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Abstract

In this paper we evaluate integrals of products of gamma functions of Ramanujan type
in terms of bilateral hypergeometric series. In cases where the bilateral hypergeometric
series are summable, then we evaluate these integral as beta integrals. In addition, we
obtain integral representations for bilateral hypergeometric series.
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1 Introduction

In 1920 Ramanujan [12, (7.1)] showed that
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provided that R(a + b 4 ¢ +d) > 3. This result is listed as Ramanujan’s beta integral
in the Digital Library of Mathematical Functions [5, (5.13.4)]. It may be compared to
Barnes’ beta integral [5, (5.13.3)]

> . . . . _Ta+ol'a+d)Ib+ol(b+d)
o . I'(a+ix) [ (b+ix) (c—ix)['(d—ix)dx = Taibicid 2)

which holds for fa, Nb, NRc, Rd > 0. We notice an obvious difference between these
integrals. The integrand in (1) is an entire function of x, while the integrand in (2)
is meromorphic on C having many poles. The integral (2) may be evaluated by the
residue theorem while this theorem is not applicable to obtain (1). In fact, Ramanujan
used the Fourier transform as the main tool in his proof of (1).

In this paper we will investigate more general integrals of Ramanujan’s type,
namely,

o0 e—ixt dx
) 3
/—oo [T/ I(aj+ 1+ +1—x) 3)
wheret € R,ai, ..., am, b1, ..., by are given complex numbers such that the integral

exists. Note that m can be any positive integer. Of course, we cannot expect that
such integrals can always be evaluated explicitly in terms of I"-functions as in (1) or
(2). However, applying the Poisson summation formula from the theory of Fourier
transforms we show in Theorem 4.2 that the integral (3) can always be expressed
in terms of a finite sum of bilateral hypergeometric series. For the definition of the
bilateral hypergeometric series and its basic properties we refer to Sect.2. In some
cases we obtain hypergeometric series that can be evaluated in terms of I"-functions.
In such cases we can also evaluate the integral explicitly. We study such cases in
Sect.5.

As asecond application of the Poisson summation formula we obtain in Theorem 4.4
an integral representation of any bilateral hypergeometric series in terms of integrals
of the type (3) (the numerator of the integrand will be a trigonometric polynomial).
In the final section 6 we discuss possible extensions of our results to bilateral basic
hypergeometric series. However, the results for basic bilateral series are not completely
parallel to those for bilateral hypergeometric series.

The referee has pointed out two interesting relevant references, namely [2, 8].

2 Preliminaries on bilateral hypergeometric series
2.1 Bilateral hypergeometric series

Recall the definition of the shifted factorial (Pochhammer symbol)

_ I'(a+n)

(@ = @ forn € Z.
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The bilateral hypergeometric series ,, H,, [14, (6.1.1.2)] is defined by

a a = (ar) (@m)
H | m;Z _ noe-- ngn, 4
mn m(bls...,bm ) n;oo (bl)n~~-(bm)n ( )
where m € Ny and ay, ..., ay, b1, ...,b, € C are such that ay,...,a, ¢ N and
by, ..., by, ¢ —Np. The inner and outer radius of this Laurent series is equal to 1

unless the series terminates (to the left or right). Using the ratio test we see that we
have absolute convergence on the unit circle |z| = 1 provided that

m
> 9i(aj —bj) < —1.
Jj=1
Alternatively, we may use that

(aj)n

=0 (|n|f“<“f—”f>> as 1] — 0o
jin

Using partial summation we see that we have conditional convergence for |z| = 1,
z# Lif

m
> 9i(a; —bj) <0.
j=1
The unilateral hypergeometric series ,, Fy,—1 defined by [5, (16.2.1)]
o0
at,, ..., 0am @in ... (amn 7"
F — , = —_—
mm 1<b1, e D Z) ,12:(:) B -+ (b 1!
can be seen as a special case of the bilateral hypergeometric series. If b,, = 1 in (4)
then
ap,...,dm . . ap,...,dm
mHm( bi,....bm—1, 1’2) B mFm_l(bl, ceisbm—t’ Z) ' ®)

Conversely, the bilateral hypergeometric series can be expressed in terms of the
unilateral hypergeometric series as follows:

a, ..., am . _\ _ Lap,....am L1=by,....,1=b, 1
mHm<b1,_“7bm,Z> = m+lFm< biy ... b ,Z)+m+1Fm( l—ay,...,1—ay, 5 Z

_ g (Lanan N O=b) A=k L (12— by 2 by L
= by b A—a)-—(—amz""""\2-ai,...2~an "7}
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28 Page4of32 H. S. Cohl, H. Volkmer

The shifted factorials satisfy (a),(1 — a)—, = (—1)" forn € Z. This yields the
symmetry relation

ar, ..., am _ l—bl,...,l—bm.l
mHm(b],...,bm’Z>_mHm(l—al,...,l—am’Z ) (6)

The bilateral hypergeometric series , H, can be defined for p # g but it diverges
everywhere unless it terminates.

2.2 Basic hypergeometric series

Forq € C, |q| < 1,a € C and n € Ny the basic shifted factorials are defined by

n—1
(a;q)n = 1_[(1 —ag®) for n e N,
k=0
and 1
n 4
1 qzn(n+l)
(a;q)—n = = for n e N, @)
e kl:[] l—ag % (-a)"(qa~"':q)n
and
(a; @)oo := lim (a; q)n.
n—o0
The g-gamma function is given by [35, (5.18.4)]
(45 Doo(1 =)' ™"
Iy(x) = OZ
@*; @)oo
We know [5, (5.18.10)] that
1in11 Iy(x) =T(x). 8)
g—>1-

Letg € C, |g| < 1,and letay,...,a,, by,...,bs € C, where r,s € Ny. Then the
bilateral basic hypergeometric series is defined by [5, (17.4.3)]

o0
a,...,a (al,...,ar;q)n( . (n)>s—r 0
g,z ) = — e PR (=g )
’%(bl,...,bs a4 Z) n;m(bl,...,bs;q)n (=74 ¢

C))

where we used the notation (ay, ..., am; ¢)n = HT:] (aj; q)n. The series (9) is well-
defined if b; ¢ {g* :k e No}, j=1,...,sanda; ¢ {g*:keN},j=1,...,r.
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For s = r, the series converges absolutely when

|by - - - by
— <zl < 1,
jar -]

and for s > r the series converges absolutely for

|blbs|

ja1 a2l

For additional properties of bilateral basic hypergeometric series we refer to Chapter
5 of [6].

