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Abstract
Citation-based Information Retrieval (IR) methods for scientific documents have proven 
effective for IR applications, such as Plagiarism Detection or Literature Recommender Sys-
tems in academic disciplines that use many references. In science, technology, engineer-
ing, and mathematics, researchers often employ mathematical concepts through formula 
notation to refer to prior knowledge. Our long-term goal is to generalize citation-based IR 
methods and apply this generalized method to both classical references and mathematical 
concepts. In this paper, we suggest how mathematical formulas could be cited and define 
a Formula Concept Retrieval task with two subtasks: Formula Concept Discovery (FCD) 
and Formula Concept Recognition (FCR). While FCD aims at the definition and explora-
tion of a ‘Formula Concept’ that names bundled equivalent representations of a formula, 
FCR is designed to match a given formula to a prior assigned unique mathematical concept 
identifier. We present machine learning-based approaches to address the FCD and FCR 
tasks. We then evaluate these approaches on a standardized test collection (NTCIR arXiv 
dataset). Our FCD approach yields a precision of 68% for retrieving equivalent representa-
tions of frequent formulas and a recall of 72% for extracting the formula name from the 
surrounding text. FCD and FCR enable the citation of formulas within mathematical docu-
ments and facilitate semantic search and question answering, as well as document similar-
ity assessments for plagiarism detection or recommender systems.

Keywords  Mathematical information retrieval · Machine learning · Wikidata

Introduction

Documents from Science, Technology, Engineering, and Mathematics (STEM) often con-
tain a significant amount of mathematical formulas (Hambasan & Kohlhase, 2015). For-
mulas are a vital non-textual component to understand the content of STEM documents. 
Systems, such as semantic search engines, question answering systems, and document 
recommender systems, should also be capable of processing formulas and their connec-
tions with the surrounding text and mathematical expressions. In information science and 
technology, the semantics of natural language is typically grasped via conceptualization 
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(Yucong & Cruz, 2011). According to Gruber (1993), the term conceptualization refers 
to the process of simplifying the representation of objects of discourse and specifying a 
semantic vocabulary in an ontology (knowledge system). Analogously, to capture the 
semantics of mathematical language in formulas, we argue for the introduction of a math-
ematical Formula Concept, which we define as a collection of equivalent formulas with 
different representations (see also Sect. “Formula concept discovery” below). This extends 
the definition of the formula content comprising constituents, relations, and semantics of 
a formula, which was introduced in Scharpf et  al. (2018). We select the Klein–Gordon 
equation as an example for mathematical conceptualization. Figure 1 shows different rep-
resentations of the Klein–Gordon equation1 from quantum mechanics (also referred to as a 
relativistic wave equation). These representations of the Klein–Gordon equation in the aca-
demic literature appear to be diverse, but they all represent the same mathematical concept. 
Employing additional mathematical Formula Concept examples, we illustrate and discuss 
differences and explain the resulting challenges of this conceptualization process in detail. 
We introduce two tasks: Formula Concept Discovery (FCD) and Formula Concept Recog-
nition (FCR) to (1) identify Formula Concepts and (2) find formulas which are instances 
of particular Formula Concepts. We present implementations to automatically perform the 
FCD and FCR tasks using machine learning techniques.

Novelty of contribution. This paper extends our previous publication (Scharpf et  al., 
2019b), in which we introduced the first FCD retrieval method implementation. We extend 
our study of Formula Concepts by two additional FCD retrieval methods, three additional 
tasks, and the entire section on FCR experiments. A strong focus of this work is placed 
on the in-depth analytical examination of example Formula Concepts. We discuss 36 dif-
ferent representations of the Klein–Gordon equation, Einstein’s field equations, and Max-
well’s equations. Analyzing their differences, we identify 13 challenges for FCD to derive 
requirements for the practical implementation of an FCD framework. Furthermore, we 
investigate the Formula Concept vector space of our examples in four different formula 
encodings (vector representations). Additionally, we examine the separability or delinea-
tion of different Formula Concepts by computing classification accuracy (SVM classifier) 
and cluster purity (k-means clusterer). We also generate formula similarity maps in dif-
ferent encoding measures to illustrate FC class coherence. Finally, we present and discuss 
several of our FCR implementations, including search rankings and additional machine 
learning methods.

Related work

This section reviews and explains some background knowledge necessary to understand 
this research project. This includes our own preliminary work and achievements to tackle 
FCD, related methods of Mathematical Entity Linking, formula knowledge bases, STEM 
document dataset sources, and mathematical information system applications.

We recently introduced a first machine learning approach for Formula Concept Discov-
ery (Scharpf et al., 2019a). Using Doc2Vec (Le & Mikolov, 2014) encodings and k-means 
clustering, equivalent representations of formulas were retrieved and evaluated. The exper-
iment was carried out on a selection of astrophysics papers from the NTCIR arXiv dataset 

1  https://​en.​wikip​edia.​org/​wiki/​Klein-​Gordon_​equat​ion.

https://en.wikipedia.org/wiki/Klein-Gordon_equation
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(Aizawa et al., 2014). We took formulas that occurred most often in the corpus (duplicates) 
as a cluster seed. Furthermore, for the major part of the test selection candidates, a valid 
Formula Concept name could be retrieved from the surrounding text. For almost all of the 
retrieved name candidates, a Wikidata QID was available.2

In this paper, we extend our Formula Concept Discovery method with novel Formula 
Concept Recognition methods. Both approaches involve two steps: knowledge base pop-
ulation and content referencing. These can both be described in terms of Mathematical 
Entity Linking (MathEL) (Scharpf et al., 2021a, 2021b). MathEL approaches link math-
ematical formulas to unique URLs in a semantic knowledge base. If the URLs are part of 
Wiki web resources, MathEL can be regarded as the ‘Wikification’ of mathematical con-
tent (Kristianto et al., 2016).

In Natural Language Processing, Entity Linking entities are typically linked to Wiki-
pedia with a variety of applications, such as Named Entity Recognition (NER), relation-
ship extraction, and entity summarization (Rosales-Méndez et al., 2018). In analogy, meth-
ods to link mathematical expressions in scientific documents to Wikipedia articles using 
their surrounding text have been developed (Kristianto et al., 2016; Kristianto & Aizawa, 
2017). One of the conclusions was that for the linking to be reliable, a balanced combina-
tion of textual and mathematical elements must be considered. As potential candidates for 
MathEL, Mathematical Objects of Interest (MOI) were defined to elaborate methods for 
their discovery (Greiner-Petter et al., 2020). MathEL is expected to enhance mathematical 
subject classification (Scharpf et al., 2020b; Schubotz et al., 2020).

To implement our FCR methods, we employ Wikidata as the semantic grounding for 
Wikification (entity linking to Wiki web resources). Since Wikipedia is only semi-struc-
tured, Wikidata3 was launched to provide direct access to specific interlingual facts (RDF4 
triples) and to retrieve information systematically. Wikidata is a free and open seman-
tic knowledge base that can be read and edited by humans and machines (Vrandecic & 
Krötzsch, 2014). Wikidata stores items with statements and references. In the case of 
mathematical knowledge, this may include formulas. For example, one may describe the 
physics concept ‘pressure’ (item ID Q39552) with a ‘defining formula’ property (property 
ID P2534) p = F∕S . To scalably seed information into Wikidata, a primary sources tool 
(PST)5 was introduced. This tool allows active users to quickly browse through new claims 
and references in order to approve or reject their validity. Currently, Wikidata contains 
approximately 5,7K items with a ‘defining formula’ property.6

Besides Wikidata, other semantic databases exist that store mathematical formula 
knowledge. The NIST Digital Library of Mathematical Functions (DLMF, 2022) and NIST 
Digital Repository of Mathematical Formulae (DRMF) (Cohl et al., 2014) are two exam-
ples of maintained high-quality semantic datasets. Moreover, the benchmark mathmlben 
(Schubotz et al., 2018a) was created to evaluate tools for mathematical format conversion 
(from latex to mathml to Computer Algebra Systems), containing almost 400 formulas 

2  The mention of specific products, trademarks, or brand names is for purposes of identification only. Such 
mention is not to be interpreted in any way as an endorsement or certification of such products or brands 
by the National Institute of Standards and Technology, nor does it imply that the products so identified are 
necessarily the best available for the purpose. All trademarks mentioned herein belong to their respective 
owners.
3  http://​www.​wikid​ata.​org.
4  https://​www.​w3.​org/​RDF.
5  https://​www.​wikid​ata.​org/​wiki/​Wikid​ata:​Prima​ry_​sourc​es_​tool.
6  https://w.​wiki/​z8p.

http://www.wikidata.org
https://www.w3.org/RDF
https://www.wikidata.org/wiki/Wikidata:Primary_sources_tool
https://w.wiki/z8p
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from Wikipedia, the arXiv,7 and the DLMF. These were augmented by Wikidata macros in 
Scharpf et al. (2018).

Mathematical Information Retrieval (MathIR) systems address the information need of 
people working in STEM fields by retrieving, processing, and analyzing mathematical for-
mulas (Scharpf et al., 2018). Up until now, various formula search engines have been devel-
oped. Furthermore, translations between different markups (latex, Presentation, and Con-
tent mathml) and standards have been introduced (Guidi & Coen, 2016). Schubotz et al. 
present a framework to translate mathml into Computer Algebra System (CAS) syntax. 
Furthermore, standards like OpenMath8 and OMCDoc9 provide extensible ways to repre-
sent the semantics of mathematical objects in mathematical documents (Kohlhase, 2006). 
They can be used to annotate formula expressions in definitions, theorems, and proofs. 
Given markup on object, statement, and theory level, the soundness of mathematical sys-
tems can be assessed (Scharpf et al., 2018). In addition, the PhysML variant accounts for 
the special characteristics of physics: observables, physical systems, and experiments (Hilf 
et al., 2006). Moreover, Mathematical Question Answering (MathQA) systems have been 
built (Schubotz et al., 2019; Scharpf et al., 2022a) to provide quick and concise formula 
answers to mathematical questions in natural language, which are commonly asked on the 
web (Scharpf et al., 2020a). MathQA systems can retrieve answers from unstructured text 
passages or structured knowledge bases. In the latter case, MathEL needs to be employed 
to assign natural language concept names to mathematical formulas. While classical math 
search engines typically map a mathematical language query (formula string) to a col-
lection of web resources that include the natural language name of the Formula Concept 
(Kohlhase & Sucan, 2006), MathQA systems perform the reverse transformation from 

Fig. 1   Representations of the Klein–Gordon equation extracted from physics papers—(a): Arbab (2010), 
(b): Pecher (1984), (c): Tretyakov and Akgun (2010), (d): Detweiler (1980), (e): Kaloyerou and Vigier 
(1989), (f): Haroun et  al. (2017), (g): Tiwari (1988), (h): Strauss and Vazquez (1978), (i): nLab authors 
(2022), (j): nLab authors (2022), (k): Morawetz (1968). Some of the representations are written in a gen-
eral, potentially nonlinear form. With constraints given for the parameters in the respective publications, the 
equations become the linear Klein–Gordon equation

7  https://​arxiv.​org.
8  https://​openm​ath.​org.
9  https://​mathw​eb.​org.

https://arxiv.org
https://openmath.org
https://mathweb.org
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natural to mathematical language. Another application of the mapping from mathematical 
to natural language using MathEL is question generation (Scharpf et al., 2022b).

For some Mathematical Language Processing (MLP) applications, the formula constit-
uents (operators, identifiers, numbers) have to be annotated using Mathematical Markup 
Language (mathml). There are several tools available to convert latex into mathml, most 
prominently the latexml converter.10 Furthermore, the occurring symbols (variables, con-
stants) need to be disambiguated, i.e., their meaning inferred from the context by unsuper-
vised retrieval or supervised annotation. There have been previous attempts to automati-
cally retrieve the semantics of identifiers from the surrounding text (Schubotz et al., 2016; 
Greiner-Petter et al., 2022). However, it was found that not all identifier names could be 
extracted from the text. To address this, Schubotz et  al. cluster identifier namespaces to 
enable a fallback retrieval from the definition cluster. While Wikipedia articles commonly 
contain variable definitions in the text, many paper articles often omit them, assuming 
expert reader domain knowledge. To build machine-interpretable datasets, manual annota-
tion is thus inevitable. Since this is very time-consuming, formula and identifier annotation 
recommender systems, such as ‘AnnoMathTeX’ Scharpf et al. (2019a, 2021a), are built to 
speed up the process.

