
www.ietdl.org

IE

d

Published in IET Microwaves, Antennas & Propagation
Received on 11th March 2014
Revised on 10th June 2014
Accepted on 3rd July 2014
doi: 10.1049/iet-map.2014.0163
T Microw. Antennas Propag., pp. 1–6
oi: 10.1049/iet-map.2014.0163
ISSN 1751-8725
Measurement and analysis of the lowest resonant
mode of a spherical annular-sector patch antenna
Steven Weiss1, Howard Cohl2, Amang Boliong3

1AMSRL-SER-M, The Army Research Laboratory, Adelphi, MD 20783, USA
2Applied and Computational Mathematics, National Institute of Standards and Technology, Gaithersburg,

MD 20899-8910, USA
3Department of Electrical Engineering, The Morgan State University, Baltimore, MD 21251, USA

E-mail: steven.j.weiss14.civ@mail.mil

Abstract: The cavity model for patch antennas has been used extensively since 1970s. This model gives excellent first-order
estimates for the antenna’s internal fields near any resonant frequency. Although frequently used for planar geometries, there
is no reason why the model cannot be employed for other geometries. This study discusses some of the complexities in
selecting the correct pair of linearly independent associated Legendre functions when attempting to employ the cavity model
using a spherical annular-sector patch antenna.
1 Introduction

It is well known and established that the resonant frequencies
for patch antennas can be analytically determined through the
use of the cavity model [1]. This model estimates the shape
of the patch antenna’s internal fields by solving a boundary
value problem that presumes magnetic walls about the
perimeter of the patch and electric walls on the top (the patch
antenna) and bottom (the ground plane). The analytical
procedures are well known and extricate the resonant modes [1].
Although the cavity model is commonly employed in

Cartesian, cylindrical and (less frequently) elliptic cylinder
coordinates, there is no inherent limitation for geometries
that have ground planes with non-vanishing curvature [2–
4]. The motivation for this paper pertains to reconciling the
‘measured’ (lowest) resonant frequency of a spherical
annular-sector antenna with analytical predictions for the
lowest resonance. Accordingly, this paper reviews the
separation of variables procedure for finding the resonant
modes of an annular-sector patch antenna (sometimes called
a spherical-rectangular microstrip antenna [5–7]) on a
curved (spherical) ground plane paying particular attention
to the choice of associated Legendre functions.
Patch antennas over a spherical conducting surface are not

as frequently used as a patch antenna over a planar surface;
however, there are applications for which this type of
antenna is needed. For example, the helmet of a soldier can
be considered nearly spherical and the analysis of this paper
would then apply. Of course, proper layering with a
spherical patch antenna over conducting support would
need to be integrated into the helmet. Besides military
applications, many emergency service personnel and
recreational sporting activities require the use of protective
helmets for which this analysis would also be pertinent.
Estimates for resonant modes (and the corresponding
resonant frequencies) of the annular sector can be
approximated presuming a rectangular patch on a planar
surface. However, when placed on a spherical surface, the
sides of the patch are then described in terms of arc lengths
that do not directly correspond to the lengths of the
rectangular sides introducing error in the calculation of the
resonant frequencies.
It is through the use of analytical techniques that one gains

valuable understanding into the shape of the antenna’s internal
fields; a perspective that is of value in its own right. The
insight from this analytic perspective is not necessarily gained
from computer simulations arriving at similar results (e.g. the
same resonant frequency); although computer simulations
have shown good correspondence with measurement [7–10].
Additionally, analytical techniques provide good first-order
estimates of the angular spans in azimuth and elevation for
achieving a desired resonant frequency-saving computer
simulation time. This paper addresses some of the analytical
complexities encountered in determining the lowest resonant
mode of the spherical annular-sector patch antenna comparing
the results to measured data.
A spherical annular-sector patch antenna shown in Fig. 1