2.3 Thelimitg —> 1~
Let m € Ny. We have

" @%@ ()
m ——— = ——

= for n € Z.
q—1- (qﬁ; Qn (Bn

Therefore, as ¢ — 17, the basic bilateral hypergeometric series
q*', ..., q%"
mwm(qﬁl,...,qﬁ'"’q’z (10)
converges termwise to the bilateral hypergeometric series

Aap, ..., o

However, this does not imply that (10) converges to (11) for some z € C. Actually,
this statement is meaningless because in the non-terminating case (11) is defined only
on the unit circle |z| = 1 while (10) is undefined there. In the following, we show in
what sense (11) is the limit of (10) as ¢ — 17. We start with some lemmas.

Lemma2.1 Leta = s + it withs > 0, t € R. There is a constant K independent of
q and n such that

1(@%; @nl < K(q°; @)n forallq € (0,1)and n € Ny. (12)
Proof Setq = e ", u > 0. Then we have

11— q%? 1+ e 245 — 2e™"S cos(ut) _ sinz(%ut)
(1—g%? 1 +e-2us —2eus B sinh2(%us).
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Therefore,

11 —q%? 12

a—gr ="
If we apply this inequality with o + k in place of &« fork =0, ...,n — 1 we get
o, 2 n-l 2 ) 2
S =0 o) = =T+ i)
This gives (12). O
Lemma2.2 Let0 < B < «. Then

q%; @n _ (@n
P @n = (Bhn

for g € (0,1),n € Np. (13)

In particular, there is a constant K independent of q and n such that

(q%; @n a—p

——— < K +n) for g € (0,1),n € Np.

(qP5 @
Proof The inequalities 0 < B < « imply that the function f(g) = % is non-
decreasing so (13) follows. O

Note that the inequality sign in (13) must be reversed when 0 < o < .

Lemma23 Let0 < a < B and t > 0. There is a constant K independent of g and n
such that
(q@%: @n 4

<K(1+n)*P for g €(0,1),neN. (14)
@

Proof Let p be the smallest positive integer such that 8 < « + p. For fixedn > p and
q € (0, 1) we introduce the function

This function is analytic in the half-plane 3z > 0. For x > 0 let
M(x) = max{|f(x +iy)| : y € R} = f(x).

By Hadamard’s three lines theorem [4, Ch. VI, Thm 3.7], log f (x) is a convex function.
Since f(a) = 1 we get

FB) < (Flatp. (15)
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Now

-1 .
17201 —g**) _ (=gl

TT0og (1 —getnty = (1—getmr

fla+p)=

Letg = e ™, u > 0. Then the inequality 1 — e™ < x for x € R implies

fla+p) < (f‘:’j—;??)p (16)
Seto = ﬂpfa. Then we have

1= eiltu(a—&-n) e < aliln’ {an
where

K ::max{l_e_ve_‘;f!’ :v>0}.
Now (16), (17) give
fla+p)g" < (e+p— l)pKf’m forqg € (0,1),n > p.

Using (15) we obtain (14). ]

Lemma24 Leta, B € C, —8 ¢ Ny. Let T > 0. Then there is qo € (0, 1) independent
of n and a constant K independent of ¢ and n such that

[(@%; @)nl 4
1(g#; @)l

Proof Choose k € Nsolarge that R(e+k) > 0and R(B+k) > 0. Thereisgg € (0, 1)
and a constant L independent of g and n such that

<K +n) "9 forall q €[qo,1),n € N.

~1 .
(9% @)l T 11— q*"
n q"" < Lg"" l_[ m for g € [q0,1),n > k.

B =
1(g” @)nl ik

By Lemma 2.1,

nly PRACE)

1G%; Dnl e nt
¢ =KiLg Hl_qm(ﬂﬂ‘)

for g € [qo, 1), n > k.
[(gP; @)nl

j=k

We complete the proof by using Lemma 2.2 if i > 0B and Lemma 2.3 if Re < RB.
|
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We now establish the following convergence theorem connecting (10) with (11).

Theorem 2.5 Letaj, Bj € Cfor j =1,...,m, where m € No. Suppose that a; ¢ N
and —B; ¢ Noforall j =1, ..., m, and that Ro > 1, where o0 := Z'}Ll(ﬂj — o).
Let0 < v < No. Then

. q®, ..., g% . o,y ..., 0y
lim 54,97 ) = iz 18
q%]_mwm<qﬂl5""qﬂm q q ,817-~~9ﬂ ( )
uniformly on the unit circle |z| = 1.

Proof We have termwise convergence of the series. By Lemma 2.4, there is a constant
K independent of ¢ and n such that

1 1G% 5 @l 9
g =K +1n)™" for g € [qo. D.n€No. (19
o 1@ @l

Using (7) we find, forn € N,

q_’”ﬁ @ Dn _ niom ,)1—[ @~
o1 @) L (@' )

Applying Lemma 2.4 a second time we show that (19) holds for all n € Z. Since
NRo > 1, Tannery’s theorem implies (18). O

3 The Poisson summation formula

Let f : R — C be integrable, and let

F(t) ;=f f(x)e ¥ dx, teR,

be its Fourier transform. The functions f(x) and F(¢) are connected through the
Poisson summation formula [7, Thm 3.2.8] that we will apply in the following form.

Theorem 3.1 Let f : R — C be a continuous function which satisfies
If)] < KA+ |x])717¢ forallx R, (20)

for some positive constants K , €. Let F (t) be the Fourier transform of f (x). Letw > 0
andt € R be such that )", _, |F(t + nw)| < oo. Then

Y F(t+nw) = %Zf <2”7”> e Et 1)

nez nez
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Proof In [7, Def. 2.2.8] the Fourier transform is defined in a slightly different way:

F(s) = / £ (x) e 2T gy,
—0o0
Then the Poisson summation formula in its simplest form [7, Thm 3.2.8] is

Y Fm=) fm.

nez nez
Replacing f(x) by f(Z’TTx)e_z”i% gives (21). O
4 Main results
Letai,...,am, b1, ..., by be complex numbers for some m € N. We define entire
functions
1 .
fix) = forj=1,2,...,m,

Faj+14+x)r'k;+1-x)
and consider their product

1
[T rd+aj+x0)rA+bj —x)

fo =J]rw= (22)
j=1

We have f;(x) = O(|lx|~M@j+b)=1y a5 x € R, |x| — o00. We assume that Na; +
bj) >O0forall j =1,...,msothat f; € LY(R) for all j. Let

Fi(t) := /OO fi(x)e ™ dx

be the Fourier transform of f;(x). To compute it Ramanujan [12, (1.1)] starts with
Cauchy’s integral [11, p. 158, (5)] stating that

=

T Yol gf — anl(y+1)
[ﬂ(cost)e t ZVF(I+%(y+8)x)F(1+%(y—8))

for Ry > —1.

