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Abstract

We compute fundamental solutions and associated Fourier cosine series for the Laplacian

(and its powers) in Euclidean space Rd and in hyperbolic space Hd by introducing natural

coordinate systems. More specific, this is done as follows.

We prove parameter derivative formulae for certain associated Legendre functions. We de-

rive closed-form expressions of normalized fundamental solutions for powers of the Laplacian

in Rd and compute Fourier expansions for these fundamental solutions in terms of natural

angles in axisymmetric subgroup type coordinate systems. We give azimuthal and separa-

tion angle Fourier expansions for pure hyperspherical coordinate systems, as well as Fourier

expansions in mixed Euclidean-hyperspherical coordinate systems. Using azimuthal Fourier

expansions compared with Gegenbauer polynomial expansions of fundamental solutions for

powers of the Laplacian, we construct multi-summation addition theorems in pure hyper-

spherical subgroup type coordinate systems. We give some examples of multi-summation

addition theorems for a certain sub-class of pure hyperspherical coordinate systems in Rd for

d ∈ {3, 4, . . .}. We also give an example of a logarithmic multi-summation addition theorem,

namely that for an unnormalized fundamental solution for powers of the Laplacian in R4.

In the d-dimensional hyperboloid model of hyperbolic geometry Hd, we compute spherically

symmetric normalized fundamental solutions for the Laplace-Beltrami operator. Finally, we

also compute Fourier expansions for unnormalized fundamental solutions for this space in

two and three dimensions.
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1
Introduction

In this thesis, we are primarily interested in fundamental solutions for linear partial differen-

tial equations on oriented Riemannian or pseudo-Riemannian manifolds in connection with

the theory of special functions. The special functions which we study arise in terms of linear

partial differential equations on these manifolds either as closed-form expressions for funda-

mental solutions, or in terms of eigenfunction expansions for fundamental solutions in terms

of a basis for their separated solution space. Through the theory of separation of variables we

know that the separated solutions for these linear partial differential equations are given in

terms of commuting sets of symmetry operators for these equations (see Kalnins (1986) [62]

and Miller (1977) [69]) which satisfy eigenvalue problems whose eigenvalues are separation

constants.

Fundamental solutions to the classical linear partial differential operators of Mathemat-

ical Physics (i.e. the Laplace, Helmholtz, wave, and heat operators) and their eigenfunction

expansions are given in terms of some of the most frequently appearing special functions

such as gamma, exponential, logarithmic, modified Bessel and associated Legendre functions

(Abramowitz & Stegun (1972) [1]). These special functions are often referred to as higher

transcendental functions (see Erdélyi et al. (1981) [35]). We are extremely interested in the

properties of special functions, especially the special functions that one encounters through

separation of variables of the Laplace equation in those separable coordinate systems.

1



2 Introduction

The Riemannian and pseudo-Riemannian manifolds we are interested in are smooth man-

ifolds equipped with a Riemannian metric with signature (see Lee (1997) [65]). The Rie-

mannian or pseudo-Riemannian metric allows one to measure geometric quantities such as

distances and angles which parametrize the points of each manifold through specific curvi-

linear coordinate systems. The separated solutions that we study have arguments which are

given in terms of the natural distances and angles which parametrize these manifolds through

specific coordinate systems. Certain coordinate systems are natural for specific operators on

these manifolds through the study of separation of variables. Separation of variables has a

long and interesting history, which has been recently studied in terms of Lie group theoretic

methods in connection with the theory of simple-separation or R-separation of variables for

these linear equations. Henceforth we use the term separation to refer to both types. It

however should be mentioned that the appearance of R-separation is intrinsic to conformal

symmetries for linear operators on these manifolds (see Boyer, Kalnins & Miller (1976) [13]),

such as that exhibited by the Laplacian in Euclidean space, and corresponding conformally

invariant Laplacians in curved spaces.