was constructed [10–12], and is studied in this paper. For
the parameters shown in Fig. 1, the angular span in azimuth
is: f1 = 0° and f2 = 130.4°, whereas the span for the
elevation angle is: θ1 = 36.2° and θ2 = 60.9°. The inner (the
surface of the ground plane) and outer (the patch antenna)
radii are: a = 15.329 cm and b = 15.393 cm.
The antenna depicted in Fig. 1 was fabricated and fed with

a probe, Fig. 2. The lowest measured resonant frequency was
found to be 442.0 MHz, Fig. 3. The dielectric between the
patch and ground plane was polyethylene terephthalate
glycol (PETG with εr = 2.3).
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Fig. 2 Prototype spherical annular-sector antenna with the probe
located at θp = 42° and fp = 70°

Fig. 3 Measured reflection coefficient at the probe location for the
annular-sector antenna against frequency

Fig. 1 Spherical annular-sector patch antenna
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2 Formulation of the problem

As indicated, the cavity model yields solutions for the electric
and magnetic fields underneath the patch in spherical
coordinates. These fields can be found presuming a
transverse magnetic (TM, derivable from the radial
component of the magnetic vector potential, Ar) and a
transverse electric (TE, derivable from the radial component
of the electric vector potential, Fr) decomposition [13, 14].
2
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This being stated, the lowest resonant frequencies are
identified through the TM analysis for which this paper will
focus entirely. The TM electric and magnetic fields are
found by differentiating the vector potential Ar [13, p. 550,
(10–27)–(10–28)]

Eu =
1

jv1m

1

r

∂2Ar

∂r∂u
, Hu =

1

m

1

r sin u

∂Ar

∂f

Ef = 1

jv1m

1

r sin u

∂2Ar

∂r∂f
, Hf = − 1

m
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r

∂Ar

∂u
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1
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[ ]
, Hr = 0

(1)

The radial component Ar/r satisfies the scalar Helmholtz
equation with the homogenous solution found using
separation of variables. Accordingly, the general separable
solution of interest can be given by

Ar =
∑
v[v′

∑
a[a′

Aav C1 cos (af)+ C2 sin (af)
( )

× C3P
a
v ( cos u)+ C4Q

a
v ( cos u)

( )
× C5 ĵv(kr)+ C6ŷv(kr)

( )
(2)

where v′ and α′ are countable infinite sets depending on the
geometry of the problem. In (2), Pa

v ( cos u) and Qa
v ( cos u)

are commonly used associated Legendre functions (Ferrers
functions [15, 14.2(ii)]) of the first and second kind,
respectively, of degree ν and order α. The variable α is the
separation constant associated with the azimuthal angle f.
Note the use of Schelkunoff’s spherical Bessel functions
ĵv(kr) and ŷv(kr) in (2) [13, p. 551, (10–31)].
The solution of the TM problem reduces to determination

of the various constants in (2). This paper provides a study
of implications when the selection of the associated
Legendre function pair Pa

v (x) and Qa
v (x) is used and

describes the need for alternate pairs when trying to
reconcile the lowest measured resonant frequency with
analytical predictions.

3 Analytical calculation of the lowest
resonant frequency using the cavity model

In accordance with the magnetic walls of the cavity model,
the magnetic fields in the Hθ must vanish at f1 and f2

since this magnetic field component is tangent to these
walls. Hθ is found by differentiating (2) with respect to f in
accordance with (1). Enforcing the boundary condition that
Hθ must vanish at f1 = 0° is met by the adjustment of the
constants such that C1 = 1 and C2 = 0. Enforcing the
boundary condition that Hθ must vanish at f2 = 130.4° is
met by setting the separation constant α equal to discrete
values (eigenvalues). That is, α =mπ/f2≅ 1.38037 m, where
m = 1, 2, ….
The magnetic field component Hf is tangent to the

magnetic walls at θ1 and θ2, and must vanish in accordance
with the cavity model. Again, we differentiate (2) in
accordance with (1) (i.e. with respect to θ) to find Hf. The
boundary condition that Hf vanishes at θ2 can be
accomplished with the adjustment of constants, that is