09—

(23)
It follows from (23) with y = a; + b;, § = a; — b; + 2x and Fourier inversion [7,
Thm 2.2.14] that

(2cos (3N _Li—a.

AT M A— 2”(1’/ “J) ift e R, |t] <

Fj(t): F(a]—i—b]—}-l)e 1 7||_7T5 (24)
0 ifr e R, |t]| > 7.
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28 Page 10 0f 32 H. S. Cohl, H. Volkmer

Let F () be the Fourier transform of f(x):

oo .
F(t) = / Ffx)e "™ dx.
—0oQ
Then
F(t) = Qm)' ™" (Fi % Fyx -+ x F)(1), (25)
where the convolution is defined by
o0

(F % G)(t) = / F(s)G(t — s) ds.

—0oQ
Lemma4.1 Let Z'}Ll NR@j+bj+1)> 1. Then F(t) =0 fort € Rwith |t| > mm.
Proof Assume first that %i(a; 4+ b;) > Oforall j =1,...,m. By (24), F;(t) =0
fort € R, |t|] > m. Now F(¢t) = 0 for ¢t € R with |t| > mm follows from (25). By
analytic continuation, the statement of the lemma is also true under the assumption

ZT:lm(aj+b,/+l)> 1. O

Theorem 4.2 Let 2?’:1 N(aj+bj+1) > 1. Suppose that p € N, p > mandt € R
with |t| < pm. Then we have

00 14
F(r) = / fe ™ dx =) S0, (26)

k=0

where f(x) is defined in (22),

1 ad —i k
Sk (1) ;:; Z f(£+%)e (Zer)t

l=—00
1 ik, b+ L . —b,+ )
= —Cre 7' yH k P (=Dme ), @)
p " m<a1+1+§,...,am+1+§
and 1
Cy = . (28)

Hyzlr(a.,+1+§)r(b,+1—§)

Proof Theorem 3.1 with @ = 27 p gives

ZF(t—i—ann) = %Zf (%) e i hl.

nez nez
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By Lemma 4.1, the left-hand sum reduces to F(¢). By setting n = pf + k, k =
0,...,p—1,wefind

1 _jn Lty
Fiy==Y 7 (f) e =Y 8.
p p P

nez

We note that

1
blerd)- k k
r(aj+1+e+;)r(b,+14—;)
k .
_ (-1* (5-2),
k k K\
F(aj+1+;>1“<bj+l—;> (aj+1+;)e
ok
If we multiply theses identities for j = 1, ..., m, multiply by e ") and then add
for £ € 7 we obtain the second formula for S (z). O

Lemma 4.3 We have Si(t) = Sg+p(t). Ifaj = bj forall j =1, ..., m then Si(t) =
S_k(—1) = Spi (D).

Proof Change ¢ to £ + 1 or —£ in the definition of S. O

Note that the sum Z,f:_& Sk (t) appearing on the right hand side of (26) is just a
Riemann sum with step size 1/p for the integral on the left-hand side. Usually, these
Riemann sums are only approximations of the integral but in our case they are equal to
the integral. The Poisson summation formula also gives us an integral representation
of bilateral hypergeometric functions as follows.

Theorem 4.4 Let 377 R(a; +b; + 1) > L. Ift € [-m, w] then

Co mH, “hrmbe i) oof(x)e_m (x) dx (29)
OmHm\ gy +1, .. am + 17 ) &m '
where 1
Co = 30
T IT T+ DI b; + D <0
and
3(m—1)
1+2 ) cos@nrx) if misodd,
sin(mmx) o
gn(x) i =—— =1 = (31)
sin( x) Zm
ZZCOS((ZH — Dmx) if miseven.
n=1
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28 Page 12 0f 32 H. S. Cohl, H. Volkmer

Proof This time we apply Theorem 3.1 with @ = 2. Suppose first that t € [—7, 7]
and m is odd. Then the points 7 + 2n lie outside (—mm, mmr) and so F (¢t +2nw) =0
unless n = —3(m — 1), ..., 2(m — 1). So we find

3(m=1)

Yo feTM =3 Fa+2mmy = Y Fl+2mn)= / " P g dr.
—00

nez nez n=—%(m—1)

As in the proof of Theorem 4.2 we see that
> fmye ™ = mSo()
nez

and the desired statement follows.
Now let s € [0,2n], and let m be even. Then the points s + 2nm lie outside

(—mm, mm) unless n = —%m, e, %m — 1. Now Theorem 3.1 yields
' %mfl 00 ' '
S fme = 3 Fa2m = [ e e, mar
nez n=—1im -
and this is the claimed equation after substitution s = ¢ + 7. O

Theorem 4.5 Let Z’}'zl N(aj+bj+1)> 1. Then

sin((m — 1)mx) _ —bi,...,—by
/ f( ) s1n(n’x) d _CO mHm<a +1’ am+1, )1 (32)

sm(mnx) B by, ..., =byp
/ O e —COmHm<al+1w,am+l, 1). (33)

Proof This follows from Theorem 4.4 witht = 7 and t = 0. If 1 = 7 we are also
using Lemma 4.1. O
5 Special cases

5.1 Thecasem =1

If we combine (24) with Theorem 4.2 for p = m = 1 then we find

b i\ Ta+Hro+1) 1\ —Litp—a)
H . _ T T 1 2 -
! 1(a—i—l’ € ) Fa+b+1) <2COS2Z) ¢ for t & =l

The above equation is equivalent to

—i ra—-—ar® i h—1 1.\b—a—1
(e ) = G e (2cos ()
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where t € [—m, ], a ¢ N, b ¢ —Nj. One is able to derive the above equation and
the following related equation

. r'd—-—a)r o . —a—
1H1< Z;6”> = %e%’(ﬂ_”(ﬁb_l) (2sin (%t))b 1 fort e [0, 2],

with the same constraints on ¢ by starting with Ramanujan’s formula [5, (17.8.2)]