To create labeled formula data benchmarks, we need open access corpora of STEM 
documents. For research experiment reproducibility, snapshots must be defined. The arXiv.
org e-Print archive (McKiernan, 2000) makes available free preprints for an extensive col-
lection of publications from physics, mathematics, computer science, economics, and other 
fields. On the arXiv, many authors provide their latex source code. Both Wikipedia and 
arXiv articles were extracted as part of the NTCIR MathIR Task (Aizawa et al., 2014). We 
employ the NTCIR arXiv dataset for our research in this paper. In 2017, the Special Inter-
est Group for Math Linguistics (SIGMathLing)11 was initiated as a forum and resource 
cooperative for the linguistics of mathematical or technical documents.

Formula concept discovery

In this section, we attempt to formally define a Formula Concept and set up Formula Con-
cept Retrieval Tasks.

Formula concept retrieval tasks

Definition. Following (Scharpf et al., 2018), we define the formula content as the sets of 
operators, identifiers,12 and numbers that a formula contains. Furthermore, we define a For-
mula Concept as a collection of equivalent formulas with different representations featuring 
the same formula content (operators, identifiers, and numbers). Consider the Klein–Gordon 
equation representations in Fig.  1 as an example of a Formula Concept. Obviously, the 
formula content may vary as the occurring operators, identifiers, and numbers change from 
instance to instance. Operators such as partial derivatives can be represented in several 
ways ( �2u∕�t2 vs. utt vs. ü ), identifiers can be subsumed into others (e.g., � = mc∕ℏ ), and 

10  https://​dlmf.​nist.​gov/​LaTex​ML.
11  https://​sigma​thling.​kwarc.​info.
12  https://​www.​w3.​org/​TR/​MathM​L3/​chapt​er4.​html#​contm.​ci.

https://dlmf.nist.gov/LaTeXML
https://sigmathling.kwarc.info
https://www.w3.org/TR/MathML3/chapter4.html#contm.ci
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physical constants can be transformed in to different unit systems (e.g., natural units with 
ℏ = c = 1 ). The Formula Concept Discovery challenges will be discussed in more detail 
in Sect. “Task 3: identification of challenges”. This motivates our study to find out what 
equivalent representations can occur and how to handle them.

Tasks Our goal is to map diverse representations of a formula to one unique Formula 
Concept ID,13 e.g., linking all occurrences of the Klein–Gordon equation shown in Fig. 1 
to the Wikidata item Q868967.14 We define two subtasks of the Formula Concept Retrieval 
Task:

–	 Formula Concept Discovery is a method to find common equivalent representations 
and a name candidate for a given formula, and

–	 Formula Concept Recognition is an approach for recognizing formulas in documents as 
being instances of a previously defined Formula Concept.

In the following, we present our implementation and evaluation results for Formula Con-
cept Discovery and Formula Concept Recognition. These results are based on analytical 
examinations, machine learning, fuzzy string matching, and Wikipedia article heuristics.

For the discovery of Formula Concepts, we define the following four tasks: 

Task 1:	 Retrieval of formula concept examples,
Task 2:	 Analysis of formula concept examples,
Task 3:	 Identification of formula concept discovery challenges,
Task 4:	 Derivation of formula concept retrieval system requirements.

In Task 1, we employ three methods to retrieve examples of Formula Concepts, which are 
suitable for discussing and identifying challenges of Formula Concept Discovery and For-
mula Concept Recognition. In Task 2, we analyze and discuss three selected Formula Con-
cept examples. We choose three sets of differential equations from physics: the Klein–Gor-
don equation (KGE), Einstein’s field equations (EFE), and Maxwell’s equations (ME). The 
examples are retrieved from search engine results for the Formula Concept name yield-
ing publications (sources as in Fig.  1), as well as from Wikipedia article content15 , and 
a textbook (Fließbach, 1990). Given our background in theoretical physics and applied 
mathematics, we choose examples from this domain. Since we are domain experts on the 
topics, we can judge the Formula Concept semantics. The formula annotation is achieved 
in a two-step process: (1) the retrieval by the concept name in the selected sources deter-
mines the annotation or assignment of the whole formula; (2) the domain expert subse-
quently semantically analyzes the formula and retrieves the semantic annotations of the 
formula constituents by considering the context and descriptions or explanations from the 
respective sources (text surrounding the formula). In Task 3, we identify and summarize 
the Formula Concept Discovery challenges, which we observe in the discussion of the 
three Formula Concept examples. These challenges determine the requirements for techni-
cal implementations of FCD and FCR. In Task 4, we address the identified challenges by 
deriving requirements for a Formula Concept Retrieval system and proposing methods to 
tackle the challenges.

13  The Formula Concept ID (here Wikidata QID) for the whole formula must not be confused with a for-
mula identifier, which is a constituent of the formula with no fixed value.
14  https://​www.​wikid​ata.​org/​wiki/​Q8689​67.

https://www.wikidata.org/wiki/Q868967
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The developed algorithms, the dataset, and full result tables are available at https://​
github.​com/​ag-​gipp/​formu​la-​conce​pt-​retri​eval.

Task 1: retrieval of formula concept examples

For the retrieval of example Formula Concepts, we employ the following three methods: 

Method 1: Search by Formula Concept Name,
Method 2: k-Nearest-Neighbors (kNN) in Formula Vector Space,
Method 3: Wikipedia Article First Formula Multi-Language Heuristic.

In Method 1, we perform searches by the Formula Concept name in a corpus of publica-
tions, a Wikipedia article, and a textbook, respectively. In Method 2, we employ machine 
learning to retrieve equivalent representations of formulas (Scharpf et al., 2019a), which 
occur most often (duplicates) in a selected corpus containing astrophysics papers from the 
NTCIR arXiv dataset (Aizawa et al., 2014). For an introduction of the dataset, see the para-
graph ‘Data selection’ in Sect. “Method 2: k-Nearest-neighbors in formula vector space”. 
In Method 3, we make use of a simple heuristic (Schubotz et al., 2018b; Halbach, 2020). 
We take the tentative Formula Concept names of the examples retrieved using Method 2. 
We then extract the corresponding Wikipedia articles. For each Formula Concept article, 
we retrieve the first five versions in different languages. We then assess how many different 
representations of the individual Formula Concepts are among these articles.

Method 1: Search by Formula Concept Name

For our first example, the Klein–Gordon equation, we perform a web search to retrieve 
ten representations from publications (Arbab, 2010; Detweiler, 1980; Haroun et al., 2017; 
Kaloyerou & Vigier, 1989; Morawetz, 1968; Pecher, 1984; Strauss & Vazquez, 1978; 
Tiwari, 1988; Tretyakov & Akgun, 2010). Each publication contains the Formula Con-
cept name as a keyword or in the full text. For our second example, Einstein’s field equa-
tions, we retrieve representations from the corresponding Wikipedia article.15 For our third 
example, Maxwell’s field equations, we take derivations from a textbook on General Rela-
tivity (Fließbach, 1990).

Method 2: k‑Nearest‑Neighbors (KNN) in Formula Vector Space

This subsection is based on our previous publication (Scharpf et al., 2019a), in which we 
presented Formula Concept Discovery using k-Nearest-Neighbors for the first time. Since 
it might be impossible to formally define all equivalence transformations exhaustively, we 
test approaching a Formula Concept in machine learning terms as a collection of approved 
formula vectors (comparing encodings) within a specified similarity range (comparing 
metrics). We illustrate the formula space (formula content space in Fig.  4 and formula 
semantic space in Fig. 5) in Experiment 2 of FCR in Sect. “Experiment 2: formula concept 
classification and clustering”. It represents formulas as encoded vectors. Then, a Formula 
Concept can be defined as all vectors around a central vector within a specified distance 
(cutoff).

15  Available at https://​en.​wikip​edia.​org/​wiki/​Einst​ein_​field_​equat​ions.

https://github.com/ag-gipp/formula-concept-retrieval
https://github.com/ag-gipp/formula-concept-retrieval
https://en.wikipedia.org/wiki/Einstein_field_equations
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Method. We approach the discovery of Formula Concepts by retrieving equivalent 
formulations with different representations using machine learning (see Fig.  2). The 
retrieved instances are augmented with name candidates from the surrounding text. 
The initial step is to identify formula candidates that occur most often within a given 
dataset. We assume that they are potential seeds of popular Formula Concepts. We 
first tried formula clustering (Adeel et  al., 2012; Ma et  al., 2010). However, we dis-
covered that this was not a suitable method for FCD since the number of clusters is 
a priory unclear.16 The tested algorithms are not able to group equivalent formulas. 
Subsequently, we decided to start with a ranking of formula duplicates (with the same 
latex string). In contrast to the clustering, this yields valuable results for the selected 
Formula Concept examples.

Data selection. We employ the NTCIR arXiv dataset (Aizawa et al., 2014), which com-
prises 105,120 document sections containing over 60 million formulas. The formulas are 
enclosed in <math> tag environments. The documents were converted from latex to an 
XHTML format (https://​tei-c.​org). The disk size of the dataset is about 174GB uncom-
pressed. We confine our computations to the subject class of astrophysics (680 astro-ph 
documents), employing a domain expert to evaluate the results semantically. To get the 
most popular formulas in the dataset as potential candidates for important Formula Con-
cepts, we first identify duplicates where the exact formula string reoccurs in multiple docu-
ments. We subsequently rank the results by their occurrence frequency, i.e., the number of 
duplicates d (see the respective column in Table 1). From the duplicate ranking, we select 
a formula length range between 10 and 30 characters17 and restrict our selection to dupli-
cates occurring in at least two documents D ≥ 2 . This selection criteria processing results 
in 3,495 formulas. We then manually select all equations (for now, we confine the For-
mula Concept definition to include equations only). We discard all stubs without a right-
hand side, as well as simple variable dependence definitions, such as x = x(t) and x = y 
or x = const . The algorithms for the data selection pipeline can be found in the source 
repository.

Evaluation. For the first 50 samples from the duplicate ranking, we retrieve the opera-
tors and identifiers from the provided mathml <mo> and <mi> tags, as well as the sur-
rounding text (words within a window of ±500 characters around the formula). We 
encode both tag contents using the TfidfVectorizer from the Python package Scikit-learn 
(Pedregosa et  al., 2011) and Doc2Vec model (Le & Mikolov, 2014) from the Python 
package Gensim (Rehurek, 2011). We then assess the performance of a k-Nearest-Neigh-
bors classifier (Shakhnarovish et al., 2005) to retrieve equivalent formula representations. 
For a given instance of a Formula Concept, we compute the k-Nearest-Neighbors formulas 
as candidates for variations of that Formula Concept. Subsequently, we use our domain 
knowledge to judge whether these candidates are indeed equivalent representations of the 
given Formula Concept. We test the effectiveness of our approach on four different formula 
vector encodings:

16  However, in Experiment 2 (Sect. “Experiment 2: formula concept classification and clustering”), we 
employ k-means clustering with a known number ( k = 3 ) of clusters.
17  Expressions with less than ten characters are often not equations, and identical formulas with more than 
30 characters are rare.

https://tei-c.org
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–	 math2vec encoding the formula constituents using the Doc2Vec model as proposed 
in Youssef and Miller (2018);

–	 math tf-idf encoding the formula constituents using the TfidfVectorizer;
–	 semantics2vec encoding the surrounding text (containing tentative formula seman-

tics) using the Doc2Vec model; and
–	 semantics tf-idf encoding the surrounding text using the TfidfVectorizer.