C3 =
d

d u
Qa

v ( cos u)

[ ]
u=u2

and C4 =
d

d u
Pa
v ( cos u)

[ ]
u=u2
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The requirement that Hf vanishes at θ1 can only be enforced
by the proper selection of the degree ν. To this end, we may
plot (using Mathematica) the function

f (u1,u2)a (v) = d

d u
Pa
v ( cos u)

[ ]
u=u1

− d

d u
Qa

v ( cos u)

[ ]
u=u2

− d

d u
Qa

v ( cos u)

[ ]
u=u1

d

d u
Pa
v ( cos u)

[ ]
u=u2

(3)

for the purpose of determining approximate values of ν for
which the function f (u1, u2)a (v) vanishes (yielding a set of
eigenvalues for each fixed value of α). A null searching
routine (using Mathematica) then gives further precision for
the zeros associated with each discrete value of degree ν.
To our knowledge, analytical solutions giving values of ν
that will cause (3) to vanish are not available.
In Fig. 4, we plot f (u1, u2)a (v) for α = 1.38037 and note that

there are zero crossings at: ν≅ 0.38037, 1.43059, 7.13031, ….
Plots of (3) for orders of zero and integer multiples of
1.38037 using 2, 3, 4… result in higher zero crossings than
1.43059 and have been omitted in the interest of graphical
clarity. An analysis of the associated Legendre function pair
(Section 5) will show why the first zero crossing must be
ignored and why the selection of the associated Legendre
function pair in (2) is responsible for this spurious result.
Observing (2), it is noted that both Eθ and Ef require

derivatives with respect to r. Additionally, Eθ and Ef are
both tangent to the ground plane (located at r = a) and at
the patch (located at r = b). The boundary conditions that
the tangent electric fields vanish on the ground plane
(located at r = a) and the patch (located at r = b) are
determined by zero crossings of

h(a,b)v (x) = d

dx
ĵv(x)

[ ]
d

dx
ŷv

b

a
x

( )[ ]

− d

dx
ĵv(x)

[ ]
d

dx
ŷv

b

a
x

( )[ ]
(4)

Note we have changed the variable r to x and let k a = x in (4),
for plotting purposes.
Our analytical study will now use the ‘second lowest

degree’ (designated ν0 = 1.43059) in Fig. 4 substituted
into (4) for the purpose of determining vanishing solution
(i.e. eigenvalues for x). An analysis of h(a,b)v0

(x) (that is, a
plot and null search for further precision) determines that
Fig. 4 Plot of f (u1, u2)a ( v) displays zero crossings for fixed order of
α0 = 1.38037
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the first zero crossing is at x = 1.8604. We indicate by
X ′
a0,v0

, the first zero crossing of x associated with h(a,b)v0
(x)

for the fixed values of α0 and v0 seen in Fig. 4. The
lowest resonant frequency corresponding to the first zero
crossing is

fa0,v0 =
c

2pa
			
1r

√ X ′
a0,v0

(5)

where c is the speed of light in free space and εr is the
relative dielectric constant of the material between the
patch and the ground plane.
Owing to an air pocket between the PETG and the patch, this

dielectric constant was volume averaged resulting in an
effective value of εr = 1.8. A detailed discussion of the air
gap and the volume average may be found in [12].
Accordingly, the analytically predicted resonant frequency,
using (5) was found to be 432 MHz in close agreement with
the measured result presented in [10–12] and shown in Fig. 3.
This is the resonance along the azimuthal span of the antenna.
As a quick reality check, one can compare this resonance to

