namely

+a :={a, —a}.

If the symbol 4 appears in an expression, but not in a list, it is to be treated as normal.

In order to obtain our derived identities, we rely on properties of the Pochhammer and ¢-Pochhammer
symbols, also called shifted and ¢-shifted factorials respectively. The Pochhammer symbol for a,b € C, with
Rb > 0, is defined naturally by

I'(a+b)

(a)y == Ta)’

where a + b ¢ —Ny. Note that if R0 < 0 then (a), := 1/(a + b)_p. For the g-Pochhammer symbol, a € C,
lg| < 1, we define

(a;q)oo = H(]- 7aqn)’ (21)
n=0
then for b € C, [20, (1.8.9)]
(a3 @)oo

(a; ) = ( (2.2)

aq®;q)’

where the principal value of ¢” will always be taken and (aq’;q)s # 0. Therefore for n € Ny, one has [20,
(1.8.8)]

(a5 9) o0

(a;q)n = (g™ 0) (2.3)

where (ag™; q)oo # 0. We will also use the common notational product conventions

(al, ey ak)b = (al)b R (ak)b,

(ar,-- s ar;q)s = (a1;9)p - - - (ar; Q)o-

We define the g-factorial as [10, (1.2.44)]

Note that [n]q! = (¢;¢)n/(1 — )"
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The following properties for the g-Pochhammer symbol can be found in Koekoek et al. (2010) [20,

(1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)], namely for appropriate values of a, and n, k € Ny,

(@ Qntr = (a;0)k(aq™; @) = (a3 0)n(aq™; @),
(@*¢*)n = (£a;Q)n.

Observe that by using (2.3) and (2.5), one has

(i\/av :l:\/a_q; q)n
(a;9)n '

(aq™;q)n =
Lemma 2.1. Let n € Ny, ¢,a,b € C, 0 < |q| < 1. Then
(@ @)nsb = (a;¢)n(ag"; Q)o-
Proof. Follows from the identity (2.2) and (2.3). O

Lemma 2.2. Let q,a,b € C, 0 < |q| < 1. Then

A
I gy = @

Proof. Define the ¢g-gamma function I'; by [20, (1.9.1)]

(1= (9
Fale):= (@":)oe

and the arbitrary g-Pochhammer symbol by (2.2). Observe that, by using (2.7), if ®b < 0 then

1
(a;9)p = m~

o If a +b € —Nj then the result is straightforward by definition since (—n), = 0 and (¢~";¢)n

any n € Np.
o If ®b > 0 then

a. a. o 1" b
o ,Q)l; — lim (quq) b _ iy Lelatb)
ati= (L=q)*  ati= (1= 9)°(¢"** @) at1= Ty(a)

= (a’)b’

since [20, Section 1.9] lim 41— Iy(z) = I'(z).
o If ®b < 0 then

a, 9 1—q)" 1—q)"(q% r b
. ,q)bb @9 o ( bq) R k) b(q @)oo _ o Tola+b)
1= (1—q) ati= (@t q)—p et (¢*1hq)s a1i-  Ty(a)

This completes the proof. O

We also take advantage of the ¢g-binomial theorem [20, (1.11.1)]

a az;q)oo
1¢o< ;q,Z):&, 2| <1,
- (2 @) o0

= (a)b.

(1.8.7),

(2.6)

(2.8)

(2.9)

=0 for

(2.10)
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where we have used (2.1). The basic hypergeometric series, which we often use, is defined as [20, (1.10.1)]
é a1y .50y i (a1,-..,ar;q)k (—1)F YTk (2.11)
) 1q, 2 | = —(—1 q2) z", 2.11
e bl,...,bs =0 (q,bl,...7bs;q)k

where (]2“) = %k‘(k} — 1) is a binomial coefficient. Let us now prove some inequalities that we will use in the
sequel.

Lemma 2.3. Let j € N, k,n €Ny, z€ C, Ru >0, v >0, and 0 < |g] < 1. Then

q“;q .
’ ((1 _ q))]] |[Rulqli — 1g!l, (2.12)
‘(E]q.’qq))" < |1 +nly (2.13)
("% ) [n+ 1]y (214)
(q“tk; q)n [R(u)l, '
Proof. If 0 < |g| < 1 then
—1 u+k— w|J—1 k
a“a9); | Trll—a ! >‘1—q 1-q| .
ey R(u —1],!.
‘(1_(1)] S Y I e ¢ > [[R(w)]q[j — 1]g!]

This completes the proof of (2.12). Choose m € Ny such that m < u < m + 1. Then g™ < ¢, so

k=0
This completes the proof of (2.13). Without loss of generality we assume u > 0. If v < w then the inequality
is clear, so let us assume that 0 < u < v. Since 0 < |¢| < 1 and for ¢ > 0,

u+k m+k n+k

1—q""
1—g*

1—qgm
1—g*

u; n 1- m u
‘(q q) qu < |+ 17| < |ln+1]2].

(@ 9)n

t+wv e g
t4+u ~ u
and we have
@] _[@)n| | L (4")n
’(q““ﬂq)n = ’(Q“) = [ulg [n —1]g!(1 = q)
Choose m € N so that m — 1 < v < m. Then
(qurk,q) L[n] (q aq) i[n] (q q)m 1 i n m—1 1 n v+1
| < o e = [ | < [l 07| < gt

This completes the proof of (2.14). O

As we have mentioned previously, we need to assure that one can rearrange certain series expressions.
The following result is necessary in order to guarantee the validity of such actions. If an infinite series is
absolutely convergent then all of its rearrangements converge to the same sum.

Lemma 2.4. Let n,k € Ny, a, b, be sets of parameters associated with the polynomial sequences (py) and
(Pn). Furthermore, assume that the polynomial sequences satisfy the following identities
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ﬁn(x;a chn a, b pk &€ b Zan pn €3 a) F(‘T a)
k=0

for some coefficients ay, cin € C. Then one can justify the rearrangement of the two series as

Zan chnabpkazb Zpkxb Zan Yer.n(a, b),
n=0 k=0
if one can verify
(oo} n
Z lan(a)] Z!%,n(a, b)pk(z;b)| < 00
n=0

k=0

3. Expansions for the Askey—Wilson and Wilson polynomials

The Askey—Wilson polynomials can be defined as [20, (14.1.1)]

q*’%a1a2a3a4q”*1,a1e“’7ale’w’q q)
b

pn(z;alq) == a3 "(a1a2, a1a3, a104;q)n 4¢3(
aiaz,a1a3,a104

where x = cos 0, a := {a1, a9, a3, a4}. In [19, Theorem 4.2] the following Askey—Wilson polynomial expansion
of the Rogers generating function [20, (14.10.27)] is proven.

Theorem 3.1 (Ismail & Simeonov (2015)). Let t,3,q € C, max{|a1|, |az|, |as|, |aal, |t],|q|} < 1, x = cosf €
(—=1,1). Then

t ie,t 0 : 0o
(529 tf:e q)q = = en(Btai)pa(r:al), (3.1)
’ v /o0 n=0

where

t"(B; )n(q"a1t, ¢"a2ft, ¢"a3ft, 4" 102058 Do Lt aq
(g, q"tarasaszaq; q)n(art, ast, ast, ¢*"a1a2a36t;q) oo 7

cn(B,t,a5q) ==
FAtaa . s ¢*"ayazaspft, £¢" 5 (a1a2a3Pt) %, q"araz, " aras, " aas, Btay’ 7qn5 Lt
" e +q" 7 (a1a2a36t) %, q"a1 Bt, q"az ft, qhaz B, ¢*"arasazas, g as azazt !