The partial differential equations that we focus upon are given in terms of natural powers

of the Laplacian, the Laplace-Beltrami operator, on these manifolds. The Laplace-Beltrami

operator, a generalization of the Laplacian in Euclidean space, provides a tool for express-

ing Laplace’s equation and its harmonic solutions on a Riemannian or pseudo-Riemannian

manifold. By introducing the notion of distributions on Riemannian or pseudo-Riemannian

manifolds (see §32.2 in Triebel (1986) [97]), we can study fundamental solutions for Laplace’s

and polyharmonic equations on these spaces. The manifolds which we study are isotropic

(and non-compact) and therefore there exists fundamental solutions for polyharmonic oper-

ators with pure radial argument, and spherically symmetric dependence. Our aim is to work

on manifolds of arbitrary dimension. We study the symmetric nature of rotationally invariant

curvilinear coordinate systems which yield separable solutions for polyharmonic equations.

The study of separation of variables, fundamental solutions and special functions for

the Laplace equation in Euclidean space and on curved manifolds for higher dimensions is

classical, but yet remains a field which still has many aspects unexplored. We demonstrate

in this thesis some concrete aspects of the theory of linear partial differential operators and

special functions which are easily accessible, and lead to intriguing results which remain to

be fully explained in term of more abstract methods. Also, we would like to emphasize that

our work is focused on yielding closed-form useful special function realizations which can

be directly implemented with any procedures in Mathematical Physics which might rely on

these results for future computations.

We are primarily interested in spaces of constant sectional curvature and would like to
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study fundamental solutions on these spaces. We construct spherically symmetric coordinate

systems, solve Laplace’s equation, and compute normalized fundamental solutions on these

spaces. Normalization of fundamental solutions is performed by solving the inhomogeneous

Laplace equation with right-hand side given by the Dirac delta distribution (often referred

to as a Dirac delta function), such that the integral over the entire space obtains unity. In

general, the constant sectional curvature spaces include Euclidean space, Hyperbolic space,

and hyperspherical space. In this thesis we restrict our attention to fundamental solutions

of the Laplacian and the polyharmonic operator in Euclidean and hyperbolic spaces. We

exclude the hyperspherical space from our study, due to it being a compact manifold.

The fact that this classical study is recently relevant is due to several reasons. First,

fundamental solutions for Laplace’s and polyharmonic equations are ubiquitous in Pure and

Applied Mathematics, Physics, and Engineering. Second, the fact that Fourier expansions

encapsulate rotationally-invariant symmetries of geometrical shapes makes it an ideal model

case for critical study above and beyond the purely spherically symmetric shape, and therefore

it provides a powerful tool when implemented numerically in a variety of important problems.

Third, Fourier expansions for fundamental solutions gives rise to a hardly-studied aspect of

Special Function Theory, one which allows further exploration of the properties of higher

transcendental functions. Let us now focus on the specific details which are presented in this

thesis.

In Chapter 2 we introduce the special functions which are encountered in the main body

of the text. The specific material on derivatives of associated Legendre functions with re-

spect their parameters appearing in §2.6.5 will not be used in the main body of this thesis,

but regardless, it is new and interesting. On the other hand, the concept of derivatives of

associated Legendre functions with respect to their parameters is heavily relied upon in §6.3.

In Chapter 3 we give closed-form expressions, in Euclidean space Rd, for normalized

fundamental solutions of the Laplacian and compute normalized fundamental solutions for

powers of the Laplacian. The material appearing in this chapter is not new, but will be

heavily relied upon in future chapters.

In Chapter 4, we introduce the rotationally invariant subgroup type coordinates in Eu-

clidean space which yield solutions to Laplace’s equation through separation of variables. The

subgroup type coordinates that we describe are general mixed Euclidean-hyperspherical co-

ordinates systems. These subgroup type coordinate systems are described using a powerful

graphical method called a “method of trees.” We describe in a detailed fashion, all spe-

cific combinatoric and topological aspects of this method. Using the “method of trees,” we

construct examples of mixed Euclidean-hyperspherical coordinates in Rd. Mixed Euclidean-

hyperspherical coordinates are those coordinate systems which correspond to a hyperspheri-
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cal coordinate system of dimension p ∈ N embedded in a d-dimensional Euclidean space Rd

(p ≤ d) with Cartesian coordinates. In the case where p = d, we call these pure hyperspher-

ical coordinates. We refer to the set of all pure hyperspherical coordinate systems as the

general hyperspherical coordinate systems. Each mixed Euclidean-hyperspherical coordinate

system provides a natural angle ψ ∈ [0, 2π) for performing Fourier expansions about. This

is a detail which will be fully exploited in the following chapter.