The computation of the Doc2Vec formula vector encodings is more time-expensive than 
TF-IDF, due to the iterative learning process of the neural model.

Results. Table 1 shows the results of our approach for discovering Formula Concepts 
as published before (Scharpf et al., 2019b). We rank the extracted formulas by the num-
ber of duplicates d and list the number of documents D, in which they appear. Note that 
the likelihood of retrieving non-duplicate equivalent representations increases for higher 
values of distinct documents. If the Formula Concept representations are found in differ-
ent documents, there are more than if they appear in the same document. This means that 
there are fewer variations within the same document. We can see that only for the first 18 
Formula Concept examples are there more than two duplicates from distinct documents, 
i.e., formulas appearing twice or more within the corpus. We evaluate the first 50 exam-
ples. The primary investigation was to compare the performance of four different formula 
vector encodings in terms of the retrieved number of equivalent representations. In total, 
we can retrieve 163 equivalent Formula Concept representations for our 50 samples. On 
average, this corresponds to more than three (163/50 = 3.3) per formula (from 3 different 
documents) or around one (163/50/4 = 0.8) per source per formula. Some of the retrieved 
formulas even contain different identifier symbols or varying indices (e.g., a is replaced by 
R in Example 1, see the first line of Table 1). Increasing the number of formula neighbors 
parameter k from 1 in integer steps, we can not find additional matching representations 
above k = 9 . We define the retrieval success s of an individual encoding as the percentage 
of retrieved representations compared to all other formula vector encodings. Calculating 
the overall success distribution, we discover that the math2vec ( em ) encoding distinctively 
outperforms the others by yielding 71% of the retrieved instances, followed by seman-
tics tf-idf, ( ̂es ) with 15%, semantics2vec ( es ) with 11%, and math tf-idf ( ̂em ) 
with 4%. Overall, for 34 of the investigated 50 sample formulas, i.e., 34/50 = 68%, we are 
able to retrieve equivalent representations. We conclude that while the math2vec encod-
ing retrieves the most equivalent formula matches as candidates for a Formula Concept, it 
is most effective to employ all formula vector encodings simultaneously to maximize the 
retrieval. Note that we can only determine false positives and compute precision but not the 
number of false negatives to compute recall. This is because we do not know a priori how 
many different equivalent representations, semantically close to the examined concept, still 
exist. We can neither determine this in general (how many notational variations are pos-
sible in principle) nor for the given corpus (how many do occur). Finally, we list the top 
five name candidates from the surrounding text. The word window size is chosen to be 

Fig. 2   Clustering equivalent 
representations of formulas in the 
semantic space as named For-
mula Concept Wikidata items
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ê
s

En
co

di
ng

: s
am

pl
e

27
𝜁
=
H
𝛿
𝜙
∕
𝜙

Pe
rtu

rb
at

io
n 

th
eo

ry
 (Q

10
88

66
78

)
2/

2
1,

 0
, 0

, 0
e m

∶
R

=
(H

∕
𝜙
)𝛿
𝜙
𝜓

28
m

�
=
e∕
√
�

Ph
ot

on
 m

as
s (

Q
31

98
)

2/
2

0,
 0

, 0
, 0

N
/A

29
d
�
=
d
t∕
a
(t
)

C
on

fo
rm

al
 ti

m
e 

(Q
24

82
71

7)
2/

2
0.

56
, 0

, 0
.1

1,
 0

.3
3
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ê
m
∶
𝜓
(t
,
r
)
=
𝜓
(r
)
e
x
p
(−

i𝜔
t)

33
p
i
=
�
i�

i
N

/A
2/

2
0.

71
, 0

, 0
.1

4,
 0

.1
4

e s
∶
w
X
=
p
X
∕
�
X

34
i�

t�
=
H
�

Sc
hr

ös
di

ng
er

 e
vo

lu
tio

n 
(Q

16
54

98
)

2/
2

0,
 0

, 0
, 0

N
/A

35
H
(t
)
=
ȧ
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±500 characters. Decreasing the window size in steps of 100, the top 50 coverage perfor-
mance drops from 100% to 17% to 11% for ws = {500, 400, 300} to ws = 200 to ws = 100, 
respectively. We evaluate whether they contain a suitable name for the Formula Concept to 
be seeded as a Wikidata item. For our 50 Formula Concept examples, we achieve a recall 
of 36/50 = 72% for the formula name. Furthermore, for 41/50 = 82% of the retrieved name 
candidates, a Wikidata QID is available to tag the Formula Concept.

Method 3: Wikipedia Article First Formula Multi‑Language Heuristic

Table 2 shows another approach to discover Formula Concepts. We employ the tentative 
mathematical concept name candidate and retrieve the corresponding English Wikipedia 
article. For each Formula Concept article, we retrieve the first five versions in different 
languages. We then assess how many of these contain a first formula that is a different 
representation of the Formula Concept. As an example, for formula number 1, the ‘Hub-
ble parameter’, the English article’s first formula is v=H_0 D, while in the German it is 
H(t)=\frac{\dot a(t)}{a(t)}. We show the success score s in the last column. 
It is the fraction of different representations within the first five language versions. On 
average, a Formula Concept appears in two different representations. In our evaluation, 
we leave out all formulas, for which no concept name is available (N/A), to search for 
Wikipedia articles (−). For the 32 formulas, for which we can select a Formula Concept 
name from the surrounding text candidates, we find 155 Wikipedia articles (for some 
names, there are less than five language versions available). In total, 53/155 = 34% of 
the individual versions contain Formula Concept variations. This corresponds to 19/32 
= 59% of the formulas. The results indicate that it is in principle possible to retrieve For-
mula Concept representations via Wikipedia article first formula multi-language heuristic. 
However, this does not work for a significant part of the sample. Our finding aligns with 
previous results in the literature (Halbach, 2020), which report that considering multiple 
Wikipedia languages decreases both precision and recall compared to using only English 
Wikipedia.

Task 2: analysis of formula concept examples

In the following, we do step-by-step examinations of three differential equations from physics: 

Example 1:	 Klein–Gordon equation,
Example 2:	 Einstein’s field equations,
Example 3:	 Maxwell’s equations.

The presented representations are not exhaustive. Only some of the most interesting repre-
sentations are selected and presented to discuss important aspects and derive a list of chal-
lenges for Formula Concept Retrieval.

The challenge analysis framework is the following: The domain expert thoroughly 
examines the formula at hand to understand its specific particularities. Performing a 
‘semantic analysis’ means that constraints, notation (see, for example, https://​dlmf.​nist.​gov/​
not), substitutions, and equivalences are carefully considered.

https://dlmf.nist.gov/not
https://dlmf.nist.gov/not
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Example 1: Klein–Gordon equation

The Klein–Gordon equation is a relativistic wave equation. It describes the behavior of par-
ticles (modeled as waves) at high energies and velocities comparable to the speed of light 
(relativistic). Being a partial differential equation containing second partial derivatives in 
both time �2∕�t2 and space �2∕�x2

k
 it can be employed to compute the evolution of a quan-

tum wave function � in time t and space x⃗ (Gross, 2008). Apart from the terms containing 
the derivatives of the wave function, there is an additional term with the undifferentiated 
wave function. Depending on the notation, some terms are additionally multiplied by some 
factors of constants (not changing in time and space). The signs of the terms depend on the 
metric signature, a notational convention of how to combine time and space (Fließbach, 
1990).

In the first retrieved representation

the term pre-factors are 1∕c2 and (m0c∕ℏ)
2 . The spatial derivatives with respect to the coor-

dinates x⃗ = (x, y, z) are encapsulated in the Laplace operator

In the second representation

the wave function is denoted u instead of � . Additionally, the second derivative with 
respect to time is denoted using subscripts utt =

�2u

�t2
 . The space derivative is operated using 

a matrix multiplication A ⋅ u corresponding to ∇2u , and the metric signature is chosen such 
that the term has a positive sign. Finally, the constant factors are absorbed in the function 
f(u), which is proportional to (m0c∕ℏ)

2u . In both the previous and following representa-
tions, the multiplication is always implicit, i.e., the multiplication sign “ ⋅ ” is omitted. The 
equation representation allows any function of u, f(u) linear or nonlinear to be added. For 
it to be the Klein–Gordon equation, f(u) has to equal a non-zero constant times u. In this 
case, the parameters are set to

such that the equation contains the second space derivatives in the Laplace operator � and 
is linear in u, e.g., f (u) = �u for � = 1 . The need to automatically retrieve this additional 
constraint information is a major challenge for FCR. In the third representation

the time derivatives includes the factor c (speed of light) and is again denoted using sub-
scripts, such that

This is equivalent to the absorption of the factor 1∕c2 from the first representation (1). The 
wave function is here denoted h(z,  t), explicitly emphasizing the dependence on space z 

(1)1

c2

�2�

�t2
− ∇2� +

(m0c

ℏ

)2

� = 0,

∇2 = ∇ ⋅ ∇ = (�x, �y, �z) ⋅ (�x, �y, �z).

(2)utt + Au + f (u) = 0,

A ∶= −� + m2,m ≠ 0, f (u) ∶= �|u|�−1u, � ∈ ℝ,

(3)�2
ct
hn(z, t) − �2

z
hn(z, t) + �2

n
hn(z, t) = 0,

�2
ct
=

�2

�(ct)2
=

1

c2
�2
t
.



4986	 Scientometrics (2023) 128:4971–5025

1 3

and time t. Here, only one dimension is considered—the coordinate z, such that the spa-
cial derivative is reduced to �2

z
= �2∕�z2 . The metric signature is the same as in (1) with a 

minus sign in front of the second term. In the fourth representation

the wave function is again denoted � as in (1). The constants are absorbed in the factor �2 , 
such that the linear term containing the undifferentiated wave function is now shifted from 
the left-hand to the right-hand side of the equation. Both the space and time derivatives are 
combined into one single term by using Einstein’s notation of summation convention (Ein-
stein, 1916). It states implicit summation over double indices. In our case, a, the summa-
tion index, denotes the dimension coordinates of time t and space x, y, z. Without additional 
remarks, it is now clear whether all coordinates are considered or some omitted. It could 
possibly be a time-independent ( �2�∕�t2 = 0 ) or one-dimensional form ( 𝜓(x⃗) = 𝜓(z) ), as 
in (3). In the fifth representation18

there is an additional term containing a first derivative with respect to proper time � , which 
is proportional to time t for constant speed. The term is imaginary, denoted by the imagi-
nary unit i. Physically, it introduces an exponential decay of the wave function (damping). 
The sixth representation

has a different signature (the term signs differ from the previous representations). However, 
the term without derivative appears positive on the right-hand side as in (4). Moreover, the 
pre-factors containing the constants—Planck’s constant ℏ , the speed of light c, and the rest 
mass m0—are distributed differently. In the seventh representation

the wave function is denoted � . The second space derivatives appear again using the 
Laplace operator ∇2 as in (1). Here, some additional constants � and a are introduced, and 
a term containing a first partial time derivative ��∕�t , similar to (5). By setting a = −2� in 
the publication, this term vanishes, and the equation becomes the Klein–Gordon equation. 
The eight representation

uses the same variable u and time derivative utt as in (2). The Laplace operator performing 
the second spatial derivatives is denoted as � = ∇2 . The constants are absorbed in the fac-
tor m2 , and there is an additional term, the function G�(u) of the wave function. This G(u) 
must be equal to a non-zero constant times u in order for �G(u) = 0 and the representation 
to be the Klein–Gordon equation. The ninth representation

(4)∇a∇a� = �2� ,

(5)ℏ2

c2

�2�

�t2
−

ℏ2�2�

�x2
= −2iℏ

��

��
,

(6)−ℏ2 �
2�

�t2
+ c2ℏ2∇2� = m2

0
c4� ,

(7)∇2� −
1

c2

�2�

�t2
−

2� + a

c2

��

�t
−

�2 + a�

c2
� = 0,

(8)utt − �u + m2u + G�(u) = 0,

18  Labeled by the authors of the source article as ‘evolution time Klein–Gordon equation’.
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again uses Einstein notation as in (4) for the partial (time and space) derivatives. For the 
signature (the term signs), the Minkowski metric ��� is employed. The wave function � can 
then be factored out. The tenth representation

is similar to (9). However, it explicitly displays the summation using the sign 
∑

 and limits 
the considered dimensions to p. Lastly, the eleventh representation,

is almost identical to (8)—the only difference being that the constant m2 is replaced by m 
and the function G by P. This again means that to be the Klein–Gordon equation, the func-
tion derivative P�(u) must vanish.