= sWr(q*" taraza3ft; q"araz, ¢"aras, q"azasz, Btay ', ¢" B; q, ast),

and [10, (2.1.11)]

1
a1,%qai,aq,...,as

1 4,2 ] (32)
+a},qa1/aq, ..., qa1/as

sWr(ai;aa, ..., as8;q,2) == sé7
defines the very-well poised hypergeometric series sWr.

Remark 3.2. Note (3.1) is a generalization of the Rogers generating function (the generating function where
the coefficient multiplying ¢" is unity) [20, (14.10.27)]

0 0
(tﬁe 7tﬂ€ aq Z C ﬂlq , T =cos 9’ (33)

(tew’ tefza

where C),(z; f|q) is the continuous g-ultraspherical/Rogers polynomial (see Section 5 below).
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Remark 3.3. Note that to compute such basic hypergeometric functions, it is convenient to use (2.6).
8.1. The Wilson limit for the Ismail-Simeonov expansion

In this section we obtain a new infinite series over the Wilson polynomials W,, [20, Section 9.1] whose
left hand side is given by a ratio of gamma functions. We will see that this identity follows formally from
the Ismail-Simeonov expansion over the Askey—Wilson polynomials (3.1) by taking the ¢ 1 1 limit.

Let b,ar, € C, k = 1,2,3,4. Define a := {a1, as,as3,a4}, a+b := {a1+b,as+b, az3+b, az+b}, ara := a1+as,
a13 := a1 + as, as3 := as + as, a123 := a1 + as + as, aje34 ‘= a1 + as + as + a4, etc. Note that we use the
compact product notation for a,b € C, I'(a £ b) :=T'(a + b)T'(a — b).

Lemma 3.4. Let n € Ny, t,u,a, € C, k =1,2,3,4, R(arasa +t —u) > 3. Then

W, (2% a)dz

7F(t +i2)D(ay £ iz) - --T(aq + iz)
Iu £ iz)[(+2ix)

X

w—? 7F(t—%nizx)r(a1+%nim)---r(a4+§niz‘x)d
T
D(u+3n +ix)T(£2iz)
0

B (u_t)n/F(t—%niz’x)W(m;a—i—%n)dx

= 3.4
[(u+3n + ix) (34)

Proof. The weight function for the Wilson polynomials is [20, (9.1.2)]
W(zsa) (a1 £ix)l(ag £ix)T(asz £ iz)(aq £ m) (3.5)

T(+2ix)

Define W(z;a) := (2iz)"*W(z;a). The Rodrigues-type formula for the Wilson polynomials is [20, (9.1.11)]

W(z;a) W, (2% a) = W' W (z;a+1n), (3.6)
where W is the Wilson (divided difference) operator (see e.g., [18], [20, Section 1.16])

Wf(x) ::L(x):zi,(f(m—&-%)—f(x—%)). (3.7)

ox2 2ix

Substitute (3.6) in the left-hand side of (3.4) and integrate by parts using (3.7) and [18, Theorem 9.1], along
with the identity

T(t+iz) T(t—3+ix) pyn L i) - T(t— 5 +ix)
_Wf(uiim)_F(u—&—z%iix) = (V"W F(uiix)_(u t)nF(u—l—Q%iix)’

which demonstrates (3.4). O

A powerful integral representation of a very-well poised 7Fg(1) which we rely on to derive the Wilson
polynomial expansion formula below, is the ¢ 1 1 limit of the Nassrallah-Rahman integral (6.3), which can
be found in [10, (6.3.11)], [25, (1.17)].
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Lemma 3.5 (Rahman (1986)). Let n € Ny, t,u,ar € C, k =1,2,3,4, R(ag +t) > 0, R(a1234 +t — u) > %
Then

7I‘ t:tzx (aq :l:ix)~-~I‘(a4:i:ix)d
x
D(u =+ iz)D(+2ix)
0

o 27rI‘(u + a123)I‘(a12) cee F(a34)I‘(t + al)l"(t + CLQ)F(t + CL3)
F(u + al)F(u + ag)F(u + ag)F(a1234)F(t + a123)

J(t,u,a), (3-8)

where

J(t,u, a) = 7F6 (

1
a2z +u — 1, 3(a123 + u+1),a12,a13, a23,u — ag,u — )

1 b
5(a123 +u —1),u+ar,u+ as,u + az,ai234,t + ai23

Proof. See [10, (6.3.11)], [25, (1.17)]. The condition f(as + t) > 0 follows from the requirement of uniform
convergence of the 7Fg(1) [24, (16.2.2)]. The condition R(a1234+t—u) > 3 follows since the integrand clearly
vanishes at the origin by applying the Stirling formula [24, (5.11.7)] on the integrand as x — 400. O

Remark 3.6. Observe that the generalized hypergeometric function 7Fg in (3.8) is very-well poised and of
argument unity. Using Bailey’s W notation for a very-well poised 7Fg of argument unity (see for instance,

13, p. 2])

24+ 1,b,¢,d
W(a;b,c,d,e, ):: 7F6( a/?2+ ,0,C, 7€)f . >

g l+a-blt+a—cl+a—dl+a—f
In Lemma 3.5, the 7F5(1) can be written as
W(ai23 + u — 1;a12, a13, azs, u — ag,u — t).
Theorem 3.7. Let x € (0,00), t,u, a1, az2,as,a4 € C, R(a234 +t —u) > %, R(as +t) > 0. Then

D(t+ix)'(t —iz)  (a123)u(a1,az,a3);

D(u+iz)T(u—ix) (a123)i(a1,as,as3)y

i (u—t,a1234 — 1)n(a123 + u)an Kn (£, u,a) W, (2?; a)

, 3.9
nl(ar +u,az + v, a3 + u,a123 + t)n(a1231 — 1)2n (3.9)
where
Kt ) 7 aiaz3t+u+2n—1, %ﬁ"“,a12—|—n,a13+n,a23+n,u—a4,u—t+n )
,U,a) = - :
" o %’W,al +u+n,as+u+n,az+u+n,ajoz+t+n, ajozs+2n
= W(aias+u+2n—1,a12+n,a13+n,as3+n, u—ag, u—t+n).
Proof. Consider the Wilson polynomial expansion
T(t+ix)l(t — ix)
(t+3 chtua W(2%:a). (3.10)

I(u+ iz)T(u — ix)

Using orthogonality for the Wilson polynomials [20, (9.1.2)], one can obtain the coefficient of the expan-
sion (3.10), namely
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cn(t,u,a) = L /1{}5123?22_ifx))Wn(xQ;a)W(x;a)dx, (3.11)

where the Wilson square norm is given by [20, (9.1.2)]
Hy,(a) := /Wn(mz;a)Wn(xg;a)W(x;a)dw
0