In Chapter 5 we perform Fourier expansions of fundamental solutions in Euclidean space

in all dimensions for all natural powers of the Laplacian. Most of the results in this chapter

are new. Fourier expansions describe the general non-axisymmetric structure of scalar fields.

We derive and give examples of a generalized Fourier series for complex binomials of the form

1/[z−cosψ]µ, where ψ ∈ R, µ ∈ C and z ∈ C\(−∞, 1] with |z| < 1. It should be mentioned

that the derivations appearing in §5.2 is joint work with Diego Dominici (see Cohl & Dominici

(2010) [24]). We show that the Fourier series is given compactly with coefficients given

in terms of odd-half-integer degree, general complex-order associated Legendre functions

of the second kind. These algebraic functions naturally arise in classical physics through

the theory of fundamental solutions of Laplace’s equation, in the odd dimensions and in

the even dimensions for 1 ≤ k < d/2. These represent powers of distances between two

points in a Euclidean geometry. Fourier expansions for algebraic distance functions have

a rich history, and our expansion makes an appearance in the theory of arbitrarily-shaped

charge distributions in electrostatics [9, 66, 80, 82, 83, 99, 103], magnetostatics [10, 89],

quantum direct and exchange Coulomb interactions [8, 25, 34, 45, 78], Newtonian gravity

[12, 20, 37, 43, 55, 56, 68, 75, 85, 86, 88], the Laplace coefficients for planetary disturbing

function [32, 33], and potential fluid flow around actuator discs [15, 54], just to name a

few direct physical applications. Fourier expansions give a precise eimφ description for these

applications. We also compute Fourier expansions in even dimensions for powers k ≥ d/2

where a fundamental solution is given in terms of a logarithmic contribution.

In Chapter 6 we construct normalized hyperspherical harmonics, in pure hyperspherical

coordinate systems, in terms of Gegenbauer, Jacobi and Chebyshev polynomials and their

limits such as integer-order, integer-degree associated Legendre functions of the first kind.

We generalize a method originated by Sack (1964) [84] to expand unnormalized fundamental

solutions of the Laplacian in Rd in terms of Gegenbauer polynomials with superscript given

by d/2− 1 and the argument is given by the separation angle in pure hyperspherical coordi-

nates. We then use the addition theorem for hyperspherical harmonics to expand Gegenbauer

polynomials in terms of pure hyperspherical harmonics over a set of natural quantum num-

bers given by the separation constants in these coordinates. We use the Fourier expansions

along with these hyperspherical expansions to construct multi-summation addition theorems
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in these subgroup type coordinate systems.

In Chapter 7, we derive closed-form expressions for normalized fundamental solutions of

the Laplacian in the hyperboloid model of hyperbolic geometry Hd. This model of hyperbolic

space is a d-dimensional hyperboloid

x2
0 − x2

1 − · · · − x2
d = 1,

embedded in a d + 1-dimensional Minkowski space. We examine only the case for d ∈
{2, 3, . . .}. This hyperboloid then represents a non-compact Riemannian manifold with

negative-constant sectional curvature. We introduce aspects of this space, including a dis-

cussion of general subgroup type coordinate systems on it. We solve for the radial harmonics

in the set of all general hyperbolic hyperspherical coordinate systems on the hyperboloid. In

joint work with Ernie Kalnins, we prove that the spherically symmetric harmonics are given

in terms of associated Legendre functions of the first and second kinds with argument cosh r,

degree d/2−1 and order given by ±(d/2−1). Due to the isotropy of the hyperbolic space, we

expect there to exist a spherically symmetric fundamental solution on the hyperboloid. We

obtain spherically symmetric harmonic solutions on the hyperboloid by solving the Laplace

equation in a spherically symmetric curvilinear coordinate system. This reduces the problem

of computing a spherically symmetric fundamental solution of the Laplacian in this space,

to solving an ordinary differential equation in terms of the radius r on the hyperboloid. We

solve this ordinary differential equation, and solutions are seen to be given in terms of a

definite integral with integrand given by powers of a reciprocal hyperbolic sine function. We

compute several exact matching expressions for a normalized fundamental solution of the