(q°. ¢, 2,4"7/z @)oo Iyb—a)  (2,4" %5 @)oo
(34)

where qm‘(b_“) < |zl < 1. We choose 0 < © < N(b — a), set z = —gTe™" and
z = q"e'’ in (34), respectively, and let ¢ — 17. On the left-hand side we apply
Theorem 2.5. On the right-hand side we use (8) and the limit

Wl(qa,q Z) @.4"7 4.4 Y5 e Ty (1—a) (492.9" /2 @)oo
b9,
q

it

G°7; @)oo

=(1-2P% for 0<z] <1. (35)
417 (qP2: Qo

The limit (35) can be derived from the g-binomial theorem [5, (17.2.37)]; see also [1,
Theorem 10.2.4]. Two consequences of the above results are

a. _ b,aqr(l —a)l"(b)
(i) =2 HG

and {Hi(a; b; 1) = 0.
5.2 Thecasem =2

It follows from Theorem 4.5 that

oo d 3 B
f 2 : =Co 2Hz< b1, b2 ;1), (36)
_oonjzlr(aj+1+x)F(bj+l—x) ar+1,ap)+1

where

1
[l=i F(aj+ Db+ 1)

Co =

We have the generalized Gauss theorem [13, (6.1.2.1)]

a,b. _ c,d,1—a,1—b,c+d—-—a—-—b—-1
2H2(c,d’l>_r|: c—a,d—a,c—b,d—>b :| 37)

_r@rdrad—-ard-mnrc+d—a—b—1)
o T'(c—a)'(d—a)(c—b)(d—Db) ’

(38)
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28 Page 14 of 32 H. S. Cohl, H. Volkmer

valid for R(c+d —a — b —1) > 0. Note that the above formula generalizes the Gauss
formula [5, (15.4.20)] with a choice of d = 1 using (5). Using (37) in (36) we find
Ramanujan’s integral [12, (7.1)]

/°° dx
—0 1_[5:1 I'aj+1+x)I"'(bj+1-x)
_ I'lai+bir+ay+b2+1)
CTa+bi+ DM@ +by+ DI (ar+bi+ D@+ by + 1)

(39)

It is interesting to note that Ramanujan obtained (39) directly from (24), (25) so
we have a proof of (37).
It follows from Theorem 4.5 that

o 2 cos(mx) dx B —by,—by
2 = Co 2, a+1a+1’_1 )
—00 Hj:lr(aj+l+X)F(bj+l—x) 1 ,ap

(40)
In general, this equation cannot be simplified further because we do not have a sum-
mation formula for the , H> series at z = —1. However, Ramanujan [12, (7.2)] used
(24), (25) to show that under the assumption

ar—bi=ay—by 41)

we have

e—l]'[x dx

00
/;oo H?zlr(aj-i-]-l—X)F(bj-l—l—x)

1.
e—jtﬂ(bl—al)

Car (Y@ b+ 1) R@+ b))+ 1) M@ +b+ 1)

By comparing this result with (40) we obtain

ar+1,a+1°
y I'ai+ Db+ DI (ap+ DT (b + 1)
(3@ +b)+ 1) (5@ +b)+1) @ +by+1)

—by, —b
2H2< 1, =b2 ._1)=cos(%(b1—a1)”)

provided (41) holds.

5.3 Thecasem =3

It follows from Theorem 4.5 that

/‘X’ 2cos(mrx) dx
~oo [T}y T +a; + )T (1 +bj —x)

—by, —by, —b
=C03H3( : . 3 )

ar+l,ap+1,a3+ 1’
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Evaluation of beta integrals of Ramanujan type... Page150f32 28

where

1
[T M@j+ Db +1)

Co =
According to [13, (6.1.2.6)] we have the following formula for a well-poised 3 H3(1),

b,c,d .
3H3(1—0—a—b,l+a—c,1+a—d’1)

-r l—b,1—c,l—d,l+a—b,l+a—c,1+a—d,1+%a,l—%a,l+%a—b—c—d
- l+a—c—d,l+a—b—d,l+a—b—c,l+%a—b,1+%a—c,l+%a—a’,1+a,l—a ’

(42)

for N(1 + %a — b —c —d) > 0. Therefore, setting by = —b, b, = —c, b3 = —d, we
obtain the following result.

Theorem 5.1 Let R(1 + 3a + by + by + b3) > 0. Then

o0 2 cos(mx)dx

/—oo [T, Ik +1+a+xTb;+1—x)
_ cos (3a) I' (1 + 3a + by + by + b3)
IR (L4 dat+0) liaiojs TA+a+bi+b))

(43)

At this point an interesting question arises. Can we prove Theorem 5.1 based on
(24), (25) without using (42)? If this is possible we have a new proof of (42). We
can prove Theorem 5.1 with a = 0 without using (42) if we can show the following
equation:

T L \2b L \22 2b3
/ / (2 cos fsl) (2 cos jsz) (2sin (i(sl + s2)> dso dsy
- J—s1

B 2ﬂ2F(2b1+1)F(2b2+ DI'Q2bz+ 1D)I(b1 +by+b3+1)
N DI(b3+ DI (by +by+ D)I(by +b3+ DI (by +b3+1)°

It follows from Theorem 4.5 that

— G 3H3( —by, —=by, —b3 1>’

/"O (1 +2cosmx))dx
—ool_[; ar+1l,ap+1,a3+ 1’

' +aj+x)I'A+bj —x)
where

1
[T F@j+ DIk +1)

Co =
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Seta; =cj + ;ll,bj =cj— é—k and substitute x =y — ;ll.Then

14+ 2cosRmx) 14 2sin(2ry)

Mo T4 aj+0rA+b;—x) [Ty D04+ I +¢j—y)

j=1 j=1

so we obtain the following result using the observation that ffooo f(x)dx = 0 when

f(x) is an odd function.

Theorem 5.2 Let R(1 + ¢y + ¢z + ¢3) > 0. Then

00 d LR
[ i : —cam( 170
—oo [[oi F(L+c; + I +cj—y) 7

where

I
Mo (e +3) T (e +3)

C =

5.4 Thecasem =4

It follows from Theorem 4.5 that

o (1 4+ 2cos(2mx)) dx —by, ...
f 7} = Co 4H, !
oo [T}

T +aj+x)rA+b; —x)

where

1
[l}oi M@j+ Do +1)

Co =

1
—C2 73,

5 5 7_1 )
+c, 3+ 3+

ar+1,.