the lowest resonance of a planar rectangular patch antenna
[13, p. 830, (14–31)]. The longest sides of the rectangular
patch antenna would be bound between the longest arc
lengths of the spherical annular-sector patch approximately
given by f1asin θ1 and f1asin θ2 or 20.56 and 30.43 cm,
respectively. Calculation of the lowest resonant frequencies
for a rectangular patch (with εr = 1.8) using these
lengths predict the lowest resonant frequency in the range
of 367 MHz < f < 543 MHz. The measured resonance of
442 MHz for the spherical annular-sector antenna is within
these bounds. With the elevation angle fixed at the centre of
the patch, the arc length becomes f1asin((θ1 + θ2)/2)
corresponding to an angular span of 26.10 cm. Using this
angular span as the length of a rectangular patch, the
calculated resonant frequency is found to be 428 MHz –
reasonably close to the measured value.
We note that at resonance, the fields underneath the patch

are dominated by the modal term and not by the probe
location; although the probe location is important for a
good impedance match [1]. Our measured resonances
closely match our numerically determined resonances from
our analytic procedure. We note that the analytically
determined resonance associated with the lowest zero of (4),
as determined using νx = 0.38037 of Fig. 4 (i.e. 168 MHz),
‘was not experimentally observed’ and falls well outside the
lower bound of 367 MHz using the planar patch analogy.

4 One source of spurious source-free
resonance solutions

The failure to observe a measured resonant frequency
corresponding to the degree of νx = 0.38037 (when the order
is fixed to be α0 = 1.38037) prompted a detailed study of
the rationale for choosing the associated Legendre function
pair seen in (2) [16]. For example, if the associated
Legendre functions are linearly dependent, then,
Pao
vo
(cos u) = cQao

vo
(cos u) where c is a constant and (3) is

trivially equal to zero. For such a case, the entire
justification for the selection of the associated Legendre
function pair needs re-examination and an alternate pair of
associated Legendre functions would be required. This turns
out to be the problem. Accordingly, we now outline a
systematic procedure that may be employed once an
antenna geometry is defined (e.g. a spherical cap, sector,
3
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Fig. 5 Plot of g(u1, u2)a ( v) to determine zero crossings
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annulus or annular-sector); although the spherical
annular-sector remains as the case study of this paper. Key
to the selection procedure of the associated Legendre
function pair is the analysis of linear dependency given the
possible values of degree and order that unfold for the
prescribed geometry of the antenna.
We now show that it was the selection of the linearly

independent associated Legendre functions Pa
v (x) and Qa

v (x)
that resulted in the spurious solution indicated in Fig. 4
establishing that this solution resulted from the functions
being linearly dependent. It is well known that linear
dependence is indicated by a vanishing Wronskian [17]. To
this end, important insight is gained by examination of the
Wronskian for the associated Legendre function pair as
expressed in terms of the gamma function Γ(x). One has
[15, (14.2.4)]

W Pa
v (x), Q

a
v (x)

( ) = G(v+ a+ 1)

G(v− a+ 1)(1− x2)
(6)

where G(x) = 
1
0 tx−1 e−t dt for Re(x) > 0. When Re(x)≤ 0,

Γ(x) is defined by analytic continuation.
The Wronskian (6) will vanish if ν− α equals any negative

integer because the magnitude of the gamma function in the
denominator will become infinite. This is exactly what
occurs in the analysis of our antenna. The plot in Fig. 4
indicates a zero crossing when α = 1.38037 (held fixed for
the plot) and ν = 0.38037. For these values, the magnitude
in the denominator of (6) becomes infinite causing the
Wronskian to vanish – indicating linear dependence.
Consequently, the first zero crossing seen in Fig. 4 is not
meaningful. Indeed, if ν–α equals any negative integer,
linearly dependent zero crossings will occur. See Appendix 1
for further discussion of this linear dependence.
It is worth noting that when integer values of degree

and order are used in (6), ν = n = 0, 1, 2… and α =m = 0, ±
1,…,± n the associated Legendre function pair becomes
Pm
n (x) and Qm

n (x) and the requirement that –n≤m≤ n
ensures a non-vanishing Wronskian with respect to the
degree and order indicating the selected pair will always
yield linearly independent solutions. However, for cases
where non-integer degrees and orders are needed, there is
no corresponding requirement that the degree ν be greater
than or equal to the magnitude of the order α.
Having established that our initial choice of