Laplace-Beltrami operator in this d-dimensional hyperbolic space. This result, which is sum-

marized in Theorem 7.5.1, expresses a normalized fundamental solution in terms of a finite

summation expression, Gauss hypergeometric functions, and in terms of associated Legendre

functions of the second kind. These associated Legendre functions, as opposed to the Leg-

endre functions of the first kind, exactly match the behaviour of an expected fundamental

solutions in both the singular and far-field regimes. We then conclude this chapter with a

computation of Fourier expansions for fundamental solutions on the hyperboloid for d = 2

and d = 3.
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2
Special functions

We review some basic information concerning special functions (Abramowitz & Stegun (1972)

[1], Magnus, Oberhettinger & Soni (1966) [67], Miller (1977) [69], Moon & Spencer (1988)

[70]). Most of this material will be necessary information for the rest of this thesis. The ma-

terial in §2.6.5, however, is new material (see Cohl (2010) [23]) concerning certain derivatives

with respect to parameters of associated Legendre functions.

The special functions that we use in this thesis include elementary functions (such as

trigonometric and hyperbolic functions), the gamma function (and the functions and symbols

which are related to it such as the factorial and double factorial, the Pochhammer symbols

and the binomial coefficients), the digamma function, the Gauss hypergeometric function, as-

sociated Legendre functions (both the first and second kind), and some important orthogonal

polynomials such as Jacobi, Gegenbauer, Chebyshev, and associated Legendre.

Associated Legendre functions of both kinds have 2 complex parameters as well as a

complex argument. The material presented in this chapter on associated Legendre functions,

namely that appearing in §2.6, is more extensive than the other sections in this chapter.

This is because associated Legendre functions are some of the most commonly-encountered

functions appearing in this thesis. We will introduce some of the most important properties

of associated Legendre functions, such as recurrence relations, negative-degree and order

7
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conditions, Whipple formulae, etc. A generalization of associated Legendre functions, the

Jacobi functions (see §7.4.3 in Vilenkin & Klimyk (1991) [101]), have 3 complex parameters

as well as a complex argument. It is important to realize that associated Legendre functions

can be written in terms of Jacobi functions. Even more important is the fact that both

of these functions are special cases of the Gauss hypergeometric function. In this thesis, we

will restrict our attention to associated Legendre functions. However Jacobi functions, and in

particular Jacobi polynomials, play an important role the study of the study of hyperspherical

harmonics in higher dimensions (see Chapter 6).

Throughout this thesis we rely on the following definitions. For a1, a2, . . . ∈ C, if i, j ∈ Z

and j < i then

j∑

n=i

an = 0 and

j∏

n=i

an = 1.

2.1 Elementary functions

For complex numbers z, we routinely use the complex exponential, logarithmic, trigonometric,

and hyperbolic functions (see Chapter 3 in Churchill & Brown (1984) [21]).

The exponential function can be defined over the entire complex plane using the power

series definition

ez :=

∞∑

n=0

zn

n!
.

The logarithmic function is defined for points z 6= 0 in the complex plane as

log z := log r + i arg z,

where arg z ∈ (−π, π]. When z 6= 0 and the exponent w is any complex number, then zw is

defined by the equation

zw := exp(w log z).

2.1.1 Trigonometric functions

Now we list some of the basic facts about trigonometric functions. These are functions whose

arguments are angles measured in radians. These functions are the cosine, sine, tangent,

cotangent, secant, and cosecant functions defined over the complex plane (see §23 in Churchill

& Brown (1984) [21]). The definitions of the sine and cosine functions are given in terms of

the exponential function as

cos z :=
eiz + e−iz

2
, (2.1)



2.1 Elementary functions 9

and

sin z :=
eiz − e−iz

2i
,

(z ∈ C) and all of the other properties of the trigonometric functions follow from these. For

instance, we therefore have Euler’s formula

e±iz = cos z ± i sin z.

One basic relationship between the sine and the cosine is the Pythagorean trigonometric

identity

cos2 z + sin2 z = 1.

The double-angle formulae are

sin 2z = 2 sin z cos z,

and

cos 2z = 2 cos2 z − 1 = 1 − 2 sin2 z = cos2 z − sin2 z.