7_b4 .
Las+ 1

-3

(44)

(45)

1).

Whenweseta; =c;+ %, bj=cj— le and substitute x = y — % we find the following

result.

Theorem 5.3 Let R(c; + ¢ + ¢34+ c¢4) > —%. Then

. ;
~oo [Ti T+ cj + )T +cj = y)

01+%,

where
1

C:4 .
i (e +3) (e +3)
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Consider Bailey’s bilateral very-well-poised /¢ summation [5, (17.8.7)]

1
1 2 9 ga ga ga ga ga gqa.
Ve +qga2,b,c,d,e g qas \ (q’qa’a’bc’bd’be’cd’ce’de’q)oo
4q7, 99 494 99 4" bede g 4 ¢ q 9a qa ga ga ga*. \ '
b c’d’ e h’c’d’e’h’c’d’e’bcde’qoo

(48)
where |ga?| < |bcde|. Setting e = —a'/? and replacing a, b, ¢, d by ¢%, q°, ¢¢, q¢,
respectively, and taking the limit ¢ — 1~ using Theorem 2.5, (8) and (35), we obtain
the following summation formula for a very-well-poised 4 H4(—1), namely

1+ia,b,c,d
H 2 9 9 9 ;_1
4 4(%a,1+a—b,l+a—c,l+a—d )

—1"|: 1-b,1—c¢c,1—-d,1+a—-b,1+a—c,14+a—-d
o 1

—a,1+a,1+a—b—c,1+a—b—d,l—l—a—c—d]' (49)

If we combine this with Theorem 4.5, we obtain the following result.

Theorem 5.4 Let R (3a + 2b1 + 2by + 2b3) > —1. Then

/"0 (2cos(x) +2cos(3mx)) dx
oo 1 (Ja+x) I (~3a=x)[Boy FA +a+b; + 001 +bj —x)
1
r(3a)r(=4a) FA—@rA+ar (A +a+by +b)I (U +a+by +b)I(1+a+by +b3)

(50)
In (50) we substitute x = y — %a, bj=cj— %a. Then we obtain
) (2 cos(my) cos (%na) + 2 cos(3my) cos (%na)) dy
Lx rOYr N THo U+ e+ +cj—y)
_ 1
r <%a> r (—%a) Frd—ar(+a)l+c +e)l(+cp + eI+ e+ ¢c3)
(51)

valid for R(c; + ¢z + ¢3) > —%.

5.5 Thecasem =5

It follows from Theorem 4.5 that

o (2cos(rx) +2cos(3mwx))dx —by,...,—b
/ = = Co 5Hs ! 51,
oo [T

T +a;+x)r(A+b;—x) ar+1,...,a5+1’
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where

1

Co=— .
[T (@ + DIk +1)

According to [13, (6.1.2.5)] one has the following evaluation of a very-well-poised
5Hs(1), namely

H l+2abcde 1) =
SHS 2al+a—bl+a—c1+a—dl+a—e o

r 1-b,1—-c,1—-d,1—e,1+a—-b,1+a—-c,1+a—d,1+a—e,1+2a—b—c—d—e
1+a,1—a,1+a—-b—-c,1+a—b—-d,14+a—b—e,14+a—c—d,1+a—c—e,1+a—d—e

for N(1+2a—b—c—d—e) > 0.If we combine these results we obtain the following
theorem.

Theorem 5.5 Let W(1 + 2a + by + by + b3 + by) > 0. Then

> (2cos(mx) +2cos(3mrx))dx

/oo r(a+x)r(-3a—x)[Tio, FA+a+bj +x)Ir'A+bj —x)

_ 'l +42a+ by + by + b3 + by) (52)
r(a)r(=3a)rad—a)rA+a) i< j<a T +a+bi+b))

If we substitute x = y — %a, bj=cj— %a in (52), then we obtain

/ (2cos(ry) cos (3ma) +2cos(3ry) cos (37a)) dy

—oo I'(Y)T(—y) l_[j=1 F(d+cj+yr+cj—y)

_ I'l4+ci+cx+c3+ca) (53)
F(%a)F(—%a) F(l—a)F(1+a)H1§i<j§4F(l+ci—I—cj)

valid for R(1 + ¢1 + ¢ + ¢3 +ca) > 0. Taking a = % gives us the following result.
Theorem 5.6 Let R(1 + ¢y +¢c2 + ¢34+ c4) > 0. Then

/00 cos(mry)dy

—o TN T T+ cj+ )0+ —y)

I Fdteateatata) (54)
872 [Ti<icjea T +ci+¢))

Note that

4 cos(my) 1

r)I(—=y) T@Ey)I(=2y)

so that Theorem 5.6 agrees with [3, Thm 4.6].
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5.6 Thecasem =6

Theorem 5.7 Let R(ay + ar + a3 + a4 + as + ag) > —%. Then

dx

/ 6 =2850(0) + 45,(0) = 253(0) + 45,(0),
—00 Hj:l 'l+a;j+x)I'(1 +a; —x)

(55)
where Sy, is defined as in Theorem 4.2 form = p =6andaj =bjfor j=1,...,6.

Proof By Theorem 4.2 we have

e—lxt dx

[e's] 5
F(o) :/ =350
oo [Toy T+ a; + 00U +a;—x) o

for t € [—6m, 67]. Since F(6r) = 0 we get
$0(0) + $2(0) + S$4(0) = S1(0) + S3(0) + S5(0).

Moreover, by Lemma 4.3, $>(0) = S4(0) and S1(0) = S5(0). This completes the
proof. O

LetR(a; +ar+asz+aq) > —1landsetas := —1, a¢ := —%. By the special choice
of as, ag, we have Sy(0) = S3(0) = 0. Since

1 47
re)r=2x)  rerE0rG+x)ri-x)’

Theorem 5.7 implies

/ . dx — 1675,(0).
—o0 I'2x)I" (—2x) Hj:l F'aj+1+x)I(a;+1-x)

By Theorem 4.2,

1 1 1 1 4 5

3 —4adl,3 —dad, 3 —4a3z, 3 —da4, 3, ¢

1 .
$0)=3Cr6Hs| > 7,7 77 7 U8

ar+xz,a2+3,a3+ 3,04+ 3,3, ¢

This ¢ Hg-series reduces to a 5 Hs-series. We evaluate the 5 Hs-series by (52) and obtain
again [3, Thm 4.6].
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6 A Fourier transform and g-extensions
6.1 A generalization of Ramanujan’s Fourier transform

Ramanujan [12] used the Fourier transform

(208 (41))" "

/oo e—ixt dx _
o @0l B=5 " |, Fle+p-1

1.
e 2B ifr e R, |] < 7,

ift e R, |t| > 7,

(56)
where «, B are complex parameters such that 9i(e + ) > 2 (one can also allow
M(a + B) > 1 but then the integrand might not be in L' (R) anymore). Our goal is to
derive an analogue of this Fourier transform in the g-world.