2! T(a12 +n)T'(a13 +n)(a1s +n)T(ags 4+ 1) (a4 + n)T(azs +n)
(a1234 — 1+ 2n)l(aj234 — 1+ n)

. (3.12)

The integral in (3.11) can be re-expressed as an integral over a shifted weight function for the Wilson polyno-
mials using Lemma 3.4. Evaluating the resulting definite integral using Lemma 3.5 yields ¢, (¢, u,a) in (3.10).
Since the Wilson polynomials when normalized represent an orthonormal basis for La(W(z;a), (0,00)), and
due to Lemma 3.5, and also due to its analyticity,

Dt +ix)T(t —ix)
I(u+ iz)l(u — ix)

S LQ(W(xa a)7 (07 OO)),

the definite integral and the series converges in the Ly sense. The conditions for convergence of Lemma 3.5
are applied to this expansion theorem when the series does not terminate. The series terminates when
u—t € —Np, and in this case all possible values for the parameters are allowed as long as they are bounded
and the functions involved are defined. O

Remark 3.8. Note that Theorem 3.7 can also be derived formally by starting with the Ismail-Simeonov
expansion [19, (4.9)]

(we™ q)o _ (ue® ue™"q)0e <
- = - - = cn(t, u,a; q)pn(x; alg
(teize;q)oo (tele,te—“);q)oo 7;) n(a ) Ay ) n( | )a
where
tn tfl. n n n,. , n t: .
en(t,u,a5q) = (ut™’s @)n(g" a1y, ¢"azu, " azu, ¢"a10205t; ¢)oo Gl

(g, q" tarasazaq; q)n(ait, ast, ast, gbi; q) oo

1
1 . )
b1, £qb{, q"a1a2,q"a1a3, q"asasz, uay -, ¢ ut

t,u,a;q ._ .
Gn 7= 8¢7 7qva4t

1
+b7, q"asu, q"axu, g a1u, ¢*"aazazay, qhaazast
. on n n -1 n, ,—1,.
= sWr(b1;q"a1a2,q" ara3, q" azas, vay ~, q"ut™"; q, ast),

with b := ¢>"“lajasazu. Observe that GS%4aid = FA:taid cf Theorem 3.1. We apply the substitutions
ap — q, for all k € {1,2,3,4}, € — ¢**, t = ¢', u — ¢, multiply both sides by (1 — ¢)>*~* and take
the ¢ 117 limit. We use (2.7), (2.2), (2.8), and apply the relation [20, (14.1.21)]

lim (¢ + ™) /259", ¢, 4%, ¢ |q)

_ 2.
gti= (1—¢q)*" = Wnla™sa),

with [20, (9.1.1)]. Since

1 Dt +iz)D(t —ix)
(t+iz,t —ix)y_y D(u+iz)(u—iz)’

the result follows.
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4. Expansion for the continuous g-Jacobi polynomials

We would like to examine specialization and limit transition properties for the Ismail & Simeonov result
in terms of the continuous g-Jacobi polynomials. For the continuous g-Jacobi polynomials, we adopt the
standard normalization adopted by Rahman et al. in [20, (14.10.1)]. However, in order to simplify our
formulae we have further replaced qa+% , qVJr% — «, . Using this notation one has

n

o a2 1 1 1 1
P (z]q) == PR pa(z;0%, =72, —(g7)2, (¢) %)
(q%aﬂ])n qg ", q"ay, 0‘2619 aze"
= M%) q,q . 4.1
Gaon P\ gda,—(0n)h —(gam)t 1 ()
Note that some consequences of this notation are
_x (B%q
Culas Blg) = 55 D0 pia) o)),
CEEHN
and
O¢+%’ ’Y+%
Jim P ) ) = e @), (42)
where P\ is the Jacobi polynomial [24, (18.5.7)].
Corollary 4.1. Let |q|, |t], e, |B], 7] <1, = cos® € (—1,1). Then
(tﬁela tﬁe z97q> (a,y) B,t,«
= 3 P (afg) DR, (4.3)

] 9.
(te? te=9; q) o o

where

1

_ 1 1 1 1 1 1 1 1 1
Dbt . (10 2)"(,6’,—(ow)z,—(qav)2;Q)n(q:la2ﬁt ,—q" 2Bt —q" 2y Bt qn+2a27t§q)°0|_|ﬁ,t,a,’v;q
n : 1 n )
(gmavy; q)nlazt, —y3t, —(q7)2t, ¢*" T2 a2yBt; q) oo
. 1 1 1 1 1 1
HEBama = (W (¢?" 2 a2yt —q" (an) 2, —¢" 2 () 2, ¢" 2, (qo) "2 Bt, ¢" B; ¢, (qa) ).

1
2

Proof. Let a; = a2, ay = —y2, as = —(q7)2, as = (qa)?, using (3.1), (4.1), the result follows. O

1 1 1 1
Note HAtawvia = Fobe®=72.2(@0)2.00)%:4 - ot Theorem 3.1. Using (4.2) in (4.3), we obtain a Jacobi
generalization of the Gegenbauer generating function

;:i ' Balaty + DuPi™ (@) L (yhnt Lot dt
(L+ 2 —2t0)f — 2 (25gH) (2522) (1442040 " "\ 2ntaty+2  (1+0)?2)

which is equivalent to [4, (3.1)]

O e O Gt O
(Z _ x)l/ - 2a+[3+1—u
o0
n+a+ S+ a+B+n+1)V)n (ati-—v,B+1-v o
<30 I JWh gesirsinpad), (@)

Na+n+DI(B+n+1)
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where z = (t +t71)/2 (see Remark 5.1 below), and Q'™ is the Jacobi function of the second kind. The
g-analogue of the specialization of (4.4) with v =1 [29, (9.2.1)]

|
QU ()P ),

1 (z—l)a(z+1)ﬂ§:(2n+a+ﬁ+1)F(a+ﬁ+n+1)n

z—x 20+5 T(a+1+n)(B+1+n)

n=0
is (4.3) with 8 = q.

5. Expansion for the continuous g-ultraspherical/Rogers polynomials

The continuous g-ultraspherical /Rogers polynomials are defined as [20, (14.10.17)]

"B .
Ch(z; Blq) = ((57—3)): 61 (5_1611_";61,(15_16_219), x = cosf.