Pa
v (x) and Qa

v (x) leads to a spurious solution after
consideration of (6), we consider another pair. For example,
an alternative associated Legendre function pair is:
P−a
v (x) and Qa

v (x). This pair has the Wronskian [15, (14.2.6)]

W P−a
v (x), Qa

v (x)
( ) = cos (ap)

(1− x2)
(7)

This Wronskian indicates the pair is useful as long as the
order α is not equal to odd integer multiples of ½. Our
antenna precludes these values, since α =mπ/f2≅ 1.38037 m,
where m = 1, 2, …. The values of the degree cannot cause
the Wronskian (7) to vanish, so this is a suitable pair for
the annular-sector patch antenna under study. We now use

Ar =
∑
v[v′

∑
a[a′

Aav C1 cos (af)+ C2 sin (af)
( )

× C3P
−a
v cos (u)+ C4Q

a
v cos (u)

( )
× C5 ĵv(kr)+ C6ŷv(kr)

( )
(8)
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for the analysis instead of (2). Instead of (3), we now use our
alternative associated Legendre pair and plot (using
Mathematica) the function

g(u1,u2)a (v) = d

d u
P−a
v ( cos u)

[ ]
u=u1

d

d u
Qa

v ( cos u)

[ ]
u=u2

− d

d u
Qa

v ( cos u)

[ ]
u=u1

d

d u
P−a
v ( cos u)

[ ]
u=u2

(9)

for the first four integer multiples of α with assurance that all
displayed zero crossings are valid, Fig. 5. The lowest value of
ν is ∼1.43059 (the ‘second zero’ of Fig. 4, but the first zero of
Fig. 5). Following the analysis of Section 4 in which we used
this value for the degree, we arrive at an analytically
calculated resonance in agreement with measurement. Note
the absence of spurious zero crossings as compared with
Fig. 4.
The solution of (4) led directly to the analytically

calculated resonance that was verified by measurement for
the spherical annular-sector patch antenna. An interesting
parallel exists between the solution of the patch antenna
resonant frequency using (4) and (5) and Schumann’s
solution for the resonances between the earth and the
ionosphere when both the earth and ionosphere are treated
as perfect conductors. Schumann found [18, p. 117, (4–
201)] that the observed peaks in the frequency spectrum of
noise power generated by lightning around the earth are
closely estimated by

fr =
c

2pR

									
n(n+ 1)

√
, n = 1, 2, 3, . . . (10)

where R is the radius of the earth and n is the degree of
associated Legendre function. Indeed, the resonance of the
patch antenna is written as

fa0,v0 =
c

2pa
			
1r

√
											
v0(v0 + 1)

√
(11)

Comparing (11) with (5), it is clear that X ′
a0,v0

is closely
approximated by

											
v0(v0 + 1)

√
. Accordingly, the calculated

resonance using (11) is 433 MHz in close agreement with
the 432 MHz calculation using (5). The development of
(11) is presented in Appendix 2.
IET Microw. Antennas Propag., pp. 1–6
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5 Conclusions

A solution for the resonant modes of a patch antenna using
the cavity model on a curved (spherical) ground plane has
been examined and verified by experimental measurement.
An important subtlety was observed in the choice of
linearly independent associated Legendre functions. Careful
observation of the Wronskians and the implications for
certain values of α and ν were clarified in the analytical
analysis of a spherical annular-sector antenna. For such
antennas, the degree and order of the associated Legendre
functions often do not have integer values and plots of
relevant transcendental functions may indicate spurious zero
crossings that are because of the associated Legendre
functions being linearly dependent. The common choice of
Pa
v ( cos u) and Qa