To summarize, in the different representations of the Klein–Gordon equation extracted 
from the 11 publications, there are several different symbols used to denote the wave func-
tion: � , u, h, � , and � . The constant factors m0 , c, ℏ , etc., appear at different places in dif-
ferent terms of the equation or are omitted entirely in particular unit systems. The deriva-
tive notation varies significantly, e.g., from �2�∕�t2 to �2

ct
 to utt for the time derivative of 

the wave function. In (4) and (9), Einstein’s summation notation is used to compactify the 
derivatives, while omitting summation signs. The signs of the terms differ with the met-
ric signature that is used. Additional terms and functions are introduced (e.g., the damp-
ing term in (5) and G�(u) and P�(u) in equations (8) and (11)). Note that there are poten-
tially more representation variations, which were not considered due to their absence in the 
examples. For instance, there are forms of the KGE, in which the D’Alembert operator

takes care of the time and space derivatives.

Example 2: Einstein’s field equations

Einstein’s field equations are the fundamental differential equations in Einstein’s theory of 
general relativity. They relate the curved geometry of spacetime (space and time are united 
in the framework) to the distribution of matter, which generates a gravitational field (Ein-
stein, 1916). Mathematically, the EFEs form a system of ten coupled nonlinear partial dif-
ferential equations (Rendall, 2005). As in the previously discussed representations (4) and 
(9) of the Klein–Gordon equation, four-dimensional indices are used.

The first representation

is a very compact form. The Einstein tensor

(9)
(
���

�

x�
�

x�
−
(
mc

ℏ

)2
)
� = 0,

(10)

(
−
1

c2
�2

�t2

p∑

i=1

�

xi
�

xi
−
(
mc

ℏ

)2

)
� = 0

(11)utt − �u + mu + P�(u) = 0

□ =
1

c2
�2

�t2
−

d−1∑

i=1

�2

�xi
2

(12)G�� + �g�� = �T��
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subsumes the spacetime curvature Ricci tensor R�� and scalar curvature R, and metric ten-
sor g�� , which describes the gravitational field. The stress-energy tensor T�� describes the 
density and flux of energy and momentum in spacetime. A tensor is a generalization of a 
matrix and a vector in higher dimensions. The two-dimensional tensors with two indices 
� and � can also be written as a matrix (cf. field tensor in Example 3), where the indices 
correspond to the column and row numbers. In equation (12), The cosmological constant 
� quantifies the contribution of dark energy to the expansion of the universe. Furthermore, 
there is another constant

containing the gravitational constant G and the constant which represents the speed of light 
c. The second representation

explicitly states that geometric units are used with the constants G = c = 1 , which sets the 
pre-factor on the right-hand side to � = 8� . The third representation

writes out the definition of G�� on the left-handy side, and uses c = 1 but G = GN with an 
additional index N. The fourth representation

shows the term with the cosmological constant � moved to the right-hand side, �2 listed 
instead of � , and T tot

��
 is listed with an additional superscript. The fifth representation

is a combination of (12) and (15). The sixth representation

has the sign of the �-term changed again, while showing its dependence of T. Further-
more, � here has the index r and its dependence of T is shown as well. In the seventh 
representation

the units are chosen, such that the pre-factor of the T��-term is −�2∕2 , and G�� is multiplied 
by an additional factor rc (critical radius of the universe. The eight representation

uses the Latin letters A and B instead of the Greek letters � and � . The ninth representation

G�� = R�� −
1

2
Rg��

� = 8�G∕c4,

(13)G�� + �g�� = 8�T�� (G = c = 1),

(14)R�� −
1

2
g��R − �g�� = (8�GN)T�� ,

(15)G�� = −�g�� + �2T tot
��

(16)G�� = R�� − g��R∕2 = �T�� − �g��

(17)R�� −
1

2
Rg�� = �r(T)T�� + �(T)g��

(18)K�� − Kg�� = −
�2

2
T�� + rcG�� ,

(19)GAB ≡ RAB −
1

2
gABR = �2 TAB
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introduces an additional function fR and an explicit occurrence of the Newtonian gravita-
tional constant G. The tenth and eleventh representations

and

highlight that the cosmological constant � is critical (c) and effective (eff) using subscripts. 
The twelfth representation

displays an additional identifier � within � and index of c0 . The thirteenth representation

relates a fourth tensor E�� to the other three ( G�� , g�� , and T�� ). For E�� = 0 it reduces to 
(12). In the fourteenth representation

another index 5 is added to the constants G and � . In the fifteenth representation

an additional superscript RG is displayed. The sixteenth representation

contains an additional constant D, which is the dimension of the spacetime. Finally, the 
seventeenth representation

adds another subscript for � and the electromagnetic charge tensor Q�� (‘Einstein-Maxwell 
equations’). Summarizing, Example 2 reiterates that the same Formula Concept can be rep-
resented using different unit systems, which modify the coefficients of the individual terms. 
As in Example 1, different names for identifiers and sub- or superscripts can occur. Fur-
thermore, sometimes a variable dependence is explicitly displayed as in (17).

(20)R�� −
1

2
g��R + �g�� = −8�GT�� fR G��

(21)R�� −
1

2
g��R + �cg�� = 8�GT��

(22)R�� −
1

2
Rg�� + �eff g�� = 8�GT��

(23)G�� − g��� =
8�G

c4
0
�4

T��

(24)E�� = −G�� + �T�� − �g��

(25)R�� −
1

2
g��R = 8�G5T�� − �5g�� ,

(26)R�� −
1

2
Rg�� = 8�GT�� − �g��T

RG
��

,

(27)R�� −
�g��
D

2
− 1

=
8�G

c4

(
T�� −

1

D − 2
Tg��

)
,

(28)G�� = �2
4
T�� − �g�� + Q��
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Example 3: Maxwell’s equations

Maxwell’s equations are the foundation of classical electromagnetism and optics. They 
describe how charges and electric currents generate electric and magnetic fields and model 
light as electromagnetic waves (Jackson, 1999). Mathematically, they form a set of four cou-
pled partial differential equations, which—like the Klein–Gordon equation (Example 1)—
contain time and space derivatives. While the Klein–Gordon equation is a scalar equation 
(wave function), Einstein’s field equations relate tensors (curvature and mass-energy), Max-
well’s equations are vector (electric and magnetic field) equations.

The first two equations are Gauß’ law for electric and magnetic fields

They state that the source (given by the divergence) of the electric field ( ⃗E ) is a charge 
(the density distribution � ), while the magnetic field ( ⃗B ) has no source distribution (equals 
zero). The third and fourth of Maxwell’s equations are Faraday’s law of induction and 
Ampère’s circuital law

They state that electric fields (rot E⃗ ) (or curl) are generated by changing magnetic fields 
( 𝜕B⃗∕𝜕t ) and magnetic fields (rot B⃗ ) are generated by changing electric fields ( 𝜕E⃗∕𝜕t ) and 
charge current density distributions ( ⃗j  ). Both the existence of a non-zero curl (rot), i.e., 
vortex strength, and divergence (div), i.e., source strength of the electric and magnetic 
fields, are obtained using permutations of the field components. While the second and third 
equations are homogeneous, the first and the fourth equations are inhomogeneous. The lat-
ter two contain source terms (electric charge and current density distributions).

Equations (29) and (30) are the differential forms of Maxwell’s equations. However, it 
is also possible to represent them in their integral forms. Gauß’s law for the electric field 
then writes

where ∮
�Ω

 is a surface integral over the boundary surface �� (with the loop indicating that 
the surface is closed), and ∭

�
 is a volume integral over the volume � . Gauß law for the 

magnetic field then becomes

Faraday’s law of induction can be written as

where ∮
��

 is a line integral integrating over the boundary curve �� (with the loop indi-
cating that the curve is closed), and ∬

�
 is a surface integral over the surface � . Finally, 

Ampère’s law becomes

(29)div E⃗ = 4𝜋𝜌, div B⃗ = 0.

(30)rot E⃗ = −
1

c

𝜕B⃗

𝜕t
, rot B⃗ =

4𝜋

c
j⃗ +

1

c

𝜕E⃗

𝜕t
.

(31)∯ �Ω

E ⋅ dS =
1

�0 ∭Ω

�dV

(32)∯ �Ω

B ⋅ dS

(33)∮��

E ⋅ dl = −
d

dt ∬�

B ⋅ dS,
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Maxwell’s equations can also be transformed into a four-vector notation, which includes 
tensors and Einstein’s summation convention (as in Example 2: Einstein’s field equations). 
In this notation, the two inhomogeneous partial differential equations are reduced to

and the homogeneous partial differential equation is reduced to

The charge and current sources density distributions ( � and j⃗  ) are combined into one 
four-vector

The four-derivative of both space and time is defined as �� =
�

�x�
 . The permutations needed 

for the curl and the divergence of the electric and magnetic field are encapsulated in the 
Levi-Civita symbol

The electromagnetic field tensor is then defined as

containing all six components of both the electric and magnetic fields in three dimensions.
Summarizing, Example 3 shows how unification into a single physics framework (Max-

well’s equation of electromagnetism) combines multiple Formula Concepts: Gauß’ law of 
electric and magnetic fields; Faraday’s law of induction; and Ampère’s circuital law. Equa-
tion (35) could either be labeled ‘Gauß’ electric law’ and ‘Ampère’s law’ or ‘Maxwell’s 
inhomogeneous equations’. Analogously, equation (36) could either be labeled ‘Gauß’ 
magnetic law’ and ‘Faraday’s law’ or ‘Maxwell’s homogeneous equations’. By transform-
ing to the more compact notation, tensors and indices are introduced. Notably, the electro-
magnetic field tensor F�� subsumes multiple components of two vectors.

Task 3: identification of challenges

In the following, we identify the challenges for Formula Concept Discovery and Recogni-
tion. They are derived from the discussion of the three Formula Concept examples. The 
challenges provide an impression of the peculiarities that need to be considered by FCD 
and FCR approaches.

(34)∮��

B ⋅ dl = �0

(

∬�

j ⋅ dS + �0
d

dt ∬�

E ⋅ dS

)
.

(35)��F
�� =

4�

c
j� ,

(36)�������F�� = 0.

(j�) = (c�, ji).

����� =

⎧
⎪
⎨
⎪
⎩

+1, (�, �, � , �) = even permutation of (0, 1, 2, 3)

−1, (�, �, � , �) = odd permutation of (0, 1, 2, 3)

0 otherwise

.

(F��) =

⎛
⎜
⎜
⎜
⎝

0 − Ex∕c − Ey∕c − Ez∕c

Ex∕c 0 − Bz By

Ey∕c Bz 0 − Bx

Ez∕c − By Bx 0

⎞
⎟
⎟
⎟
⎠

,
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Table 3 contains the results of our evaluation. Most of them are notation issues. Dif-
ferent names for symbols (constants or variables) are used. Different notation systems are 
applied for signatures and units. Different forms for derivatives, summations, and tensors 
are employed. For some challenges, e.g., Challenge 3 there is an overlap between the dif-
ferent Formula Concept examples. For others, e.g., Challenges 10 and 11, the issues only 
apply to the specific example. We can note an average of four challenges per example. 
It remains an open question whether this number increases or decreases with additional 
examples. There can potentially be more or less overlap of challenges shared by examples. 
If the same challenges do not reoccur frequently and the number of challenges significantly 
increases with new examples, Formula Concept retrieval methods are faced with additional 
difficulties.