We now derive a generalization of the Rogers generating function (3.3) using the connection relation for the
continuous g-ultraspherical/Rogers polynomials [17, (13.3.1)]

l"/QJ )R By
- VBT (B O .
Cnl:B14) Z (¢ )r(aV: @) n—r Cr—ax(@;7]4). (5:1)

Remark 5.1. Note that the functions z ~ (2¢)71(1 + t? — 2tz) and x + 2z — z are identical through the
Szegd transformation

ottt
=5

which maps circles in the complex plane to ellipses with foci at 41, with the unit circle being mapped
to the line segment [—1,1]. Both of these functions appear in the analysis below. The Rogers generating
function (3.3) is a g-analogue of the generating function for the Gegenbauer polynomials [24, (18.12.4)], [11]

oo

1
—_———— = t"CH 5.2
(1+t2 —2tx)“ 7;) n(x)’ ( )
which has already been generalized in [5, Theorem 2.1]
1 e (p)eimn—rts) 2

(2)C7 (), (5:3)

NI»—- MI)—‘

oo~ e T

where Q¥ : C\ (—o0, 1] — C is the associated Legendre function of the second kind defined in terms of the
Gauss hypergeometric function, v+ p+ 1 ¢ —Ny, [24, (14.3.7)]

im 2 5 viptl vipt2
Qi) = YT° “”””“)(Z‘”"’QFl( ey i)-

2V HID (v + 3)zvtutl v+3 722

Theorem 5.2. Let © = cosf € (—1,1), |t| <1, 8,y € (—=1,1)\ {0}, 0 < |q| < 1. Then

(B tBe™ )0 ~= (B @) By N B o . n
= _;—(%q)n 2¢1< g s g, vt | Ol ylg) ™. (5.4)
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Proof. The proof follows as above by starting with (3.3), inserting (5.1), shifting the n index by 2k, and
reversing the order of summation. We use (2.4) through (2.11), since [a,| = [t|", [cp x| < Kgln + 1]72,
|Cn (2 Blg)| < Cn(1;8lq) < [0+ 1]7%, where o3 :=2b — ¢+ 2, 04 := 2b+ 2, with § = ¢°, v = ¢°. Note that
|Cr(z; Blg)| < Cu(1;8lq), q,8 € (—1,1) is given in [2, (3.19)]. Therefore for n sufficiently large,

Cn(; Blg)| < [n+1]7* < (n+ 1), (5:5)
where Kg = 1/[R(c+ 1)],, and o3 and o4 are independent of n. Then, since
o Ln/2

(@; Blg)| < Kez [t (n + 1) 727 < oo,
n=0 k=0 n=0

by Lemma 2.4, the result is proven. 0O

Remark 5.3. Coefficients of derived generalized generating functions such as (5.4) are amenable to situations
where summation theorems for the basic hypergeometric functions (see for instance [24, Sections 17.5-17.7])
may be utilized. When applicable, one may use these summation theorems to compute alternative expan-
sions. Some of these expansions may not be interesting, as they no longer represent generating functions.
Take for example Theorem 5.2. If you use the ¢-Gauss sum [24, (17.6.1)]

(c/a,c/b;q)oo
(c;ce/(ab); @)oo’

on the coefficient of the expansion, and make the appropriate substitutions and simplifications, it becomes

2on(“sacl(a)) -

(tBe” the ™ q)oe _ (B, B4 )0 (8, B 2% q)n 222 1)
(te? e ¥ q)e (Btlg 1ﬂ2t2,q Z (F2q1, g T ), A0

which is an alternative expansion of the Rogers generating function. However, it is not a generating function
since t appears in the parameter of the polynomial as well as in the ¢g-Pochhammer coefficients.

By using Theorem 5.2 as a starting point, there are a number of interesting results which follow.
5.1. The continuous q-Hermite polynomials

One may derive an expansion of a specialized Rogers generating function in terms of the continuous
g-Hermite polynomials defined as

3 n70 n_—2i
Hy(z]q) = 6’"92¢o(q_ 1, q e 9) :
where 2 = cosf. Using [20, (14.10.34)]

: o Ha(zlg)

one obtains

0 —i0 0
e e 5 g, (P 52 (o) (5:6)

(tew’ te— 16
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Omne can see that by setting S = 0 in (5.6), that this is a generalization of a generating function for the
continuous ¢g-Hermite polynomials, namely [20, (14.26.11)]

’ﬂ

(teze te—ze - Z .§C|q) (57)

n—O

5.2. The Chebyshev polynomials of the first kind

We also derive an expansion of the Rogers generating function in terms of the Chebyshev polynomials of
the first kind T}, (cos 6) := cos(nf). The following corollary is a g-analogue of [6, (3.10)]

1 2 eim(3—v) o0 o1
S Y e To(x), 5.8
(Z — -ﬁ)y \/;F(V)(ZQ - 1)%_1 ¢ Q”—% (Z) (:U) ( )
which is a generalization of the Heine reciprocal square root identity [15, p. 286]

L ? > Q1 (2)Tn(x). (5.9)

n=0

The g-analogue of (5.9) is (5.10) with 8 = ¢2. We have used the common convention for Legendre functions
of the second kind Q, := QY, and €, := 2 — 4,0, is called the Neumann factor.

Corollary 5.4. Let © = cosf € (—1,1), |t| <1, B8,y € (—=1,1)\ {0}, 0 < |¢| < 1. Then

eia 671‘0. e
(t8 . 1B _ aQ)oo :Zen(ﬂ Qn " o <6 , B t2>Tn(3’J). (5.1())

(t6Z07 teize; q)oo n=0 (Qa q)n ntl

Proof. Using [20, p. 474]

B+1.
lim (@)

Bl —
50 (QB;(])n Cn('raq |Q) 6nTn($),

the proof follows. O
5.3. The continuous q-Legendre polynomials

Furthermore, (5.4) produces the following result in terms of the continuous ¢-Legendre polynomials which
can be defined in terms of the continuous g-ultraspherical /Rogers polynomials by [20, p. 478§]

Pa(zlq) = q% C(w; 42 q).

Corollary 5.5. Let x = cosf € (—1,1), |t| < 1, B,y € (=1,1)\ {0}, 0 < |¢q| < 1. Then

i6 —if
e i) Z )" a0 <5qqn+’?q ;q%#)mmq). (5.11)

(te’? te=9; q) oo

l
qz;

Using [20, (14.10.49)]
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where P, is the Legendre polynomial defined by [20, (9.8.62)]

—nn+1 1—zx
Pn = F 3 ,
(«) 21( 1 2)
one can see that (5.11) is a g-analogue of [5, (14)]
1 ei‘n’(l—u)(22 _ 1)(1_1,)/2 00 o
(z—az)” 0 > @n+1)Q4 T (2)Pu(x), (5.12)
n=0

which in itself is a generalization of the Heine formula [14]

Z—X

Z (2n + 1)Qp(2) Pa (). (5.13)

The g-analogue of Heine’s formula is (5.11) with 8 = q.
The above analysis is summarized as a hierarchical scheme in Figures 1 and 2.

5.4. A quadratic transformation for basic hypergeometric functions

In (3.1), let a1 — fy%, as — f'y%, as — f(q'y)%, ay — (qu)%, and specializing the Askey—Wilson
polynomials to the continuous g-ultraspherical/Rogers polynomials using [20, p. 472]
(7% @n
1
=7, 42734

@mﬁ@:( )m@miwi4mﬁ@w%y

produces an expansion of the Rogers generating function whose coefficients are an g¢7. By comparing the

coefficients of this expansion with the generalized Rogers generating function (5.4), and further replacing
(B,7) = (¢""B,q7 ™), t — (g/7)2t, we derive

¢1(”8/%ﬂ;q,qt2> =
@y

—~

q(Bt)%, a7t qt; @)oo p Byt £q(Byt)s, £qiy, =, By, B ;
8P7 1 1 I8
aBt, 4B, qt?; q) o +(Byt)z, £qz ft, —qft, qv2, gt

a(Bt)?, gt qt; 4) o
aBt, aBt, qt2;q) oo

W (Byt; 42, —, By, B; ¢, qt). (5.14)

This is a generalization of [19, Corollary 4.4] with 8 = 7. By re-expressing (5.14), we see that our procedure
has produced a new quadratic transformation for basic hypergeometric functions (see [26]).