v ( cos u) was found to give both linearly
dependent and independent solutions when trying to solve
for the zero crossings of (3) for the antenna analysed in this
paper. Guided by a known Wronskian, the choice of
P−a
v ( cos u) and Qa

v ( cos u) was then graphed and only
linearly independent zero crossings were found – leading to
calculation of resonant frequencies in agreement with
measurement. We view the reconciliation of the analytical
frequency predictions with measured data as an important
result of this paper.
Although the specific case of a spherical annular-sector

patch antenna having magnetic walls about its perimeter
was examined in this paper, the extension of this procedure
to other canonical shapes, such as the spherical cap,
spherical ring and spherical sector with various
combinations of magnetic and electric walls, now poses no
particular difficulty. For example, should an application
require different canonical spherical shape with mixtures of
boundary conditions (e.g. combinations of electric and
magnetics walls), an organised analytical procedure may
now be followed. Firstly, it is always possible to determine
the discrete values for the order α analytically. From these
set values of the order, the Wronskian for the Legendre
function pair is examined to ensure that the order in (7) or
combinations of the order and degree in (6) do not lead to
spurious solutions. With known values of degree
(determined graphically with further precision using a null
searching routine), the resonant frequencies are then found
using (11). Finally, we note that other associated Legendre
function pairs are available, but were not discussed in this
paper (e.g. P−a

v ( cos u) and P−a
v ( cos u)) for which the

associated Wronskian may be found in [15]. It is the
application and mixture of boundary conditions that will
lead a researcher to an optimal pair.
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8 Appendix

8.1 Appendix 1

The Wronskian (6) indicates that the associated Legendre
function pair Pa

v (x) and Qa
v (x) are linearly dependent if ν− α

equals any negative integer. More insight as to why these
particular values of degree and order lead to linear
dependence from a different standpoint can be gained in
considering the definitions of these functions in terms of
Gauss hypergeometric functions 2F1 as given in [15,
(14.3.11)–(14.3.14)] reinforcing the need to consider
alternative pairs

Pa
v (x) = cos

1

2
(v+ a)p

( )
w1(v, a, x)

+ sin
1

2
(v+ a)p

( )
w2(v, a, x) (12)

Qa
v (x) = − 1

2
p sin

1

2
(v+ a)p

( )
w1(v, a, x)

+ 1

2
p cos

1

2
(v+ a)p

( )
w2(v, a, x) (13)
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where (see (14) and (15))

Note that

1/G
1

2
v− 1

2
a+ 1

( )∣∣∣∣
∣∣∣∣
v−a�−2,−4,−6, ...

∣∣∣∣∣ � 0 (16)

1/G
1

2
v− 1

2
a+ 1

( )∣∣∣∣
∣∣∣∣
v−a�−1,−3,−5, ...

∣∣∣∣∣ � 0 (17)

Substituting (16) into (14) and (17) into (15), we arrive at

Pa
v (x) v−a=−2,−4,−6, ...

∣∣ = sin
1

2
(v+ a)p

( )
w2(v, a, x) (18)

Qa
v (x) v−a=−2,−4,−6, ...

∣∣ = 1

2
p cos

1

2
(v+ a)p

( )
w2(v, a, x)

(19)

and

Pa
v (x) v−a=−1,−3,−5, ...

∣∣ = cos
1

2
(v+ a)p

( )
w1(v, a, x) (20)

Qa
v (x) v−a=−1,−3,−5, ...

∣∣ = 1

2
p cos

1

2
(v+ a)p

( )
w1(v, a, x)

(21)

For fixed order and degree with the constraint of (16), the
associated Legendre function pair in (12) and (13) become
(18) and (19), respectively, where both are dependent on
w2(v, α, x). The constraint of (17) causes (12) and (13) to
become the pair of (20) and (21), respectively, where both
are dependent on w1(v, α, x). Accordingly, the pair must be
linearly dependent functions of x when the difference
between the degree and order form a negative integer.