Lemma6.1 Forqg € C,0 < |q| < 1, c € C, ¢ # 0, define the entire function

1 _
X 2x(x+l)c x,

g(x) :=(cq™; q)ooq

where the powers denote their principal values. Then g(x) is bounded for x > 0, and
lim (—1)"g(s +n) = g(s)(c_qu'S; q)o for s € C. 7
n—o0

Proof Lets € C and n € Ny. Then

g(s -I—I’l) — (quxfn; q)ooq%(s+n)(s+n+l)cfs7n
— (cq—s; Q)oo %(s+n)(s+n+l)c—s—n
(g™ q)—n
_ _ _1 1 _ e
= (cq ™" ool g5 )ug 2D EENEIRED (g sy
= (=D"g®)(c 'g" @)

This establishes (57). The function g (x) is bounded for x > 0 because g(s) is bounded
on [0, 1] and (c_lql‘”; q)n 1s bounded for s € [0, 1] and n € Np. O

Letg € C,0 < |g| < 1,and a,b,w € C, a,b, w # 0. We define the entire
function

_ _ L=
FOsw;q) = (bg™; @oola™'¢" ™5 @oog > P,

Lemma 6.2 There are constants K, L (independent of x) such that

X
[ f(x;w;q)l <K ‘E‘ for x >0,
a

[f;w;q) <L ‘%(x for x <0.
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Proof This follows from Lemma 6.1. O

Lemma 6.2 shows that f € L' (R) when
1b] < |w| < lal. (58)

Theorem 6.3 Under assumption (58) we have

S (11- q) V2w w exp (;"g—wﬁ)
/ Flx; w; g)dx = a’ b°° 81 7. (59)
oo (5w q'Vlogg™!

Proof Similar to [9, §3] we find
/ f(qu)dx—/ S foxtkiwig)dy
k=—00
(Q7 ,q)oo Le@x=1)

ahE T (wq w7 T Poog P Du . (60)

(=% % 9

To prove this equation Ramanujan’s summation formula (34) is used. If we apply (60)
with b — 0 and a — oo we obtain

00 1
/ gDy dy = (q;q)oo/ (—wg", —w™g" ™ )ooq 2 Dt dx. (61)
oo 0

Note that (61) can also be derived from
00 1
/ h(x)dx:/ > h(x+k)dx
—00 0 k—=—o0

for h(x) = ¢2**~Dw* and Jacobi’s triple product identity [1, Thm 10.4.1]. The
integral on the left-hand side of (61) can be evaluated:

Vo (log w)*
/ gDyt gy = 27w exp (210gq*‘) 62)
—o0 g8 logqg—"
Combining (60), (61), (62) we obtain (59). O

Theorem 6.4 Under assumption (58) we have the Fourier transform

b. V2rwe 2 exp (M)
(E’ q)oo -1

2logg

(_%e—n’ _%en; q)oo ql/S\/log?

/ flw; g)e ™ dx =
(63)
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valid for t in the strip

Proof Replace w by we™"! in (59). ]
We notice a crucial difference comparing (56) with (63). In (56) the Fourier trans-
form is only defined for# € R and it has compact support. In (63) the Fourier transform

is defined in a strip parallel to the real axis and it is an analytic function there. Therefore,
it cannot have compact support.

6.2 The limitqg — 1~
In this section we demonstrate that (56) can be obtained from (63) in the limitg — 17

The notation f(q) ~ g(g) means that f(q)/g(q) — 1 as g — 17. We also use the
notation g = e™* foru > 0.

Lemma 6.5 Leta € C\ [1, 00). Then
(@; @)oo ~ (1 — a)'? exp(—u~" Liz(a)),
where Lis denotes the dilogarithm function [5, § 25.12].

Proof Define the function
f(x) =log(l —ae™") for x > 0.

By the Euler-Maclaurin formula [10, p. 524], we have

L) =/0 F@dx + 1(FO) + £

k=0
5 (f'O) = /() + /0 " P £ d,
where P3(x) is the function with period 1 determined by
P3(x) = %x3 — %xz + ﬁx for x € [0, 1].
We note that

oy aue”" Mo aude ™" (1 4+ ae™*")
fo = 1 —ae—xu’ i = (1 — ae—xu)3
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We let n — o0, and get

o]

> 0= [ a3 0= O+ [ P
k=0

Now
log(a; ¢)oo = gf(k), /Ooo Fo)dx = —u~ Lis(a),
and
£0) =log(l —a), f'(0)= 16316,'

Since | P3(x)| < % and | " (x)| < |a|(1 + |a])M 3ude™** where
M = min{|1 —ta] : t € [0, 1]},

we estimate

oo

3

‘/ Py £ (x) dx| < %|a|(l+|a|)M_3u2 — Kl
0

Therefore, we find

~1y: 1 1 _au 2
log(a; ¢)oo +u~ " Liz(a) — 3 log(1 —a) + T1—a < Ku“. (64)
It follows that
1
(@; @)oo expu~ ' Lin(@) (1 — a)~ 2 exp [ — -2 ) — 1] < ek ku?.,
121 —a
This implies the statement of the lemma. O

Lemma 6.6 Leta € C\[1, 00) and a € C. Then
(@q%; @)oo ~ (1 = )2~ exp(—u~" Lin(@)).
Proof Use (64) with ag® in place of a and note that
Lis(ae™*") = Liz(a) + aulog(l —a) + Ou?) asu — 0.
|
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We are now in a position to demonstrate that (63) is a g-analogue of (56). Consider
63)withw =1,¢g € (0,1)anda = ¢' P, b = ¢* with g > 2 and @ > 1. If we

divide both sides of (63) by (q; )%, (1 — ¢)*>~*~# then the left-hand side is

/oo fa(x)e ™ dx,

where

q%x(x—l)
Iy(x+a)y(B—x)

fq(x) =

In order to show that

00 . 00 —ixt d
lim / fo(0) e dx = / ¢ X
—o0

q—1- o Tx+a)(B—x)

we apply Lebesgue’s dominated convergence theorem. Pointwise convergence of the
integrands follows from (8), and the dominating function is supplied by the following

lemma.