Task 4: derivation of formula concept retrieval system requirements

In the following, we address the identified Formula Concept Discovery challenges by 
deriving requirements for a Formula Concept Retrieval system. Since currently, less than 
6,000 formulas are seeded into Wikidata19 and storing multiple representations as ‘defining 
formula’ of the same Formula Concept item is not endorsed, we argue for the creation of a 
specific Wikidata-attached Formula Concept Database (Schubotz et al., 2018b). It should 
include formalized augmentation to generate equivalent forms using, e.g., commutations, 
additional sub- and superscripts, unit and reference frame variations, etc. Most importantly, 
a method for inferring substitutions or implicit terms needs to be developed.

We propose to formalize the augmentation of a Formula Concept as translation 
between its different representations. One could use equivalence generations made by 
Computer Algebra Systems to train, e.g., a Siamese Network, Bromley et al. (1993), to 
assess whether two formulas are representations of the same Formula Concept. For this, 
the choice of a suitable formula encoding needs to be explored. A hypothesis we have 
to examine beforehand is whether Formula Concept Recognition relies on identifying 
equivalent representations or only requires the semantic annotations of formula identi-
fiers. We will discuss this further in future work, as well the exploration of practical 
implications of the interpretation of a Formula Concept as a mathematical ‘word’ that 
can be translated between different representations (analogous to ‘languages’).

Apart from distinguishing FCD and FCR as separate methods, one could also com-
bine them to discover Formula Concepts by recognizing (tagging) an increasing amount 
of formulas per mathematical concept over time. Therefore, we propose an Active 
Learning system that shows randomly selected formulas to a user. The system then has 
to figure out whether, for a shown formula, there is already a mathematical concept 
identifier available. If missing, it should create one and match the following occurrences 
to it. Unfortunately, CAS cannot generate all notation transformations (e.g., from vector 
to tensor, see Formula Concept Example 3).

Figure 3 shows the expression trees of two representations of the Klein–Gordon equa-
tion (left and right) in comparison. Different constituents of the equations are marked in 
the trees as semantic entities. They can be matched to unique IDs in a semantic data-
base, e.g., Wikidata. For example, the identifier c representing the ‘speed of light’ is 

19  To get the current number, run https://w.​wiki/​3bL6.

https://w.wiki/3bL6
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assigned the Query ID (QID) ‘Q2111’. Since both trees contain the same semantic enti-
ties, they can be matched as representing the same Formula Concept.

Summarizing, we derive the following Formula Concept Retrieval system require-
ments from the identified challenges for FCD: 

(1)	 Set up a Formula Concept Database (FCDB);
(2)	 Employ equivalence transformations and Computer Algebra Systems;
(3)	 Enable Formula Concept Discovery by Recognition (FCD by FCR); and
(4)	 Integrate formula matching via semantic formula encoding.

Conclusion (FCD)

We compare the effectiveness of retrieving different Formula Concept representations 
of Method 2 (k-Nearest-Neighbors in formula vector space) with Method 3 (Wikipedia 
article first formula multi-language heuristic). While Method 3 achieves a precision of 
34% for retrieving Formula Concept representations from multilingual Wikipedia articles, 
Method 2 outperforms this with a precision of 68% using machine learning. The kNN 
approach is not only performing well, but it also has the advantage of being easily usable 
and transferable to other corpora. Method 1 can not be compared to the other two because 
it is a priori unclear where (at which number of webpages or textbooks) to stop the search. 
Therefore, we only concentrate on our three Formula Concept examples (KGE, EFE, and 
ME), for which we can retrieve a total of more than 30 representations, searching in pub-
lications, Wikipedia, and a textbook. We conclude that for Formula Concept Discovery to 

Fig. 3   Comparison of two representations of the Klein–Gordon equation (left and right). Different constitu-
ents of the expression trees are marked as semantic entities that have a unique Wikidata ID
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achieve the best results (retrieval of a large number of equivalent formula representations 
per concept), it is beneficial to combine the different methods optimally.

Formula concept recognition

In this section, we introduce methods for Formula Concept Recognition (FCR). Recall that 
the goal of FCR is to recognize formulas in documents as being instances of a previously 
defined Formula Concept.

The presented FCR methods were not introduced or published before. Prior work only 
included the first FCD experiments and results. Currently, to the best of our knowledge, no 
other FCR methods have been published so far. However, to establish comparability and 
replicability, we evaluate the performance of our approaches against that of open source 
and commercial formula search engines in Experiment 1 as presented in Section 4.1.

In the following, we describe and evaluate several different approaches for FCR. To 
assess the feasibility and performance of the proposed methods, we set up the following 
three experiments: 

Experiment 1:	 Formula Concept Search;
Experiment 2:	 Formula Concept Classification and Clustering;
Experiment 3:	 Formula Concept Similarity.

In Experiment 1, we investigate how well Formula Concepts can be retrieved by search 
queries using the formula latex string or the formula constituents. Therefore, we employ 
several sources, such as Wikidata items, as well as Wikipedia articles and arXiv docu-
ments from the NTCIR dataset. The results from Wikidata can be associated with a unique 
semantic ID (the Wikidata QID). We compare the performance of the open source retrieval 
to selected competitor (formula) search engines. In Experiment 2, we assess how well a 
manually labeled balanced dataset of 100 Formula Concept examples from 10 classes can 
be automatically recognized by machine learning classification and clustering to separate 
the Formula Concepts in several vector encoding spaces. In Experiment 3, we test how 
well formula (encoding) similarities can indicate that different formulas are representations 
of the same Formula Concept. Therefore, we compute a similarity map matrix of pairwise 
formula or class similarities. The developed algorithms, the dataset, and full result tables 
are available at https://​github.​com/​ag-​gipp/​formu​la-​conce​pt-​retri​eval.

Experiment 1: formula concept search

We first approach the recognition of Formula Concepts (FCR) as a search ranking prob-
lem, in contrast to classification and clustering, examined in the subsequent experiment. 
To evaluate finding, i.e., recognizing FCs in large corpora of mathematical content, we 
employ three open data sources (Wikidata, Wikipedia, arXiv) and two methods (retrieval 
using formula latex string or constituents). Furthermore, we compare the performance of 
our methods to two formula search engines, one open source (Approach Zero20), and one 
commercial (Google21).

20  https://​www.​appro​ach zero.​xyz.
21  https://​www.​google.​com.

https://github.com/ag-gipp/formula-concept-retrieval
https://www.approach0.xyz
https://www.google.com
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For this and all subsequent FCR experiments, we collect a test set with 100 Formula 
Concept example differential equations from 10 classes. Table 4 shows the concept class 
names and labels, together with the corresponding Wikidata QID (above) and example 
latex string (below). The linked Wikipedia article is the source of the respective equations, 
which we collected for each class. A full list of all 100 collected equations can be found in 
the appendix. The selection extends the three classes discussed in Sect. “Task 2: analysis 
of formula concept examples” by additional 7 classes with 10 examples each. Each class 
corresponds to a Wikipedia article (as indicated in Table 4). This means that we here apply 
the definition of a Formula Concept as a set of equation representations collected from the 
same Wikipedia article.

For each of our 100 example formulas, we evaluate the performance of 8 selected For-
mula Concept search retrieval sources: arXiv latex, arXiv constituents, Wikidata latex, 
Wikidata constituents, Wikipedia latex, Wikipedia constituents, Approach Zero, and 
Google. The first 6 represent our retrieval methods over open corpora, while the last 2 
employ search engines. The method label latex indicates that the formulae are compared 
by their latexstrings, whereas ‘constituents’ means that the formula parts are aligned (set 
intersections of operators and identifiers).

We generated the top 10 results for each of the 8 sources on our 100 examples and man-
ually assessed the ranking of the correct result for the resulting 10 × 8 × 100 = 8, 000 for-
mulae. As ranking measures, we used ‘Top-10 Recall’ and ‘Top-1 Recall’ as well as ‘Mean 
Rank’ (MR) and ‘Mean Reciprocal Rank’ (MRR), which is defined as Voorhees (1999)

MRR = 1∕MR =
1

|Q|

|Q|∑

i=1

1

ranki
,

Table 4   Ten classes of our test set with 100 Formula Concept differential equation examples, including a 
linked Wikidata QID and concept name with Wikipedia article source link (above), as well as an example 
equation latex string
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summing over all query results Q = 10. In this formula, ranki refers to the rank position of 
the first relevant document for the i-th query. The reciprocal value of the mean reciprocal 
rank represents the harmonic mean of the ranks.

Table 5 shows the results of the Formula Concept search evaluation. The performance 
of different FCR methods is compared to state-of-the-art (formula) search engine competi-
tors (Approach Zero20 and Google21 ). We also tested other formula search engines, such 
as MathWebSearch,22,23 ZbMATH formulae,24 and Wolfram Alpha25 but they were either 
not working, access-restricted or too low performing to be included in the result table. The 
best results (lowest Mean Rank MR, highest Mean Reciprocal Rank MRR, and Recall) are 
marked in bold. The results exhibit that the FCR method source ‘Wikipedia latex’ outper-
formed all other method sources in all metrics. This can be explained by the fact that our 
FCR examples were extracted from Wikipedia articles. However, not all equations were 
present in the NTCIR Wikipedia dataset. We find that the formula latexstring retrieval out-
performed the retrieval using formula constituents. Furthermore, we compare our retrieval 
methods (FCRs) to the selected search engines (SEs). Our methods outperform the search 
engines in all metrics except ‘Top-10 Recall’ (it is very close in the ‘Top-1 Recall’ met-
rics). Summarizing, we compare the performance of different retrieval methods and 
sources in several ranking measures to demonstrate that it is possible to recognize Formula 
Concepts using search with a Mean Rank of down to 1.78, Mean Reciprocal Rank up to 
0.78, and Recall up to 0.74. Our FCR methods outperform state-of-the-art search engines.

Table 5   FCR as formula concept 
search problem

Several open corpus sources (Wikidata and NTCIR Wikipedia, arXiv) 
are employed to retrieve formulas from a test set of 100 differential 
equations either using their latex string or constituents. The perfor-
mance is compared in several ranking metrics (MRR, etc.) to com-
petitors, an open source (Approach Zero), and a commercial (Google). 
The best performances are highlighted in bold font

Source/metric MRR MR Top-10 recall Top-1 recall

Formula Concept Retrieval methods (FCRs)
arXiv latex 0.70 2.38 0.48 0.27
arXiv constituents 0.71 2.91 0.11 0.07
Wikidata latex 0.75 2.28 0.68 0.44
Wikidata constituents 0.54 2.65 0.17 0.05
Wikipedia latex 0.78 1.78 0.74 0.48
Wikipedia constituents 0.66 2.70 0.40 0.21
Search Engines (SEs)
Approach Zero 0.64 2.59 0.44 0.21
Google 0.63 2.85 0.55 0.26
FCRs vs. SEs
Mean (FCRs) 0.69 2.45 0.43 0.25
Mean (SEs) 0.63 2.72 0.50 0.24

22  https://​search.​mathw​eb.​org.
23  https://​www.​searc​honma​th.​com.
24  https://​zbmath.​org/​formu​lae.
25  https://​www.​wolfr​amalp​ha.​com.

https://search.mathweb.org
https://www.searchonmath.com
https://zbmath.org/formulae
https://www.wolframalpha.com
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Experiment 2: formula concept classification and clustering

To assess how well the computer could separate our 100 Formula Concept examples into 
classes, we examine their joint formula (content or semantic) space. Recall that the formula 
content was defined following (Scharpf et al., 2018) as the sets of operators, identifiers, and 
numbers that a formula contains. Because of Challenge 2 (substitutions) and Challenge 13 
(different unit systems), we decided to neglect the set of numbers. Compared to the opera-
tors and identifiers, there are significantly fewer numbers, and they heavily depend on sub-
stitutions and unit systems [e.g., the number 8 in the factor 8� or the exponents 4 in (23)].