8.2 Appendix 2

Under the condition that k(b− a) ≪ 1, a careful analysis of
the vanishing of (4) leads directly to (11). The analytical
details are presented in this Appendix. As a preliminarily
comment, we note the Schelkunoff’s spherical Bessel
functions solve the differential equation [13, p. 551, (10–32)]

d2

d r2
+ k2 − v(v+ 1)

r2

[ ]
b̂v(kr) = 0 (22)

where b̂v(kr) represents either ĵv(kr) or ŷv(kr). The absence of
a first-order derivative in (22) indicates that the Wronskian of
ĵv(kr) and ŷv(kr) is equal to a non-zero constant [19, p. 362,
(7.62)], namely

W (ĵv(kr), ŷv(kr)) = const (23)

Having made this preliminary comment, we now turn our
attention to an approximate solution for which (4) vanishes.
w1(v, a, x) =
2aG((v+ a + 1)/2)		
p

√
G((v− a + 2)/2)

(1− x2)−a/2
2

w2(v, a, x) =
2a+1G((v+ a + 2)/2)		

p
√

G((v− a + 1)/2)
x(1− x2)−a/2

2F
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To this end, we rewrite (4) as

ĵ ′v(ka)ŷv(kb)− ĵ ′v(kb)ŷv(ka) = 0 (24)

In (24), the prime notation indicates a derivative with respect
to the argument of the function. The derivatives of the
Schelkunoff functions may now be expanded into a power
series about a

ĵ
′
v(kr)= ĵ

′
v(ka)+ ĵ

′′
v (ka)(k(r−a))1+ 1

2!
ĵ
′′′
v (ka)(k(r−a))2+ . . .

(25)

ŷ ′v(kr)= ŷ ′v(ka)+ ŷ ′′v (ka)(k(r−a))1+ 1

2!
ŷ′′′v (ka)(k(r−a))2+ . . .

(26)

Evaluating (25) and (26) at r = b, we obtain the following
approximations, under the condition that k(b− a) ≪ 1

ĵ ′v(kb) � ĵ ′v(ka)+ ĵ ′′v (ka)(k(b− a))1 (27)

ŷ ′v(kb) � ŷ ′v(ka)+ ŷ ′′v (ka)(k(b− a))1 (28)

Substituting (27) and (28) into (24) and simplifying, we obtain

ĵ ′v(ka)ŷ
′′
v (ka)− ĵ ′′v (ka)ŷ

′
v(ka) = 0 (29)

Here it is recognised, from (22), that

ĵ ′′v (ka) = − k2 − v(v+ 1)

a2

( )
ĵv(ka) (30)

ŷ ′′v (ka) = − k2 − v(v+ 1)

a2

( )
ŷv(ka) (31)

Substituting (30) and (31) into (29) and simplifying, we arrive at

ĵ ′v(ka)ŷv(ka)− ĵv(ka)ŷ
′
v(ka)

[ ]× k2 − v(v+ 1)

a2

( )
= 0 (32)

The term in the square brackets of (32) is recognised as the
Wronskian which we know from (23) is a non-zero
constant. Accordingly, (32) may be solved for k

k = 1

a

									
v(v+ 1)

√
(33)

Since k = (2pf /c)
			
1r

√
, we obtain

f = c

2pa
			
1r

√
									
v(v+ 1)

√
(34)

We note a similar result was given in [6] when a proper
normalisation constant for a probe-fed annular-sector
antenna implied (34). However, (34) is developed
independently of the excitation mechanism of the patch.
Similar results have been reported for spherical patch
antennas [20, p. 821 (3)].
F1 − 1

2
v− 1

2
a, + 1

2
v− 1

2
a+ 1

2
;
1

2
; x2

( )
(14)

1 + 1

2
− 1

2
v− 1

2
a, + 1

2
v− 1

2
a+ 1;

3

2
; x2

( )
(15)
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