One can expand the square of the cosine and sine functions using the double-angle identities

cos2 z =
1

2
(1 + cos 2z),

and

sin2 z =
1

2
(1 − cos 2z).

The sine, cosine and tangent addition formulae are

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2,

and

tan(z1 + z2) =
tan z1 + tan z2

1 − tan z1 tan z2
, (2.2)

respectively. The cosine product to sum identity is

cos z1 cos z2 =
1

2
{cos(z1 + z2) + cos(z1 − z2)} . (2.3)
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2.1.2 Hyperbolic functions

We list some of the basic facts about hyperbolic functions. These functions are the hyperbolic

cosine, sine, tangent, cotangent, secant, and cosecant functions defined over the complex plane

(see §24 in Churchill & Brown (1984) [21]). The arguments of the hyperbolic functions are

referred to as hyperangles. The definitions of the hyperbolic sine and cosine functions are

given as

cosh z :=
ez + e−z

2
,

and

sinh z :=
ez − e−z

2
,

(z ∈ C) and all of the other properties of the hyperbolic functions follow from these. For

instance, we also have

e±z = cosh z ± sinh z.

A basic relationship between the hyperbolic sine and the hyperbolic cosine is the analogue

of the Pythagorean trigonometric identity

cosh2 z − sinh2 z = 1,

and consequently
1

sinh2 z
= coth2 z − 1.

The double-hyperangle formulae are

sinh 2z = 2 sinh z cosh z,

and

cosh 2z = 2 cosh2 z − 1 = 2 sinh2 z + 1 = cosh2 z + sinh2 z.

One can expand the square of the hyperbolic cosine and hyperbolic sine functions using the

double-hyperangle identities

cosh2 z =
1

2
(cosh 2z + 1),

and

sinh2 z =
1

2
(cosh 2z − 1).

The hyperangle sum and difference formulae are

sinh(z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2,
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and

cosh(z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2.

For x ∈ (1,∞), the inverse hyperbolic cosine is given by

cosh−1 x = log
(
x+

√
x2 − 1

)
. (2.4)

2.2 Gamma function and some related functions

2.2.1 Gamma function, factorial and double factorial

The gamma function (see Chapter 6 in Abramowitz & Stegun (1972) [1], Chapter 1 in An-

drews, Askey & Roy (1999) [3]) is an important combinatoric function and is ubiquitous in

special function theory. It is naturally defined over the right-half complex plane through

Euler’s integral

Γ(z) =

∫ ∞

0

tz−1e−tdt,

Re z > 0. The Euler reflection formula allows one to obtain values in the left-half complex

plane ((6.1.17) in Abramowitz & Stegun (1972) [1]), namely

Γ(z)Γ(1 − z) =
π

sin πz
, (2.5)

0 < Re z < 1, for Re z = 0, z 6= 0, and then for z shifted by integers using the following

recurrence relation

Γ(z + 1) = zΓ(z).

The gamma function has poles of order 1 for z ∈ −N0 with residues given by (−1)n/n! (see

p. 370 of Amman & Escher (2008) [2]). The gamma function is a natural generalization of

the factorial function over the natural numbers, n ∈ N where

Γ(n + 1) = n! = 1 · 2 · 3 · · · (n− 1) · n.

Through our connection with the gamma function, we see that 0! = 1.

The double factorial function (Abramowitz & Stegun (1972) [1]) is related to the gamma

function [105]

z!! = 2(1+2z−cos πz)/4π(−1+cos πz)/4Γ

(
1 +

1

2
z

)
.
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Using this definition, we can see that 0!! = 1. The following properties hold for n ∈ N

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 1),

and

(2n)!! = 2 · 4 · 6 · · · (2n) = 2nn!. (2.6)

The double factorial function naturally generalizes for the negative odd integers (Arfken &

Weber (1995) [5], p. 600)

(−2n− 1)!! =
(−1)n 2n n!

(2n)!
, (2.7)

n ∈ N0, i.e. (−1)!! = 1 and (−3)!! = −1. All negative even double factorials are undefined.