Since formulas in mathematics can be similar to each other syntactically, yet address 
completely different concepts semantically or vice versa, we analyze the relationship 
between syntactic and semantic encodings. There are two challenging cases: (1) syntac-
tically similar but semantically different formulas (syntactic inter-class coherence but 
semantic inter-class separability) and (2) syntactically different but semantically coherent 
formulas (syntactic inner-class separability but semantic inner-class coherence). An exam-
ple for (1) from our selected classes can be:

or

An example for (2) can be: F = ma vs. F = p∕t (class NSL expressed using mass m and 
acceleration a vs. momentum p and time t).

Encoding and classifying the syntactic or semantic formula content is indispensable, 
since the surrounding text is often noisy and the formula concepts are not explicitly named 
or described. Some authors of mathematical content implicitly assume the reader’s pro-
found background knowledge. This limits the use of text-based encoding and classification 
methods. In the following, we describe and discuss our tests of the content vs. semantic 
coherence of Formula Concepts in terms of separability (classification accuracy and cluster 
centroid distance and purity).

For the machine learning experiments, we create four files with the equation labels, 
latex strings, content, as well as semantic annotations, including Wikidata QIDs. Each of 
the files has 100 lines corresponding to the individual formulas, i.e., (10 Formula Concept 
examples from each of the 10 classes KGE EFE, ME, etc. respectively, see Table 4). As an 
example, consider the first formula (12). It belongs to the first class, so the line in the label 
file reads EFE. In the latex string file, the corresponding line read

\frac{1}{c^2}\frac{\partial^2 \psi} {\partial   t^2 - \nabla^2\psi}

+ \left(\frac{m_0 c}{\hbar} \right)^2\psi = 0.
The content line, containing the set of parsed operators and identifiers, then reads
c, \partial, \psi, t, \nabla, m, \hbar.

We encode their semantics as
c: "speed of light" (Q2111),
\partial: "partial derivative" (Q186475),
\psi: "wave function" (Q2362761), t: "time" (Q11471),
\nabla: "del" (Q334508), m: "mass" (Q11423),
\hbar: "Planck constant" (Q122894)

a �t + b ∇2� + c � = 0 (class KGE) vs. a �tt + b ∇2� + c � = 0 (class SE)

−��∕�t2 + ∇2� − m2� = 0 (KGE) vs. i��∕�t + 1∕2m∇2� − V� = 0 (SE).
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where the ID in parenthesis is the unique QID from the item, we find in the semantic 
knowledge base Wikidata.

Summarizing, the data pipeline is the following: We parse the formula latexstrings 
(‘formula TeX’) to formula constituents (‘formula content’) and annotate them (‘for-
mula semantics’) to get Wikidata encodings (‘formula qids’). The yields a dictionary of 
formula constituent meanings with an average of 2 different annotations per constituent. 
As an example, the identifier ‘R’ appears as ‘distance (Q126017)’ or ‘Ricci curvature’ 
(Q1195879)’.

In our experiment, we employ the following formula vector encodings of both operators 
and identifiers:

–	 Formula content TF-IDF;
–	 Formula content Doc2Vec;
–	 Formula semantics TF-IDF; and
–	 Formula semantics Doc2Vec.

For the formula content encodings, the sets of the parsed operator and identifier latex 
strings from the content file are employed. For the formula semantics encodings, we use 
the sets of Wikidata QIDs. It is important to note that while the sequence of formula con-
stituents does not matter for the TF-IDF encoding, it is considered by the Doc2Vec encod-
ing. In our experiments, we focus on a relative evaluation, i.e., a comparison of different 
encodings, rather than optimizing the overall performance by tuning hyperparameters.

30 Examples We first examine the separation of the three Formula Concepts by investi-
gating the formula space in each of the four computed formula vector encodings. Figures 4 
and 5 show the resulting plots. We reduce the dimensions via Principal Component Analy-
sis (PCA) to two (x- and y-axes). Furthermore, we color-code the results of our formula 
clustering experiment (see next paragraph), such that each datapoint color corresponds to a 
different cluster computed by k-means ( k = 3 ) clustering. Apparently, in the formula con-
tent space with Doc2Vec encodings (second plot), the three Formula Concept classes are 
separated best with the largest distances between the three cluster centroids (see Table 6). 
Only two Formula Concept examples of class ME are incorrectly located in the cluster, 
which primarily consists of class KGE. We can identify these as being equation (35) and 
(36). We suspect the partial derivative to be causing the mix-up of these ME, since they 
predominantly occur in the KGE.

As another measure for the separability of our three example Formula Concepts, we cal-
culate the cluster purity as the number of datapoints of the class that makes up the largest 
fraction of a cluster divided by the cluster size, averaged over all clusters:

Table 7 holds the cluster purities of a k-means clusterer on different formula vector encod-
ings. Apparently, the formula content Doc2Vec encoding outperforms the others. This is 
illustrated by comparing Figs. 4 and 5. In the Doc2Vec encoding, the smallest number of 
Formula Concept labels (only two) are mixed up.

As the third measure for the separability of our three example Formula Concepts, 
we calculate the classification accuracy of a Support Vector Machine (SVM) classi-
fier on our four formula vector encodings. Summarizing, we test FCR approaches for 
Formula Concept separation using machine learning techniques such as neural formula 

purity = mean
clusters

[
1

cluster size
max(# datapoints in cluster per class)

]
.
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vector encodings (Doc2Vec), dimensionality reduction (PCA), clustering (k-means), 
and classification (SVM). Our three measures of separability are 1) mean cluster cen-
troid distance, 2) mean cluster purity, and 3) classification accuracy (cross-validated). 
While the formula semantic TF-IF encoding performs best (averaged over the two clas-
sifiers and cross-validation splittings), the formula content Doc2Vec encodings out-
perform the others in both cluster centroid distance and purity.

Fig. 4   Formula content space of three selected Formula Concepts (KGE, EFE, ME), using TF-IDF or 
Doc2Vec encodings, reduced by Principal Component Analysis (PCA) to two dimensions. The color code 
corresponds to the clusters computed by k-means ( k = 3 ) clustering. The three classes are best separated in 
the formula content Doc2Vec encoding (second plot) with cluster mean centroid distance of 0.81, purity of 
0.94, and classification accuracy of 0.90



5001Scientometrics (2023) 128:4971–5025	

1 3

We avoid data skewness by employing a balanced dataset of examples equally dis-
tributed over classes.

The Formula Concept clustering using a k-means algorithm can assign 29/30 ≃ 97% 
correctly, while the fuzzy string matching performs26 slightly worse with 28/30 ≃ 93%. 
Random sampling only reaches 8/30 ≃ 27%. So, the clustering outperforms the other 

Fig. 5   Formula semantic space of three selected Formula Concepts (KGE, EFE, ME), using TF-IDF or 
Doc2Vec encodings, reduced by Principal Component Analysis (PCA) to two dimensions. The color code 
corresponds to the clusters computed by k-means (k = 3) clustering

26  A formula is assigned to the Formula Concept class that achieves the highest sum of similarity values.
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methods. However, this only works if the cluster number k (number of Formula Con-
cept classes in the dataset) is known a priori.

100 Examples In the next step, we extend our study to the full dataset of 100 exam-
ples FCs from 10 classes.

Figure 6 and Table 8 show the performance evaluation of classification (cross-vali-
dated) and clustering (labeling-referenced) of the labeled selection of 100 FC examples 
from 10 FC classes. Classification accuracy (blue bars) and cluster purity (orange bars) 
is computed for each encoding (content or semantics in TF-IDF or Doc2Vec) in all 
1275 combinatoric class choices individually (with N ranging from 3 to 10, see the top 
plot for the binomial distribution). The displayed values (y-axis) are averaged over all 
respective combinations for a given number of class choices (x-axis). For each of the 
4×1275 runs, we perform N-fold cross-validation retrieving the classification accuracy.

For the TF-IDF encoding (upper plots), the results are the following: While the clas-
sification accuracy remains approximately stable with increasing N, the cluster purity 
decreases. This means that in the supervised retrieval case (FCR), clustering is most 
appropriate for a small number of classes. However, it can still be helpful in the unsu-
pervised case for discovering (FCD) and labeling unknown classes. For the Doc2Vec 
encoding (lower plots), the results are the following: The classification accuracy also 
decreases with increasing N, and the cluster purity more strongly. This means that it 
might be preferable to employ TF-IDF instead of Doc2Vec, which even has the addi-
tional advantage of being faster to compute.

We conclude that the classification is potentially more useful than the clustering for 
labeled FCR (if the formulas are already annotated). Yet, also for unlabeled formulas, the 
clustering might not be helpful because, as stated before, the cluster number of different 
concepts is not known a priori. However, in the upcoming Experiment 3, we showed that 
a formula similarity map could be used instead as a means for both FCD and FCR.

Table 6   Mean cluster centroid 
distance after employing PCA to 
reduce the number of datapoint 
dimensions to two (see the 2D 
plots in Figs. 4 and 5)

The formula content Doc2Vec encoding performs best (largest dis-
tance)

Encoding Mean 
centroid 
distance

Formula content TF-IDF 0.57
Formula content Doc2Vec 0.81
Formula semantics TF-IDF 0.73
Formula semantics Doc2Vec 0.11

Table 7   Mean cluster purity of 
a k-means clusterer on different 
formula vector encodings

The formula content Doc2Vec encoding performs best (highest 
purity)

Encoding Mean clus-
ter purity

Formula content TF-IDF 0.97
Formula content Doc2Vec 0.94
Formula semantics TF-IDF 0.97
Formula semantics Doc2Vec 0.50
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Experiment 3: formula concept similarity

In this experiment, we investigate the FC separability using FC similarity map matrices. 
We start with a preliminary analysis of the small set of 30 examples to be subsequently 
extended to all 100 examples.

Fig. 6   Classification accuracies (cross-validated) and cluster purities (labeling-referenced) for a selection of 
100 equations, semantically annotated (constituent QIDs) and sorted into 10 classes (formula QIDs). The 
binomial choice distribution for a selection of N formulas out of the pool is shown above. Four different 
encodings (Content TF-IDF, Semantics TF-IDF, Content Doc2Vec, and Semantics Doc2Vec) are compared 
below
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30 Examples Fig. 7 shows the matrix of Formula Concept latex fuzzy string similari-
ties for the small selection of 30 formulas discussed in Sect. “Task 2: analysis of formula 
concept examples”. We employ the fuzz.partial_ratio function of the Python package 
fuzzywuzzy.27 Each square corresponds to the similarity percentage of the example equa-
tion with the number displayed on the x-axis to the example equation with the number 
displayed on the y-axis. Since pairwise similarities are symmetric, the matrix is symmet-
ric, and we can concentrate the investigations only on the part above or below the diago-
nal. Apparently, the three Formula Concepts (KGE equation number 1-10, EFE number 
10-20, ME 20-30) form three large squares (or triangles) aligned on the diagonal (contain-
ing the individual 100% self-similarities). Particularly striking is the EFE square in the 
center of the matrix with its high values and density. This means that the Einstein Field 
Equations are the most similar, and the Formula Concept is highly coherent. The consid-
ered representations of the other two Formula Concepts are much more diverse and more 
difficult to match or identify. Figure 8 shows the matrix of the Formula Concept semantic 
similarities. The color code corresponds to the number of matching Wikidata QIDs of the 
corresponding Formula Concept examples (the x- and y-axes). The distribution is very 
similar to the fuzzy latex string content matching shown in Fig. 7 (except the EFE square 
is slightly more distinct). Thus, semantification has no significant advantage here. How-
ever, in cases where the identifier symbols vary more, we expect an improvement.