Lemma 6.7 There are constants K, L independent of q, x such that

|f < KA +x)'"F for ge[§.1). x>0,
[fg@)l < LA+ 1x)™ for g € [5.1).x <
Proof The g-gamma function satisfies
1—g*
Iyx+1)= 1 Iy(x)
-9
which implies
q* —q!
Jex+1) = qu(x).
Using the Bernoulli inequality
B—1

A4+y)' <1l+4+ry withy=¢g*—1, r= ,

we estimate

B—1 _ _x -1 _ x _
o<1 a _4 " _x—-p+1
—1_qx+a— 1_qx - X
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Forn e N,x > B8 — 1, we get

n

lfax+ml < 1f,I]]

k=1

x—pB+k rx)rx—g+1+n)

k=1 IR s ra . ©

Since % converges to ﬁ locally uniformly on Cas ¢ — 17, | f;(x)| is bounded

ong € [%, 1), x € [0, B]. Now (67) with x € [ — 1, f] and y = x + n shows that
there is a constant K; such that

roy-g+1

o) forg € [$, 1),y = B.

g = K1

This proves (65). The proof of (66) is similar. O
We now wish to determine the limit of the right-hand side of (63) divided by
(@ 9% (1 —q)>@F as g — 17, that is the limit of

1.
h(q) := - CI)“+/3—2 (LIOH-/S—I; oo /e 2it exp (—%ufltz)
@ % (—gfTleT gt @) PENT

(68)

as g — 1~ by direct inspection. We have

@@l —q)* P

@ oo e b (69)
by (8), and
(="' g)oe ~ (14 73 Pexp (—u™' Lin(—e ™)),
(=g @)oo ~ (1 + )T exp (—u" Lin(~e™)).,
by Lemma 6.6. Note that [5, (25.12.7), (25.12.8)] yields
Liz(—e ™) + Lip(—e') = 1> — Ln? for t € [-7, 7], (70)
and
(1 4+e P31 4oz = (2cos (%t))‘wﬁ_2 e 2it(B—a=1),
Therefore, fort € (—m, ),
1
(=qP~ e, @)oo (—q%e"; @)oo
~ exp (M_l (%tz - %7‘[2)) (2cos (%t))wﬁ_2 e 2it(Bma=) (71)
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Substituting (69), (71) and [5, (17.2.6_1)] in (68) we obtain that

-2
(2c08 (51)"" )

S S

as desired. Using (8) in place of Lemma 6.6 we obtain lim,_, ;- h(q) = Ofort = +mx.
If t+ € R is outside the interval [—m, 7] then h(g) converges to 0 as ¢ — 1~. For
example, if # € (7, 37) then (70) gives

Lio(—e™") + Lia(—e'") = 3t — 27)* — g7,

and this leads to lim_, |- 2(g) = 0.

6.3 Bilateral basic hypergeometric series

We now follow the line of reasoning in Sect.4. For j = 1, ..., m we define entire
functions

_ _ 1 _
Fi00) = (5" Qeolar'q" ™ @oog > P,
where wy, ..., w, € C\ {0}. Consider their product
m
fo =[] i,
j=1

and let
F(t) = /oo fx)e ™ dx

be its Fourier transform. It follows from Lemma 6.1 that this Fourier transform exists
if
[D1] - -+ bm| < Jwil -+ |wm| < |at]-- - |am]. (72)

Theorem 6.8 Letq € C,0 < |q| < 1, and suppose thatay, ...,a, € C, by, ..., by €
C, wy, ..., wy € Csatisfy (72). Then, forall t € R,

'll/ at, ..., 0, . 2) = lim /OO f(x)e—in 1—r2 d
mVm\ by, by )T 1 —2rcosax) +12

where

m

. w ;
— (—1)" —it _J'

="
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Proof We note that

bj; @)oo
biq"; @)oo = ———
e = g
and, by (7),
L @;'q; Doo(aj; n
@;'q"™; @)oo =
(—aj )"qZ”(” b

Therefore, we have
F50) = (bj; D)ool 3 @)oo LD (_ﬂy
J ] j ’ (bj, q)n aj ,
o)
i - a a
Yo fme™ = Tk 9oo@; @ oo | mm| 7 1q.2) . (73)
~ o J bi,..., by
ne J=
Theorem 3.1 with w = 27 implies
Zf(n)e int Z/ f(x)e l(l-‘rznﬂ)x dx (74)
nez nez

Uniform convergence of the series for » € [0, 1] and Lebesgue’s dominated
convergence imply that

llm Z/ f(x)r|n| —i(t+2nm)x gy — Z lim /OO f(x)r\nlefi(tJann)x dx
—o00

r—1-
=> / ) e i0FT g
nez
Since
Z/ ’f(x)rlnleﬂ(lﬂm)x dx < T—r +: / | f(x)|dx < o0
nez? ~® — —00
we have
Z/ f(x)rln\ —i(t4+2n1)x 4, :/ Zf(X)rlnl —i(t+2nm)x g,
nez 00 27

_ 2
/ f(.x) e—ixl 1 — 1 r

dx,
2r cos(2mx) + r?
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so application of (73), (74) completes the proof. O

6.4 Integral representations for a ¢ s and other basic bilateral series

From [3, Theorem 4.5], one has the following g-beta integral

1—x

oo
I(a; a; q) == / (14 q*a? (—q"“aa, EAY q) qzxzf"o/‘x dx
- oo

«/Znaexp(z(lgga) )( qab, —qac, —qad, —qbc, —qbd, —qcd; q) o

q%/logg—1(qabed; )

(75)

which is valid for 0 < |g| < 1, @, a, b, c,d € C\{0}, a be the multiset given by
{a,b,c,d)}, and |abed| < |g|~". Ttis straightforward to verify by using (48) that the
g-beta integral (75) can be written in terms a basic bilateral very-well-poised ¢y,
namely

i

\/2naexp<2(l(g)ia) )(zq4a lq4a @)oo "
l(e; a5 ) = 66 !
q

1 3
431024 1(q. 9% .47 0)oo +

’ a :g,qabcd
,ig%a

FNEENI

N

(76)