For n ∈ N0, gamma functions with arguments given by odd-half-integers (see (6.1.12) in

Abramowitz & Stegun (1972) [1]) are given by

Γ

(
n+

1

2

)
=

(2n− 1)!!
√
π

2n
, (2.8)

and using Euler’s reflection formula (2.5) yields

Γ

(
1

2
− n

)
=

(−1)n2n
√
π

(2n− 1)!!
. (2.9)

2.2.2 Pochhammer symbols and binomial coefficients

Pochhammer symbols represent either rising or the falling factorials. The Pochhammer sym-

bols are well-defined over the entire complex plane, i.e. for z ∈ C. Unfortunately there is no

standard convention used for Pochhammer symbols, so we utilize the following convention

which is consistent with usage in Special Function theory, i.e. with hypergeometric functions.

The Pochhammer symbol for rising factorial is given by

(z)n =





1 if n = 0,

(z) · (z + 1) · (z + 2) · · · (z + n− 1) if n ≥ 1,
(2.10)

where n ∈ N0 and z ∈ C. The Pochhammer symbol for the rising factorial is expressible in

terms of gamma functions as

(z)n =
Γ(z + n)

Γ(z)
, (2.11)

for all z ∈ C \ (−N0). Similarly the Pochhammer symbol for the falling factorial, with the
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same quantities, is given by

[z]n =





1 if n = 0,

(z) · (z − 1) · (z − 2) · · · (z − n+ 1) if n ≥ 1.

The Pochhammer symbol for the falling factorial is also expressible in terms of gamma func-

tions as

[z]n =
Γ(z + 1)

Γ(z − n + 1)
,

for all z ∈ C \ {. . . , n− 3, n− 2, n− 1}. One can clearly relate the two symbols by

[z]n = (−1)n(−z)n. (2.12)

The binomial coefficient (Abramowitz & Stegun (1972) [1]) can be defined through the

Pochhammer symbol for the falling factorial

(
z

n

)
=

[z]n
n!

, (2.13)

where z ∈ C and n ∈ N0. The binomial coefficient (for n, k ∈ Z) is given by

(
n

k

)
=

n!

k!(n− k)!
,

if 0 ≤ k ≤ n and zero otherwise. The binomial coefficient satisfies the following identity

(
n

k

)
=

(
n

n− k

)
, (2.14)

where n, k ∈ Z, except where k < 0 or n− k < 0.

2.3 Digamma function

The digamma function is defined in terms of the derivative of the gamma function,

d

dz
Γ(z) = ψ(z)Γ(z), (2.15)

for z ∈ C \ (−N0). Like the gamma function, the digamma function is singular for z ∈
(−N0). A good reference for the basic properties of the digamma function is §1.2 of Magnus,

Oberhettinger & Soni (1966) [67].



14 Special functions

Two important properties of the digamma function are the recurrence relation for digamma

functions

ψ(z + 1) = ψ(z) +
1

z
, (2.16)

and the reflection formula for digamma functions

ψ(−z) = ψ(z + 1) + π cot πz. (2.17)

One useful special value of the digamma function is

ψ(1) = −γ, (2.18)

where γ is Euler’s constant ≈ 0.577215664901532860606512090082.

2.4 Gauss hypergeometric function

The Gauss hypergeometric function (Chapter 2 in Andrews, Askey & Roy (1999) [3], Chapter

15 in Abramowitz & Stegun (1972) [1], Chapter 2 in Magnus, Oberhettinger & Soni (1966)

[67]) can be defined for |z| < 1 in terms of Pochhammer symbols (see (15.1.1) in Abramowitz

& Stegun (1972) [1]) through the series

2F1(a, b; c; z) :=

∞∑

n=0

(a)n(b)n
(c)nn!

zn. (2.19)

The series on the unit circle |z| = 1 converges absolutely if Re(c− a− b) ∈ (0,∞), converges

conditionally if z 6= 1 and Re(c− a− b) ∈ (−1, 0], and diverges if Re(c− a− b) ∈ (−∞,−1].