Theorem 5.6. Let 0 < |q| < 1, |qt| < 1, |qt?| < 1. Then

o @0 _ (a(at)® qab~"t, qtiq) ,  (a®b7't,qab= 22, £qzab~!, —ab~!, bt,a.
2P gab— 1740t (anb t, qat, qt%; q) 8 +ab~ztz,+q2at, —qat, qa2b=2, qab=t i

(q 2 gab™'t, qt'q)
(qa?b 1t, qat, qt?; q)

W <a2b71t; :l:q%abfl, —ab™1,bt, q; q,qt) ,

o0

which is valid under the transformation t — —t.

Proof. Start with (5.14) and replace (3,ab™!) — (a,b). Given (3.2) and the expression for the very-well
poised hypergeometric series W, this completes the proof. O



1 WA ()i +a) & Y-l 1 (1) h—3) &2 1
V= >+ W@ (0 @) = 2T S s @ ()t
(z—x) VAT ()(22 - 1)°F —%; ntp—3 e Jr(o1) 5 ;(77 +/L>Qnﬂl,%( O ()
(5.3) : Theorem 2.1 in Cohl (2013) [7] . (7.2) in Durand et al. (1976) [3]
L4
(B 1B q)0s <= (B D, v, Bg" 2 . (tge' tqe~ ",q o qv”ﬂl”’“_ 2 i
(e 1P, q)0 Z (O q) "201 q"+1 10,717 ) Cu(379) (1, te—10; ¢ Z ’n g+t it | Culw;91q)
’ ’ n=0 S el
(5.4) : g-analogue (continuous g-ultraspherical/Rogers polynomials) \ (54) with § = g : g-analogue (50““”“0““ g-ultraspherical /Rogers polynomials)
(tBe”, t%”e, ) BiDn (ﬁq 2
0 o0 Z 10 iBt (xla)
(te? te— = (¢ @)n
(5.6) : g-expansion (continuous ¢g-Hermite polynomials)
Rl Tl.
7“?,9 — g 3y Hnlala)
5.7) : generating function for continuous g-Hermite polynomials
(5.7): g g 7 poly
L 4 1 (22— 1)% o
= "2+ 1)Q4 (2)Pula
— TP TR 2 A P
(Z -1 AL 3 . 512) - i hl
e P ZEWQP%( 2)T(x) (,).12) - (13) in Cohl (2013) [7]
n=0 ) 1
3ei0 430—i0. -3
(5.8) : (3.10) in Cohl & Dominici (2011) [6] (t8”, 8™ oo _ o~ (Bi@n o (BB 1a)
(e, 1T, q) (tg™1)" 21 nid 1020 | Falle)
(186 13e—1; d ﬂ q 8, 8q" A s !
[ g el
(te®® te—10, ZE” @ t ¢ ( gntl it >T”(T> (5.11) : g-analogue (continuous g-Legendre polynomials)
n=0 &
(5.10) : g-analogue (Chebyshev polynomial of the first kind)
2 4
1 neow >
T ;}enQRJ T, (x) m ;}t Gl — z;} (2n + 1)Qn(2) Po(2)
(5.9) : Heine (1881) [17] reciprocal square root identity (1881) (5.2) : Gegenbauer (1874) [11] generating function (5.13) : Heine (1878) [14] Heine’s formula
1 1 i0 719 i0 —if. o . L 41
(tg2e™ tgze; ,1)" W (aEatE (t5e”, tBe (tge”, tge™; g)oo (@G Dn 1y (050"
e terq an P " 201 g it T(2) (tei? te— 7, Zﬂt”C z; Blg) (e te*“"q)oj :Z @ q)" (tg™1)" 201 o 1q2t? | Pa(a)q)
(. n=0 & n co n=0 {42;q)n
(5.10) with 8 = qf : g-analogue (Chebyshev polynomials of the first kind) (3.3) - Rogers (1893) 28] generating function (5.11) with 8 = g : g-analogue (continuous g¢-Legendre polynomial)

Fig. 1. A hierarchy of generalized generating functions which connect expansions of classical and g-hypergeometric orthogonal polynomials for the continuous g-Legendre, Legendre,
continuous g-ultraspherical /Rogers, Gegenbauer, Chebyshev of the first kind, and continuous g-Hermite polynomials [5,6,8,11,14,15,28].

eroT-6107 (6703) LY 14dy [ouy Yoy ‘£ / 1P 12 1yoO S'H

€e0T
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T(t+ix)L(t — iz) i (t(8 = 1))n(a12s +n + t)n+f,({i—1)wrn(i322 a)
T(tB +ix)L(tB — ix)

— n!(n — 1+ aigsa)n(ar + 1,02 +1, a3+ )ntep-1)

< F 2nfl+alz;+tﬂ,wn+an n 4 a3, n + a3, tf —ag,n+ (B —1)
e wn+a1+t6,n+az+tﬁn+aq+tﬁ o+ appsa,n+ aros +t

(3.9) : Wilson limit of Ismail-Simeonov generalized generating function

(tBe', tBe=; q

m ch (B,t,a,q)pa(w; alg)

n=0

t"(B; O)n(g"aru, ¢"azu, ¢"azu, tq" a1a2as; q) oo
(g, q" Yarasasaq; q)n(tay, tas, tas, *"arazasft; @)oo

en(Bit,a,q) =

A " Lajasasft, iq"*%(a]aza,gﬂt)é‘ q"araz, q"a1a3, q"azas, Bt/as, "B .
X 8P7 3q,taq
£¢"3 (arazasBt)?, ¢"a1 Bt, ¢ azBt, ¢ a3 Bt, ¢*"arazazas, tqaraza;

(3.1) : expansion of Rogers generating function in Askey-Wilson polynomials

1 (2 1)tz 4 )P I/Z 2n+a+ B+ 1)(a+B+n+1)(v), Q((Hl7“’/;“7”)(2)]3(“’@)(@‘)

(z—z) 2a+8+1-v Ta+n+)I(B+n+1) ntv—1

n=0
Theorem 1 in Cohl (2013) [4]

(tBe'? tBe=; q)

(a7)
(tei?, te=if; q) Zd” Bit, a7, @) B (xlg)

n=0
(ta2)" (B, —(a)?, —(qa7) ?; Q)" B, g™ B8, =™ 372 B, ¢ P2 a2t @)
1 1 1 P 1 1
(¢"ovi @n(azt, —y2t, —(q7) 2t " 202 7Bt ¢)oo

(" hadypt, iq”%a%(vﬂf)% *q”(av% ~q"5(a7)%,¢" 2y, (qa) 2Bt ¢"B 1
X 8¢7 1q, (q) 2t

dn(B,t, 0,7, q) :=

41

iq”fzaé(’)’ﬁt) ”Oﬂﬁt _ rl,\/g/Bt *l] +3 %ﬂt (]2n+1a,7 q'HzaZWt

(4.3) : g-analogue (continuous g-Jacobi polynomials)