Now in order to demonstrate how this is a g-extension of a Ramanujan-type inte-
gral, make the replacement {«, a, b, ¢, d} — {—ig%, —iq*?, —iqb, —iq°, —iqd} and
rewrite the above integral in terms of g-gamma functions, and one obtains

/-oo Fq(2(x+a)+1)qzx 7x+4ax —2imx
2x+a),l+a+x+a),l+bt(x+a),l+ct(x+a),l+d+x+a) de

ay)2
_iarg® exp(zaog( ig®) )

logq

1
g8 (1 —g)vloggT(q: 93
Tya+b+c+d+1)
Fq(a+b+1 at+c+la+d+1,b+c+1,b+d+1,c+d+1)

2
iVamg® exp<2<log< ig*) )

logg—

48 (1 - logg T (q:
Fq(
%-ﬁ-u 4+b,4+c %—5—

+

q4 q4 —a qib qé*“ gi~d btetd+1

X6V +a’ 24b §+c’ ENPRLE LT 77
iq4 q4 ,q477,q37, g4
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Note that one has the following limit

2 oay)2
iq“‘é\/2n exp (zﬂolgo(;lf’l))) jolina
lim g4 =— . (78)

=17 (q; )3, (1 — q)y/logg~! 2

Starting with (77) and using (78), the ¢ — 1~ limit of the above integral exists and it
is given by Theorem 5.6 above.

One might consider limits of (75) and (76), and ask whether there exist generalizations
of these integrals and whether appropriate ¢ — 1~ limits exist or not. Let’s start with
the limit as d — 0 which gives us

oo qlfx )
/ (1 +q2x 2)< aa, a; q> q2x 7xa4x dx
oo o o
21 o exp (2(1;)goz) )( gab, —qac, —qbc; q)oo
q5/log g™
2m aexp (zlggio‘) )(zq4a 1q4a ) o i 1 S
= s /logg—1 3 © sy T4 .8 iq.—igiabc|.
q8+/logg~ (6] q%,q? Q>

(79)

which is valid for 0 < |¢| < 1, @,a,b,c € C\{0}, a be the multiset given by
{a, b, c}. Now in order to inquire about whether the ¢ — 1~ limit exists, we make
the replacement {«, a, b, ¢} — {—iq®, —iq?, —ig®, —ig®} and rewrite (79) in terms
of g-gamma functions.

/~00 F (2(x +a) + 1)q2x —x+4ax —2imx
I,Qx+a),1+ax(x+a),l+bx(x+oa), 1+c:|:(x+a))
. 2(1 ay)2
| —i/Zrge exp () i
g1 —)logg(q: )3, Tala+b+latct+lbtc+])
_iJ o M) 1 3
_ 27q exP( logg~ ! Iy (z 3)
qs(l—q),/logq—l(q 93 ( +a,4+b %+a,%+b,%+c>
5 1 1 1
+q7,q17% gl gi¢ 5 ,
+q%,q37, g3, q37,0

Now taking the limit as ¢ — 1~ of (80) using (78) reduces the right-hand side to
a very-well-poised 4 H4(—1) which can be summed using (49), namely

/OO dx
oo F'(E2x, 14+a£x,1+bEtx,1+cxx)
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1 1
22 Ta+b+1l,a+c+1,btc+1)
1 1
r(fvai+eniteivaitnivc)
(34
X 4 Hy 1’5 ’5 5 '—l . (81)
pitagtby

We note that (81) agrees with (51) when we set a = % in (51). If one takes the limit
as ¢ — 01in (79), then one obtains

—Xx 1—x

> ' q 2
f (1 + q2xa2) (_qx-f‘laa’ —qx+lab, —a, b, q> q2X —xa4x dx
—o0 o 154 )

/27 o exp (2(10‘%0,‘)12) (—qab; @)oo

logg

q8+/logq™

27 aexp ( (log)” )(lq
= 1 3
logq 1(q,qf,qf;q)
1

+gi gt igh 3
xaps| TLVTTa b 5q.—qrab). (82)
+q4, lq4a ig%b,0,0

o= 5

q

which is valid for 0 < |¢| < 1, «, a, b € C\{0}. Now in order to inquire about whether
the ¢ — 1~ limit exists, we make the replacement {, a, b} — {—ig®, —ig?, —igq"}
and rewrite (82) in terms of g-gamma functions,

> Ty 20x + @) + 1)g" —sHaxg=2imx
/ Iy2x+a),1+axx+a), 1+b:|:(x+a))
27 2(log(~ig*))?
3 —i\/2mq® exp (W) a —q)“‘”’_]
g* (1 - g)ylogq T(q: d, Tel@+b+1)
. 2(1 02
e (M) ny
31— glogg @ % Iy (F+af+b.3+ai+0)
5 1 1
+qi. g7 g7 3tath
) "4-9* : 83
“‘”ﬁ(iqz,qiw,qwb,o,o 0.4 53)

Now if one takes the limit as ¢ — 17 of (83) using (78), one can see that the limit
vanishes because

(1 _q)a+b—l
m — =
g=1- T,(a+b+1)
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Another way one can see that the limit vanishes is noting that the 416 reduces to a
3H3(1) which can be evaluated using (42) and therefore the argument of one of the
denominator gamma functions necessarily vanishes. Hence the whole 3 H3(1) neces-
sarily vanishes. Using a similar argument one can see that the ¢ — 1~ limits of the
integrals representations of the 3¢

2
00 1-x, 5 V2w exp (%)
/ (1+¢%*a?) —qx+1aa,q g g oM dx =
o * 00 \/logq
2(1 .53
V2 aexp(lggg@l ><1q4a,lq4a;q)oo L3 iq}( .
= T — 3 el 105 @ sqiqial,
q8 logg (q,qZ,qZ;q)oo +g%,iq%a,0,0,0
(84)
and the 2vg
2
00 s A 2moexp (2]20‘5“) )
/ (1 +q2xa2) q2x —xa4x dx = 1 g9
- q%y/logq~!
2(log @)*
/2 oeexp( (Oga) % i
59,97 ), (85)

q5logq~ (g, 47, q7; q)oo g1, 0,0

must also vanish.

One interesting open question is whether there exists more general integral repre-
sentations of basic bilateral series of Ramanujan-type, such as exists in the g — 1~
limit. We are as of yet unable to find such generalizations.
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