Now we discuss analytic continuation of the Gauss hypergeometric function. Newton’s

binomial theorem is given by

(1 + w)µ =

∞∑

k=0

(
µ

k

)
wk, (2.20)

where w, µ ∈ C, |w| < 1. If we make the replacement w 7→ −w and µ 7→ −µ then we have

(1 − w)−µ =
∞∑

n=0

(µ)n
n!

wk. (2.21)

The beta integral, which is defined for Rex,Re y > 0, is given by

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt.
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One may also speak of the beta function B(x, y), which is obtained from the beta integral

by analytic continuation (see §1.1 in Andrews, Askey & Roy (1999) [3]). The beta function

is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
,

where Re x,Re y > 0. If we consider the following integral where |z| < 1, replace (1 − zt)−a

with Newton’s binomial series (2.21) and evaluate the subsequent beta integral, we are left

with ∫ 1

0

(1 − zt)−atb−1(1 − t)c−b−1dt =
Γ(b)Γ(c− b)

Γ(c)

∞∑

n=0

(a)n(b)n
(c)nn!

zn. (2.22)

Through (2.19) and (2.22) we have what is called Euler’s integral representation for the Gauss

hypergeometric function, namely

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1 − zt)−atb−1(1 − t)c−b−1dt, (2.23)

where Rec > Reb > 0. This is for all |z| < 1. If we take the principal value of (1−zt)−a, then

this integral represents a one valued analytic function in the z-plane cut along the real axis

from 1 to ∞, and therefore gives the analytic continuation of (2.19). The function (1− zt)−a

is in general multivalued and one may study the multivalued nature of 2F1(a, b; c; z) using

this integral. Analytic continuation may also be applied to the parameters a, b and c.

One consequence of Euler’s integral (2.23) is the Gauss summation formula for2F1(a, b; c; 1)

(see (1.2.11) in Gasper & Rahman (2004) [44]). This is a consequence of the resulting beta

integral, namely

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (2.24)

where Re(c− a− b) > 0 and c /∈ −N0.

If you make a substitution t = 1 − u in Euler’s integral (2.23) and re-arrange the in-

tegrand, what results is a very useful linear transformation of the Gauss hypergeometric

function, Pfaff’s transformation (see (2.2.6) in Andrews, Askey & Roy (1999) [3]). If this

transformation is applied to a and b separately then we have the two Pfaff transformations

2F1(a, b; c; z) = (1 − z)−a2F1

(
a, c− b; c;

z

z − 1

)
, (2.25)

and

2F1(a, b; c; z) = (1 − z)−b2F1

(
c− a, b; c;

z

z − 1

)
. (2.26)

Though the symmetry is not apparent from Pfaff’s formula or Euler’s integral, the Gauss
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hypergeometric function is always symmetric in a and b, namely

2F1(a, b; c; z) = 2F1(b, a; c; z),

furthermore

2F1(0, b; c; z) = 2F1(a, 0; c; z) = 1. (2.27)

Since the Gauss hypergeometric function is symmetric in a and b, we may apply Pfaff’s

transformation to itself resulting in what is called Euler’s formula, namely

2F1(a, b; c; z) = (1 − z)c−a−b2F1(c− a, c− b; c; z). (2.28)

The Gauss hypergeometric function satisfies the Gauss hypergeometric differential equa-

tion

z(1 − z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0.

The Gauss hypergeometric differential equation (2.39) has 3 regular singular points at z = 0,

z = +1, and z = ∞. The method of Frobenius (see for instance Ince (1944) [57], Chapter

XVI) can be used to find series solutions in a neighbourhood of the regular singular points.

Since the Gauss hypergeometric equation is a second order ordinary differential equation,

there will be two linearly independent solutions about each singular point which gives 6

solutions. Any three solutions must be linearly related. By applying Pfaff’s and Euler’s

transformations (2.25), (2.26) and (2.28), these 6 solutions are then expanded into 24 solu-

tions. These are often referred to as Kummer’s 24 solutions (see for instance §1.2 in Gray

(2008)).

As a directly relevant example, relations between solutions of the Gauss hypergeometric

equation can be obtained through comparison of solutions in a neighbourhood of the regular

singular point at infinity with solutions about the regular singular points 0 and 1. For

example, one can obtain for a − b /∈ Z (see p. 48 in Magnus, Oberhettinger & Soni (1966)

[67])

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, a− c + 1; a− b+ 1;

1

z

)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b2F1

(
b, b− c+ 1; b− a+ 1;

1

z

)
, (2.29)
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where arg(−z) ∈ (−π, π], and

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1 − z)−a2F1

(
a, c− b; a− b+ 1;

1

1 − z

)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(1 − z)−b2F1

(
b, c− a; b− a + 1;

1

1 − z

)
, (2.30)

where arg(1 − z) ∈ (−π, π].