0

1 (zfl)a(z+1)3z(2n+a+ﬂ+l) (a+B+n+1)n!

z—z 20-+5 T(a+1+n)T(B+1+n)

L8 () pled) ()
n=0
(9.2.1) in Szegd (1959) [29]

(tBe” tB8e™; q)oo

[e <]
— 3 (c,7)
(te? te=10; q) oo Zdn(‘bf,ﬂy% Q)P (xlq)

n=0

(4.3) with 8 = ¢ : g-analogue (continuous g-Jacobi polynomials)

1 2M+3T(y H"W vky) & Yy
s = 2 S @ @)
=) yarw)(2 - 1)1 "

(5.3) : Thcorcm 2.1 in Cohl (2013) []

(tBe® tBe: q)oe (B: Dn ( By, Bg" 2)
0 to—i => ¢ S N (M €S
(e te=q)o0 2 (i Dn 200 g 07 (1)

(5.4) : g-analogue (continuous g-ultraspherical/Rogers polynomials)

Fig. 2. A hierarchy of generalized Rogers generating functions which connects expansions of classical and g-hypergeometric orthog-
onal polynomials for the continuous g-ultraspherical/Rogers, Gegenbauer, continuous g-Jacobi, Jacobi, Wilson, and Askey—Wilson
polynomials [4,5,29].
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This quadratic transformation has some interesting consequences. For a = 0, one obtains the g-binomial
theorem (2.10). For t € C, ¢t = igb~2, the 5¢; can be evaluated through the ¢-Kummer (Bailey-Daum)
summation [10, (I1.9)] (this leads to a very unusual summation of the g¢7). It corresponds in the ¢ 1 1~
limit to the quadratic transformation for the Gauss hypergeometric function [24, (15.8.21), (15.8.1)]

a,b 1 a,a—b+L1 4t
F ’ 2 ) = ———— L F ’ 2. —— . 5.15
? 1<ab+1’ ) (1+¢)2e” 1(2a2b+1’(1j:t)2> (5.15)

Note that [26, (4.1)] is a quadratic transformation of basic hypergeometric series which in the limit ¢ 11~
yields (5.15), but our new quadratic transformation is altogether different.

Remark 5.7. Our quadratic transformation given in Theorem 5.6 has recently been extended by Rains &
Warnaar using Kaneko-Macdonald-type basic hypergeometric series (see [27, Theorem 5.22]).

Y and associated expansions

5.5. Jacobi expansion of (1 —x)~

From the Jacobi expansion of (z — z)™" (4.4), we can derive an expansion of (1 — z)~ by using the
limit as z — 1T. Also, this is the corresponding limit of the Wilson polynomial expansion (3.9) to the
Jacobi polynomials. In this subsection we derive this and other limiting expansions, which generalize [24,
(18.18.15)] for v = —n, n € Ny.

Corollary 5.8. Let x € (—1,1), v € C, o, 8 € C such that R(aw — v+ 1) > 0. Then

1 _F(a—y—l—l) > (a+pf+2n+1)T(a+B8+1+n)(¥)n (0. 5)
1—zy 2 nz;; Tatitnlatftz_vtn 1 @ (5.16)

Proof. Consider the expansion over Jacobi polynomials

o0

= Z Cn(I/,OL,ﬂ)Péa’ﬂ)(LE).

n=0

b
(1 =)

Using orthogonality for Jacobi polynomials, one can see that the coefficient of the expansion is given as

1
en(v,a,B8) = m /(1 —x)* V(1 + x)BP,sa’B)(x)da:,
1

where h,(a, 8) can be found in [20, (9.8.2)]. This integral can be computed with the assistance of [24,
(18.17.36)] with z = a—v+1, which implies that for the integral to converge one must have ®(a—v+1) > 0.

Since the function z — (1 —z)™"

is analytic (clear from the binomial theorem) on the segment (—1,1)
which is interior to an ellipse with foci at +1, then the integrated form implies the expansion by [24,

Section 18.18(i)]. O

It is interesting to see that this expansion can also be obtained from more general expansions using a
limiting procedure. In order to perform these limits termwise, one must justify the interchange of the limit
and the sum. Having already proved the expansion formula, we leave these justification proofs to the reader.

Remark 5.9 (Formal limit 1). Start with (4.4) and examine the singular behavior of the Jacobi function of
the second kind nga’ﬂ )(z) as z — 17. Starting with the definition of the Jacobi function of the second kind
in terms of the Gauss hypergeometric function, and applying [24, (15.8.2)], results in the identity
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m
QE/O"B)(Z) =5 csc(ﬂa)P§a’ﬁ)(z)

(LB 4y +1) (vt l—a=f-y 1-z
Tla+B+7y+1)(z—1o(z+1)8 > l1-a 2 )

(5.17)

where Paga’ﬂ)(z) is the Jacobi function of the first kind, «, 8,7 € C, such that « + v+ 1,a+ 1 ¢ —Np, is
defined by

o, -
Pl (2) =

Nla+vy+1) P —-v,a+B+y+1 1—=2
a4+ 0(y+1) 2" a+1 2 )

Note that P§a’5 )(z) generalizes the Jacobi polynomials for v = n € Ny. Using (5.17) easily demonstrates
that as z — 1T,

N 27"Na+1-v)I'(f+1—-v)
MNa+p—-v+2+n)

(Z B 1)a+17uQ(0¢+1—V,/3+1—V) (Z)

n+vrv—1 9

for R(a +1—v) >0, and (5.16) follows.

Lemma 5.10. Let a,b € C. Then we have as 0 < 7 — 00,

I'(a£ir) +iT(a—b)_a—b —1

—< =2 @ 1+0 5.18
NETN A Sl (5.18)
where 7% takes its principal value.
Proof. Let § € (0,7). From [24, (5.11.13)], as z — oo with a and b real or complex constants, provided
argz < m—0(< m). If one takes z = +i7 with 7 > 0 then the argument restriction implies arg(+ir) = £7/2,

and the result follows. O

Remark 5.11 (Formal limit 2). Jacobi polynomials are obtained from Wilson polynomials using [20, (9.1.18)]

Wﬂ((l—x)TQ'aJrl a+1l g+1 . B+1 ,T). (5.19)

2 92 9 92 'y

1 :i (%H’%l)t i (V7a+5+1)n P(Q’B)(IE)
(L) 27 (of2, (XT-H)H—:/ n=0 (95 +u, G+ wnla+ B+ 1) "

a+l+nv+n 9
a+tl atl T
> Ht+tv+n, S +t+tv+na+B+2+2n

The above limit of the 5F3 can be computed using the asymptotic expansion for large variables of the
generalized hypergeometric function [24, (16.11.8)] assuming R(« + 1 — v) > 0. This completes the proof.