Table 8   Classification accuracies (cross-validated) and cluster purities (labeling-referenced) for a selection 
of 100 equations, semantically annotated (constituent QIDs) and sorted into 10 classes (formula QIDs)

The binomial choice distribution for selecting N formulas out of the pool is featured in the first two col-
umns. Four different encodings (Content TF-IDF, Semantics TF-IDF, Content Doc2Vec, and Semantics 
Doc2Vec) are compared

Classes Choices Metric Cont. TF Cont. D2V Sem. TF Sem. D2V

3 120 Accuracy 0.93 0.95 0.88 0.86
3 120 Purity 0.91 0.94 0.87 0.84
4 210 Accuracy 0.93 0.95 0.86 0.81
4 210 Purity 0.88 0.92 0.84 0.79
5 252 Accuracy 0.93 0.96 0.84 0.79
5 252 Purity 0.86 0.89 0.80 0.76
6 210 Accuracy 0.92 0.96 0.83 0.76
6 210 Purity 0.83 0.87 0.77 0.72
7 120 Accuracy 0.92 0.96 0.82 0.76
7 120 Purity 0.80 0.85 0.75 0.69
8 45 Accuracy 0.92 0.95 0.80 0.73
8 45 Purity 0.79 0.84 0.74 0.68
9 10 Accuracy 0.92 0.94 0.81 0.71
9 10 Purity 0.78 0.83 0.72 0.67
10 1 Accuracy 0.91 0.94 0.79 0.73
10 1 Purity 0.77 0.83 0.67 0.60
Mean / Accuracy 0.92 0.95 0.83 0.77
Mean / Purity 0.83 0.87 0.77 0.72

27  https://​github.​com/​seatg​eek/​fuzzy​wuzzy.

https://github.com/seatgeek/fuzzywuzzy
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100 Examples Fig. 9 shows a comparison of the formula similarities of random unlabeled 
to all of our 100 selected labeled example formulas. While the random formulas are extracted 
from the arXiv NTCIR dataset, the labeled selection is taken from Wikipedia articles.

In Doc2Vec and Fuzzy encodings, the random unlabeled similarity map appears to be 
very similar to that of the labeled selection. This indicates that in both random sampling 
and labeled sampling, most of the formulas are not very similar to each other (blue back-
ground). However, for the labeled selection, there is an apparent self-coherence of the indi-
vidual labeled FC classes (brighter red squares on the diagonal line).

We conclude that since the similarity map of labeled FCs is not weaker (less similar-
ity) than that for random formulas, we can justify the classification and clustering as an 
appropriate tool or suitable means to recognize FCs. The lack of similarity or distinctness 
of the labeled classes does reflect the real-world situation for formulas in corpora, which is 
fortunate since it makes search and machine learning methods effective.

We can show that in the random sampling, the formula distinctness (low similarity) is 
equally low as for the labeled selection. This means that our machine learning experiments 

Fig. 7   Matrix of the Formula 
Concept latex fuzzy string 
similarity percentages. On the x- 
and y-axes, the equation number 
is displayed such that each little 
square corresponds to one simi-
larity value between one equation 
and another

Fig. 8   Matrix of the matching 
numbers of formula semantic 
QIDs. On the x- and y-axes, the 
equation number is displayed 
such that each square corre-
sponds to one similarity value 
between one equation and 
another
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presented in Sect. “Related work” are reasonable since they represent an information 
retrieval scenario that could occur.

Figure  10 shows the formula similarities in different encodings (TF-IDF, Doc2Vec, 
Fuzzy) for all 100 examples, comparing the content space (formula constituent symbols 

Fig. 9   Comparing unlabeled random equations (left) from the arXiv NTCIR dataset (astro-ph domain) to 
selected labeled equations (right) annotated by a human domain expert in different encodings (TF-IDF 
above, Doc2Vec middle, Fuzzy below, Content left, and Semantic right). Axes show random numbers or 
selected equation class labels. Very high TF-IDF, Doc2Vec cosine, or fuzzy string similarity between equa-
tions are marked in red. Figure best viewed in color
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encoded) to the semantic space (formula constituent QIDs encoded). Similarities are sorted 
within classes. The self-coherence of the labeled formula classes (labels on axes) is evident 
in all encodings. However, in the semantic space (Doc2Vec) encoding, additional inter-
class / cross-class coherences are visible (some squares span several classes, e.g., ‘BE’ and 
‘HE’ in the middle). This indicates latent semantic coherences that are less visible in the 
unsemantified content encoding.

Fig. 10   Comparing labeled equation similarities for different encodings (TF-IDF above, Doc2Vec mid-
dle, Fuzzy below, Content left, and Semantic right). Axes show equation class labels. Very high TF-IDF, 
Doc2Vec cosine or fuzzy string similarity between equations are marked in red. Similarities are sorted 
within classes. Figure best viewed in color
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Figure  11 shows the formula similarities in different encodings and spaces averaged 
over classes (mean pooling). This view helps to better highlight the intra-class and inter-
class coherences. On the top-left, the high intra-class coherence of the ‘EFE’ formulas is 
illustrated by the prominent darker (more red intense) square. Moreover, the cross-class 
coherence mentioned in the description of Fig. 10 is apparent again in the semantic space 

Fig. 11   Comparing labeled averaged class similarities for different encodings (TF-IDF above, Doc2Vec 
middle, Fuzzy below, Content left, and Semantic right). Axes show equation class labels. Very high TF-
IDF, Doc2Vec cosine or fuzzy string similarity between equations are marked in red. Figure best viewed in 
color
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(Doc2Vec) encoding shown in the center of the middle right plot. Besides, other class simi-
larities, such as that of the Klein–Gordon equations (‘KGE’) and Schrödinger equations 
(‘SE’), can be identified as brighter squares. Notice that the semantic (Fuzzy) space map 
(Fig.  10 bottom right) shows that the inter-class similarity between KGE and SE in the 
semantic space is comparably high as the intra-class similarity of the ME class. This is rea-
sonable, since they are indeed semantically very close. In the quantum physics framework, 
one equation can be derived from the other and vice versa. On the other hand, the intra-
class similarity of the ME instances is high, since they are mutually semantically related. 
The FC class similarity maps are also helpful for FCD, discovering FCs as coherent simi-
larity areas to be subsequently analyzed and labeled.

Figure 12 illustrates the overall dissimilarity of the equations in a sorted similarity map. 
The blue space (low similarity) significantly outweighs the red area (high similarity) at the 
bottom. The low mean equation similarity of 0.2 motivates FCR methods to exploit the 
separability.

Conclusion (FCR)

In three different experiments, we investigate the feasibility and effectiveness of methods to 
retrieve, separate, and recognize Formula Concepts (FCR). For all experiments, we employ 
a manually labeled dataset of 100 Formula Concept examples from 10 classes retrieved 
from Wikipedia articles.

In Experiment 1 (Formula Concept search), we compare 8 different formula search 
methods on open corpora (Wikidata, Wikipedia, arXiv) and the web. We test how well 
Formula Concepts can be retrieved by search queries using either the formula latex string 
or the formula constituents, respectively. The results show that using different retrieval 
methods and sources, it is possible to recognize Formula Concepts using search with a 
Mean Rank down to 1.78, Mean Reciprocal Rank up to 0.78, and Recall up to 0.74. Our 
FCR methods outperform the state-of-the-art search engines Approach Zero and Google.

Experiment 2 (Formula Concept classification and clustering), we assess Formula Con-
cept separability by machine learning classification and clustering in selected formula 
encodings. The results show while the cluster purity decreases with more FC classes, 

Fig. 12   Sorted similarity maps (Content TF-IDF encoding) for equations (left) and classes (right). The 
mean equation similarity is 0.2
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classification accuracy remains approximately stable around 0.9 when using TF-IDF for-
mula encodings. This means that with stable accuracies, FC classification might be a more 
powerful means for FCR than FC clustering.

Experiment 3 (Formula Concept similarity), we visualize formula (encoding) sep-
arability in similarity map matrices to illustrate coherence and overlap of Formula 
Concepts. The results show that similarity maps are a valuable method for identifying 
both intra-class coherence and inter-class separability or overlap, which is useful for 
both FCD and FCR. Furthermore, the results motivate the employed machine learning 
methods since a comparison of our manual formula selection to randomly chosen for-
mulas shows that in both cases, Formula Concepts are rather dissimilar and thus their 
classes separable from each other.

We conclude that the search for specific formulas within a large dataset of STEM docu-
ments is a challenging problem. Furthermore, we note that for FCR, there is an urgent need 
to augment semantic formula databases, for example, mathmlben28 and Wikidata, such that 
they allow for multiple representations of a formula to be stored as a Formula Concept. 
Having formulas tagged by Wikidata QIDs enables using them as markers in documents 
that can be cited (math citations). Additionally, they can be employed to improve content-
based recommender systems for academic literature, plagiarism detection systems, and 
ontology learning.

Note that our study’s aim is not a large-scale evaluation but rather a deductive concep-
tual work. The data, plots, and results we presented serve to illustrate the methodologi-
cal concepts. We demonstrate the fundamental feasibility using examples and outline the 
potential for machine learning on labeled formula data. For a large-scale analysis using 
unlabeled formula data, we refer to the literature (Scharpf et  al., 2020b; Greiner-Petter 
et al., 2020).

Future work

This section outlines future endeavors and challenges, which we plan to address to fur-
ther improve, evaluate, and apply FCD and FCR methods to additional use cases. These 
include exploring the practicability of a ‘Formula Rank’, investigating a formula semantics 
sufficiency hypothesis, and developing methods for efficient semantic formula and triple 
annotation.

FormulaRank and Semantic Indexing. In analogy to Google’s ‘PageRank’ (Brin & Page, 
1998), and ‘TextRank’

Mihalcea and Tarau (2004), we propose to employ a ‘FormulaRank’ for Formula Con-
cept popularity retrieval. FormulaRank is supposed to rank formulas by the number of 
neighbors (kNN) or constituent intersections to estimate their importance. For this experi-
ment, we first need to elaborate on interpretation standards and evaluation metrics for the 
results. Secondly, we will develop and evaluate semantic indexing of the arXiv datasets 
containing formulas, their latex string, constituents retrieved from mathml tags, surround-
ing text, and more.

Functional vs. Semantic Recognition. Furthermore, we will investigate the following 
research question: “Does the recognition of Formula Concepts require taking the functional 

28  https://​mathm​lben.​wmfla​bs.​org.

https://mathmlben.wmflabs.org
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relations of the formulas into account, or is it sufficient to only consider the semantics of 
the formula constituents?”. As an example, the Klein–Gordon equation

can be encoded as the semantic fingerprint of its constituents:
c: "speed of light" (Q2111),
\partial: "partial derivative" (Q186475),
\psi: "wave function" (Q2362761), t: "time" (Q11471),
\nabla: "del" (Q334508), m: "mass" (Q11423),
\hbar: "Planck constant" (Q122894)

Alternatively, one could additionally take into account that the partial derivatives �∕�t and 
�∕�x act on the wave function � and are applied with respect to both time t and space x. 
Considering this circumstance would mean taking the functional relations of the formulas 
into account instead of merely considering the set of the semantics (fingerprint) of the for-
mula constituents.

Semantic annotations.  To enable FCD by FCR, we are building a latex formula 
annotation recommender system (Scharpf et  al., 2019a), which helps and motivates 
authors from the STEM disciplines to make their papers semantically machine-inter-
pretable by annotating formula and identifier names with Wikidata items (name and 
QID). We need labeled formula data for the semantic encodings and formula classi-
fication introduced in Section  4.2. Our long-term goal for this system is to directly 
integrate the annotation recommendation into both Wikipedia and Overleaf’s editing 
or composing views. This would allow the Wikipedia and research communities to 
be more easily included in the semantification process of mathematical articles and 
research papers. Employing extended AI-aided formula annotation enables scaling our 
approaches in further research projects on our infrastructure at Wikimedia, zbMATH, 
and the University of Göttingen.

RDF triple extraction. In the future, the semantic annotator will provide recommenda-
tions of RDF triples, both for natural language and mathematical statements. A natural lan-
guage statement can be, for example, the triple {theory of relativity (Q43514), instance of 
(P31), scientific theory (Q3239681)}. For the mathematical statements, the Formula Con-
cepts are represented as the triple {Formula Concept item name, defining formula, formula 
latex string}.