From the expansion formula for (1 —z)~" in Jacobi polynomials (5.16), one can derive some interesting
specialization and limit consequences. We omit the justification for interchange of the sums and limits, and
leave it to the interested reader.
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Corollary 5.12. Let x € (—1,1), p € (—3,00) \ {0}, v € C, such that R(uw — v + 3) > 0. Then

1 22T (u—v+ () i (n+n) )0

1-=z) /rl(@2u+1-v) uti—p), n@) (5.20)

n=0

Proof. Specializing (5.16) using the definition of the Gegenbauer polynomials in terms of the Jacobi poly-
nomials (1.1), which completes the proof. 0O

Corollary 5.13. Let z € (—1,1), p € (—3,00) \ {0}, v € C, such that R(p — v+ 3) > 0. Then

1 _ F<l - V) - En(’/)n
(1 _ JJ)U - \/7_-(-2112]_"(1 _ I/) 7;) (1 — l/)nTn(x)7 (521)

where €, 1= 2 — 6y ¢ is the Neumann factor.

Proof. Specializing (5.20) using the limit relation for the Chebyshev polynomials of the first kind T}, (z)
with the Gegenbauer polynomials, namely [1, (6.4.13)]

.on+tpu
lim
=0 L

Ch(z) = e, Tn (),
completes the proof. O

The following result generalizes [24, (18.18.19)] for v = —n, n € No.

Corollary 5.14. Let z € (0,00), a > —1, v € C such that R(aw+1—v) > 0. Then

xiv =T(a+1-v) Z% %Lﬁ(m). (5.22)

Proof. Specializing (5.16) using the limit relation for Laguerre polynomials L%(x) with the Gegenbauer

polynomials, namely [20, (9.8.16)]

2
lim P(*") (1 — %) = L2(z),

B—o0

completes the proof. O
6. Definite integrals

Consider a sequence of orthogonal polynomials (pg(z; o)) (over a domain A, with positive weight w(z; )
associated with a linear functional u, where « is a set of fixed parameters. Define s, k € Ny by

si = /pk(:z:;a)pk(x;a)w(x;a) dx.
A

In order to justify interchange between a generalized generating function via connection relation and an
orthogonality relation for py, we show that the double sum/integral converges in the L?-sense with respect
to the weight w(z; ). This requires
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Zdﬁsi < 00, (6.1)
k=0

o0
where dj, = g AnCh p-

n=k
Here a, is the coefficient multiplying the orthogonal polynomial in the original generating function,
and ¢y, is the connection coefficient for py, (with appropriate set of parameters).

Lemma 6.1. Let u be a classical linear functional and let (p,(z)), n € Ny be the sequence of orthogonal
polynomials associated with u. If |p,(z)| < K(n+1)°y™, with K, o and vy constants independent of n, then
lsn| < K(n+1)79"|sol.

Proof. Let n € Ny, then
st =(u,p}) < (K(n+1)79")% (u,1) = (K(n+1)7y")* 5.
The result follows. 0O

Given |pi(z; a)| < K(k +1)74*, with K, o and 7 constants independent of k, an orthogonality relation
for pg, and |t| < 1/, one has

o n
Z |an| Z |Ck,n5k| < 0,
k=0

n=0
which implies

oo

Z |dk5k| < Q.

k=0

Therefore one has confirmed (6.1), indicating that we are justified in reversing the order of our generalized
sums and the orthogonality relations under the above assumptions.

All polynomial families used throughout this paper fulfill such assumptions. See for instance (5.5). Such
inequalities depend entirely on the representation of the linear functional. In this section we derive integral
representations from the infinite series expansions presented in the previous sections. In all cases, Lemma 6.1
can be applied and we are justified in interchanging the linear form and the infinite sum.

6.1. Definite integrals for Askey—Wilson and Wilson polynomials

The orthogonality relation for the Askey—Wilson polynomials is given by [20, (14.1.2)]

w(z;alq)

/ P 2l)pn (2 2lg)

where a := {a1,a2,as3,a4}, w: (—=1,1) — [0, 00) is defined by

(eiQiG; )oo

(ale:I:zG7 a2€:|:19’ a3e:i:z€, a4e:t19; Q)oo

w(z;alq) := , x =cosb,

and
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—1. on.
(a102a3a49™ ;5 q)n(@1020304G0"™; @) oo
(g™, ara2q™, a1a3q™, a1a4q™, azazq™, aza4q", a364G™; @) o

hn(alq) :=

Corollary 6.2. Let n € Ny, z = cosf € (—1,1), B € (—1,1), max{|a1],|az|, las], |a4|, |t|} < 1, cn(B,t,a;q)
defined as in (3.1). Then

1
(tBe tBe” " q)o w(z; alg)
t 6 6 pn(x,a|q) / 2
6 7t€ 7Q)oo l1—=z

dx = 2mh,(alq)c, (B, t,a;q).
21

Proof. Multiply (3.1) by w(z;alq)pn(z;alg)/v1 — z? and integrate over (—1,1) using (6.2) produces the
desired result. O

Remark 6.3. In [19], the Nassrallah-Rahman integral [10, (6.3.2)] is used extensively in relation to the
Askey—Wilson expansion given in Theorem 3.1. This integral is given as follows. Note that we temporarily
adopt a new notation ais := ajas, a13 := a1a3, G14 ‘= G104, G123 ‘= 10203, G1234 ‘= (1020304, €tc., and
that we define {a11,...,a34} := {a11, a12, a13,a23, asq, ass}. Let max(|ql, |t], |a1|, |az], |as],|as]) < 1. Then
the Nassrallah-Rahman integral is given by

1

t ” a|q / :|:19 OO w(x,a|q) do — 27T(ual7ua27ua?ﬂa/12347ta123;q)ool<t7u7a|q)’ (63)

teiw Joo V1—2a2 (q,ua123, a12, . . ., a34,tay, tag, tas; ¢) oo

—1

where
_ 1
ua123q” ", £(ua123q) 2, a2, a1, ags, u/as, u/t
l(tauaa‘Q) = 8¢7 _1\4 3 7ta4
+(uai23q™1)2, uar, uaz, uas, a1234, taizs

= sWr(uaia3q™ " a2, ar3, ass, u/aq, u/t; q, tay).

The §Wr(q,tays) which appears in the Nassrallah-Rahman integral is very-well poised and exactly matches
the requisite parameters for the sW7 used in Theorem 3.1. The connection between the Nassrallah-Rahman
integral and the coefficients of the Ismail-Simeonov Askey—Wilson expansion (given in Corollary 6.2) can
be seen through the following definite integral identity (a g-analogue of the definite integral identity (3.4)
for the Wilson polynomials)

1 .
/ (ueiw i2107q) pn(x;a‘Q)dx
(te:I:iQ’ale:I:ze’.”,a4e:i:19’q)oo /17$2
-1
/ 5 eEif E2if
= t"(u/t; q) / (ug2e™, e g)os da
y4)n (tq_%eiiegalq%eilew~-7a4q26ii9;q)oo 1—22
—1
! [ =14 n
= " (u/t; q) /(WP@ Y @)ocw(wiagtle) du 6.4
o (tg 50 gl V1I-a?

where aq? := {a1¢?,a2q%,a3q%,a4q>}. The proof of the identity (6.4) can be found in Ismail & Sime-
onov [19]. The proof, which is highly technical, is due to appearance of poles in the integrand with cancelling
residues in the unit circle. The proof relies on the Rodrigues-type formula for the Askey—Wilson polynomials
[20, (14.1.12)]
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~ q " ln n— n ,~ )
alasalomala) = (150) a7 0D a(wiagta),

where w(z;alg) := w(z;alg)/v1 — z2. The Askey-Wilson operator being defined by

S f(2) _ flaze?) — flam2e)
Oq %(q% — q2)(eif — e=10)’

(6.5)

flcos®) = f(e®), and the integration by parts formula for the Askey Wilson operator (6.5) given in [3],
[17, Section 16.1].

Now we give a definite integral for the Wilson polynomials which is equivalent to (3.9). This equivalence
follows through Lemmas 3.4, 3.8. We will need the weight function for the Wilson polynomials (3.5) and
the Wilson square norm (3.12).

Theorem 6.4. Let n € Ny, t,u € C, R(ay, as,as,aq4) > 0, and non-real parameters occur in conjugate pairs.
Then

/ (t +ix)(t — w:) Wn(x2; )W (: a)da — H,(a)(ai23)u(a1, a2, a3)t(a123 + 1)2n (@123 — 1)p
J I'(u 4+ iz)I'(u — ix) (a123)¢(a1, a2, a3)u(@123 + t)n(a1234 — 1)2nn!

o (u—1), 7 aoztu42n—1, Lzttt g0 4 1540, asg+n, u—as, u—t+n L
3 )
)

-1 )
(a1+u, az+u, az+u), %7 a1 t+u+n,as+u+n,as+u+n,ajsz+t+n,ajess+2n

Proof. Multiply both sides of the Wilson polynomial expansion (3.9) by W,,(z?;a)W(x;a), integrate over

(0, 00) using orthogonality of the Wilson polynomials. Replace in the resulting expression m — n, and the
result follows. O

6.2. Definite integrals for the continuous q-Jacobi and Jacobi polynomials

The orthogonality relation for the continuous g-Jacobi polynomials [20, (14.10.2)], after scaling so that
¢“T2 — o and ¢FTz — v is

1
[ Pl P (i) 2D s < g, (075005
— X
1

where

(€2 q) o

(azeil, —y3eif;q7) o

w(z;a,v|q) ==

9

and

ol yig) o= — G- alata, ‘12%—61(%)%l )%((CW‘J)%’;J;(CW)é @)oo

(1 —¢?"av)(q, v, —(a7)2;9)n(q; >, (@7)2, —(279)%; @)

Corollary 6.5. Let n € Ng, z = cos € (—1,1), a, v € (—3,00), dn(B,t, 0,7 q) defined as in (4.3). Then

1
tBe’ the™" @)oo pa w(z; o, v]q
/((tew te—i@.q)) Py ’”)(JJIQ)E/l_—ZL)dﬂc = 2mgn (@, 7 q)dn (B, 1, o, 7: q).-
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Proof. Multiply (4.3) by w(z; «, 7|q)P7(La’7)(x|q)/\/ 1 — 22 and integrate over (—1, 1) produces the result. O
Corollary 6.6. Let n € Ny, o, 8 > —1, v € C, such that R(a+1—v) > 0. Then

20—V (a + 1 — v)(v), [(B+1+n)
nT(a+B+2—v+n)

1
/ (1—2) PP (@)(1 - 2)*(1 + ) da =
-1

Proof. Follows from orthogonality of the Jacobi polynomials [20, (9.8.2)] and (5.16). O
6.3. Definite integrals for the continuous g-ultraspherical/Rogers and Gegenbauer polynomials

The property of orthogonality for the continuous g-ultraspherical /Rogers polynomials found in Koekoek
et al. (2010) [20, (3.10.16)] is given by

1

w(z; Blg) (1= B)(B:4B; D)oo (8% O)n
Cn(z; Blq)Cr(x; Blg) —== dx =27 Omms 6.6
/1 (#: Bla)On e )\/1—3:2 (1= Bg")(B? a4 D)oo (d: D) (66)
where w : (—1,1) — [0, 00) is the weight function defined by
, 2
(6220;(])00
w(z; Blq) = | ——— 6.7
(w3810) = | (67
We use this orthogonality relation for proofs of the following definite integrals.
Corollary 6.7. Let n € Ng, x = cosf € (—1,1), B,y € (—-1,1)\ {0}, 0 < |q| < 1, |[¢| < 1. Then
1 ) .
(tBe, tBe” ™ q)o w(@;7|q)
- . Ch(x; —=d
[ e e g Cntenla)
(7,76 )0 (B, 7% @) <671,6q” 2>
=27 1) i, vt )t 6.8
(% G )o@ avi)n 2\ gt (68)

Proof. We begin with the generalized generating function (5.4), multiply both sides by

w(z;7]q)

Cm(757[q) Vil

where w(x;7|q) is obtained from (6.7), integrating over (—1,1) using the orthogonality relation (6.6) pro-
duces the desired result. O

Corollary 6.8. Let n € No, A\, pu € (—%,00) \ {0}, [t| < 1. Then

1

/ Ch () (1—332)”_%dl‘: \/EF(M+%)()‘72N)TL F /\_Ua/\+n.t2 .
(1— 2tz + t2)> T(p+1)(p+ 1)pn! p+n+1"’

-1

Proof. Starting from (6.8) and taking the limit ¢ 1 17, using [20, (14.10.35)]

lim G, (5 ¢*|q) = Cl (),
qtl~

the result follows. O
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Observe that since the Gegenbauer polynomials can be written as [24, (18.5.10)]

C%(x)=(2x)n%2Fl<Z,T.i)7

n! 1—X—n'22
the above integral can be written in terms of a o F}, and we also have a similar o F} on the right-hand side.

Corollary 6.9. Let n € Ny, o, 8 > —1, v € C, such that R(a+1—v) > 0. Then

20tV + 1 —v)(v),[(B+1+n)
nlT(a+B8+2—v+n)

1
/(1 —2) V() (1 — 2?2 da =
-1

Proof. Follows from orthogonality of the Gegenbauer polynomials [20, (9.8.20)] and (5.20). O

Similar definite integrals can be obtained for the Chebyshev polynomials of the first kind multiplied by
(1 — )" and for the Laguerre polynomials multiplied by 1/2", using (5.21) and (5.22) respectively.

7. Outlook

It has been suggested by a referee that it would be interesting to investigate the transformation properties
of the derived definite integrals in this paper since the Rogers generating function is a generalization of the
generalized Stieltjes kernel (z — x)~". The transformation and transmutation properties of the generalized
Stieltjes transformations for the Gauss hypergeometric function has been summarized recently in a paper
by Koornwinder [21]. Generalized Stieltjes transforms have evident properties of mapping solutions of the
hypergeometric differential equation to other solutions of the same equation, while generalized Stieltjes
transforms map solutions of the hypergeometric differential equation to solutions of another differential
equation. Unfortunately a similar analysis for our problem is not easily accomplished because the singulari-
ties of the Gauss hypergeometric differential equation are 0, 1 and oo, whereas for instance, for Jacobi-type
orthogonal polynomials, the singularities are at +1 and oco. In future research, we would like to apply an
analogous result to study the transformation properties for definite integrals of Jacobi-type orthogonal poly-
nomials and also for their g-analogs such as for the continuous g-ultraspherical /Rogers polynomials using
the Gegenbauer and Rogers generating functions. This study could have deep consequences.
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