Appendix: Formula Concept Examples

Einstein Field Equations in Wikipedia (10 Results).29 

1

c2

�2�

�t2
− ∇2� +

(m0c

ℏ

)2

� = 0,

29  Extracted from: https://​en.​wikip​edia.​org/​wiki/​Einst​ein_​field_​equat​ions.

https://en.wikipedia.org/wiki/Einstein_field_equations
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Einstein Field Equations in arXiv NTCIR (77 Results).30 
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30  Dataset available at: http://​resea​rch.​nii.​ac.​jp/​ntcir/​ntcir-​11/​data.​html.

http://research.nii.ac.jp/ntcir/ntcir-11/data.html
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Rg𝜇𝜈 = −𝛬g𝜇𝜈 + 8𝜋GT𝜇𝜈 ,

G𝜇𝜈 + 𝛬Rg𝜇𝜈 = 8𝜋G⟨T̃𝜇𝜈⟩,

G�� + ��� + �g�� = �T��(repeated 3 times),

R(��) −
1

2
Rg�� + �g�� = �T�� ,

R�� −
1

2
g��R = 8�GT�� + �g�� ,

R�� −
1

2
Rg�� = �r(T)T�� + �(T)g�� ,

R�� −
1

2
Rg�� = �

(
Tm
��

+ T�
��

)
,

R�� −
1

2
Rg�� = �T�� + �(T)g�� ,

R�� −
1

2
Rg�� = �rT�� + �(T)g�� ,

K�� − Kg�� = −
�2

2
T�� + rcG�� ,

R�� −
1

2
g��R + �cg�� = �T�� ,

R�� −
1

2
g��R + �g�� = 8�GT�� ,

R�� − �g�� = 8�G
(
T�� −

1

2
g��T

)
,

R�� −
1

2
g��R + �g�� = 8�GNT�� ,

R�� −
1

2
g��R =

8�G

c4
T�� ,
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G�� = R�� −
1

2
g��R = 8�GT�� − �g�� ,

R�� −
1

2
Rg�� = �T�� − �g�� ,

R�� −
1

2
g��R − �g�� =

(
8�GN

)
T�� ,

R�� −
1

2
g��R + �g�� = −�T�� ,

G�� = �2
4
T�� − �g�� + Q�� ,

R�� −
1

2
g��R =

8�G

c4
T�� ,

R�� −
1

2
g��R + �g�� = −8�GT�� fRG�� ,

R�� −
1

2
Rg�� = 8�GT�� − �g��T

RG
��

,

R�� −
1

2
g��R + �g�� = 8�GT�� ,

E�� = −G�� + �T�� − �g�� ,

G�� = R�� − g��R∕2 = �T�� − �g�� ,

R�� −
1

2
g��R =

8�G

c4
T�� ,

R�� −
1

2
g��R = 8�G5T�� − �5g�� ,

R�� −
1

2
Rg�� + �eff g�� = 8�GT�� ,
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 Differential Equation Concept Class Examples (100 from 10 classes).

R�� −
1

2
Rg�� + �g�� = 8�GT�� ,

R�� −
1

2
g��R =

8�G

c4
T�� ,

R�� −
1

2
g��R − g�� � = 8�GT�� ,

G�� + �g�� =
�

e2
T�� ,

R�� −
1

2
g��R = 8�GT�� + �,

G�� ≡ R�� −
1

2
Rg�� = �2T�� ,

G�� = R�� −
1

2
Rg�� = �T�� ,

G�� = −�(x)g�� + �T
��

M
,

R�� −
g��

2
R =

8�G

c4
T��

1

2
TrH2

�
,

R�� −
1

2
g��R + �g�� = �T�� ,

R�� −
1

2
g��R + g��� = �T�� ,

G�� − g��� =
8�G

c4
T�� ,

G�� = R�� −
1

2
g��R = �2T�� ,

R�� −
1

2
g��R =

8�G

c4
T ��� ,

R�� −
1

2
g��R = �g�� − 8�GT�� .
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Klein–Gordon Equation (KGE):

Einstein Field Equations (EFE):

1

c2

�2�

�t2
− ∇2� +

(m0c

ℏ

)2

� = 0,

utt + Au + f (u) = 0,

�2
ct
hn(z, t) − �2

z
hn(z, t) + �2

n
hn(z, t) = 0,

∇a∇a� = �2� ,

− ℏ2 �
2�

�t2
+ c2ℏ2∇2� = m2

0
c4� ,

∇2� −
1

c2

�2�

�t2
−

2� + �

c2

��

�t
−

�2 + a�

c2
� = 0,

utt − �u + m2u + G�(u) = 0,
(
���

�

x�
�

x�
−
(
mc

ℏ

)2
)
� = 0,

(
−
1

c2
�2

�t2

p∑

i=1

�

xi
�

xi
−
(
mc

ℏ

)2

)
� = 0,

utt − �u + mu + P�(u) = 0.

G�� + �g�� = �T�� ,

R�� −
1

2
g��R − �g�� = (8�GN)T�� ,

G�� = −�g�� + �2T tot
��
,

G�� = R�� − g��R∕2 = �T�� − �g�� ,

R�� −
1

2
Rg�� = �r(T)T�� + �(T)g�� ,

K�� − Kg�� = −
�2

2
T�� + rcG�� ,

R�� −
1

2
g��R + �g�� = −8�GT�� fRG�� ,

R�� −
1

2
g��R + �cg�� = 8�GT�� ,

R�� −
1

2
Rg�� + �eff g�� = 8�GT�� ,

R�� −
1

2
g��R = 8�G5T�� − �5g�� .
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Maxwell’s Equations (ME):

Schrödinger Equation (SE):

divE⃗ = 4𝜋𝜌,

∯ 𝜕Ω

E ⋅ dS =
1

𝜀0 ∭Ω

𝜌dV ,

divB⃗ = 0, ,

∯ 𝜕Ω

B ⋅ dS = 0,

rotE⃗ = −
1

c

𝜕B⃗

𝜕t
,

∮𝜕𝛴

E ⋅ dl = −
d

dt ∬𝛴

B ⋅ dS,

rotB⃗ =
4𝜋

c
j⃗ +

1

c

𝜕E⃗

𝜕t
,

∮𝜕𝛴

B ⋅ dl = 𝜇0

(

∬𝛴

j ⋅ dS + 𝜀0
d

dt ∬𝛴

E ⋅ dS

)
,

𝜕𝛼F
𝛼𝛽 =

4𝜋

c
j𝛽 ,

𝜀𝛼𝛽𝛾𝛿𝜕𝛽F𝛾𝛿 = 0.

i�
𝜕

𝜕t
�𝜓(t)⟩ = Ĥ�𝜓(t)⟩,

i�
𝜕

𝜕t
𝛹 (x, t) =

�
−
�2

2m

𝜕2

𝜕x2
+ V(x, t)

�
𝛹 (x, t),

i�
d

dt
�𝛹 (t)⟩ = Ĥ�𝛹 (t)⟩,

Ĥ�𝛹⟩ = E�𝛹⟩,

i�
d

dt
�𝛹 (t)⟩ =

�
1

2m
p̂2 + V̂

�
�𝛹 (t)⟩,

i�
𝜕

𝜕t
𝛹 (r, t) = −

�2

2m
∇2𝛹 (r, t) + V(r)𝛹 (r, t),

−
�2

2m

d2𝜓

dx2
= E𝜓 ,

E𝜓 = −
�2

2m

d2

dx2
𝜓 +

1

2
m𝜔2x2𝜓 ,

E𝜓 = −
�2

2𝜇
∇2𝜓 −

q2

4𝜋𝜀0r
𝜓 ,

i�
𝜕

𝜕t
𝛹 (r, t) = Ĥ𝛹 (r, t).
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Helmholtz Equation (HE):

Biharmonic Equation (BE):

(∇2 − k2)A = −f ,

∇2f = −k2f ,

d2T

dt2
+ �2T =

(
d2

dt2
+ �2

)
T = 0,

∇2A = −k2A,

∇2
⟂
A + 2ik

�A

�z
= 0,

∇2A(x) + k2A(x) = −f (x),

∇2u + k2u = 0,

�2u

�x2
+

�2u

�y2
+

�2u

�z2
+ k2u(x, y, z) = 0,

∇2u + k2u(�,� , z) = 0,

1

�

�

��

(
�
�u

��

)
+

1

�2
�2u

��2
+

�2u

�z2
+ k2u = 0.

∇4� = 0,

∇2∇2� = 0,

�2� = 0,

n∑

i=1

n∑

j=1

�i�i�j�j� = 0,

(
n∑

i=1

�i�i

)(
n∑

j=1

�j�j

)
� = 0,

�4�

�x4
+

�4�

�y4
+

�4�

�z4
+ 2

�4�

�x2�y2
+ 2

�4�

�y2�z2
+ 2

�4�

�x2�z2
= 0,

1

r

�

�r

(
r
�

�r

(
1

r

�

�r

(
r
��

�r

)))
+

2

r2

�4�

��2�r2
+

1

r4

�4�

��4
−

2

r3

�3�

��2�r
+

4

r4

�2�

��2
= 0,

��u(x, y) = 0,

��u(x, y) = f (x, y),

�rrrr +
2

r
�rrr −

1

r2
�rr +

1

r3
�r = 0.
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Newton’s Second Law (NSL):

Heisenberg Uncertainty Principle (HUP):

F⃗ =
dp⃗

dt
,

F⃗ = ma⃗,

F⃗ = m
d2

dt2
s⃗,

F =
d

dt
(mv),

F⃗𝛥p = 𝛥p,

F⃗ =
m𝛥v⃗

𝛥t
,

F⃗ = m
𝛥v⃗

𝛥t
,

F⃗ =
p⃗

t
,

F =∝ ma,

F = kma.

𝜎x𝜎p ≥ �

2
,

𝜎E
𝜎B

���
d⟨B̂⟩
dt

���
≥ �

2
,

𝜎2
Jx
+ 𝜎2

Jy
+ 𝜎2

Jz
≥ j,

𝛥x𝛥p ≥ �

2
,

𝜎2
x
𝜎2
p
≥ �

1

2i
⟨[ ̂⃗x, ̂⃗p]⟩

�2

,

𝜎2
x
𝜎2
p
≥ �

2

2

,

𝜎2
x
𝜎2
p
≥ −

1

4
(⟨[Â, B̂]⟩)2,

𝜎x𝜎p ≥ 1

2

����
−i�� 𝛹 ∗ 𝛹dx

����
,

𝜎x𝜎p ≥ 1

2
�−i��,

𝜎x𝜎p ≥ 1

2

����� 𝛹 ∗ [x̂, p̂]𝛹dx
����
.
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Second Law of Thermodynamics (SLT):

Coulomb’s Law (CL):

�
𝛿Q

T
= 0,

𝛥S ≥ �
𝛿Q

Tsurr
,

dStot = dS + dSR ≥ 0,

dStot ≥ 0,

dE + 𝛿wu ≤ 0,

�
𝛿Q

T
= −N,

dS

dt
≥ 0,

dS

dt
= Ṡi,

dS

dt
=

Q̇

T
+ Ṡ + Ṡi,

dS =
𝛿Q

T
.

|F1| = |F2| =
|q1 × q2|

r2
,

|F| = ke
|q1||q2|

r2
,

|F| = ke
|q1q2|
r2

,

F1 =
q1q2

4𝜋𝜀0

r1 − r2

|r1 − r2|3
,

F1 =
q1q2

4𝜋𝜀0

𝐫̂12

|r12|2
,

F(r) =
q

4𝜋𝜀0

N∑

i=1

qi
r − ri

|r − ri|3
,

F(r) =
q

4𝜋𝜀0

N∑

i=1

qi
R̂i

|Ri|2
,

F(r) =
q

4𝜋𝜀0 ∫ dq�
r − 𝐫�

|r − 𝐫�|3
,

E(r) =
1

4𝜋𝜀0

N∑

i=1

qi
r − ri

|r − ri|3
,

E(r) =
Q

4𝜋𝜀0

r̂

r2
.
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