The derivative of the Gauss hypergeometric function (see (15.2.1) in Abramowitz & Stegun

(1972) [1]) is given by

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a + 1, b+ 1; c+ 1; z). (2.31)

One can simplify the Gauss hypergeometric functions using Gauss’ relations for contiguous

hypergeometric functions. Some of those that will be useful for us are

z2F1(a+ 1, b+ 1; c+ 1; z) =
c

a− b

[
2F1(a, b+ 1; c; z) − 2F1(a+ 1, b; c; z)

]
, (2.32)

(see p. 58 in Erdélyi et al. (1981) [35]) and

2F1(a, b+ 1; c; z) =
b− a

b
2F1(a, b; c; z) +

a

b
2F1(a + 1, b; c; z) (2.33)

(see (15.2.14) in Abramowitz & Stegun (1972) [1]).

One important quadratic transformation of the Gauss hypergeometric function which we

will use is

2F1(a, b; a− b+ 1; z) = (1 + z)−a2F1

(
a

2
,
a+ 1

2
; a− b+ 1;

4z

(z + 1)2

)
(2.34)

(see (3.1.9) in Andrews, Askey & Roy (1999) [3]). Also we will regularly use the expression

of a binomial as a Gauss hypergeometric function, namely (see (15.1.8) in Abramowitz &

Stegun (1972) [1])

2F1(a, b; b; z) = (1 − z)−a. (2.35)

Another useful Gauss hypergeometric function is given in (15.1.3) Abramowitz & Stegun

(1972) [1] as

2F1

(
1, 1; 2;

1 − z

2

)
=

2

z − 1
log

(
z + 1

2

)
. (2.36)

Legendre’s complete elliptic integrals of the first and second kind (see §2.5) can be given in
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terms of the Gauss hypergeometric function as follows

K(k) =
π

2
2F1

(
1

2
,

1

2
; 1; k2

)
, (2.37)

and

E(k) =
π

2
2F1

(
−1

2
,

1

2
; 1; k2

)
. (2.38)

2.5 Elliptic integrals and Jacobi elliptic functions

Here we discuss the Legendre forms of elliptic integrals (see Byrd & Friedman (1954) [19]

and Chapter 17 in Abramowitz & Stegun (1972) [1]). The general definition of an elliptic

integral is an integral of the form ∫
R(x, y)dx,

where R is a rational function and y2 is a polynomial in x, of degree 3 or 4. One may always

express an elliptic integral, through a change of variables, in terms of Legendre’s first, second,

or third incomplete forms, or to a limiting case, such as for complete elliptic integrals. For

an extensive tabulation of more than a thousand elliptic integrals and a detailed discussion

on their explicit reduction in terms of Legendre’s incomplete forms, see Byrd & Friedman

(1954) [19].

The incomplete elliptic integral of the first kind F : (0, π/2] × [0, 1) → R is defined as

F (ϕ, k) :=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

.

The incomplete elliptic integral of the second kind F : (0, π/2] × [0, 1) → R is defined as

E(ϕ, k) :=

∫ ϕ

0

√
1 − k2 sin2 θdθ.

The incomplete elliptic integral of the third kind Π : (0, π/2] × (0, 1)2 → R is defined as

Π(ϕ, α, k) :=

∫ ϕ

0

dθ

(1 − α2 sin2 θ)
√

1 − k2 sin2 θ
.

The variable ϕ is the called the argument and the variable k is called the modulus. Note

that we are using Legendre’s notation for the modulus of an elliptic integral, namely that

it is given by k whereas another standard notation, namely Milne-Thompson’s notation in

Abramowitz & Stegun (1972) [1] is to use modulus given by m = k2. The complete elliptic
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integrals of the first, second and third kinds, K, E, and Π are given as the incomplete elliptic

integrals of the first, second, and third kind respectively with argument ϕ = π
2
.

Now we introduce Jacobi elliptic functions (see §120 in Byrd & Friedman (1954) [19]

and Chapter 16 in Abramowitz & Stegun (1972) [1]). The Jacobi elliptic functions like the

trigonometric functions have a real period, and like the hyperbolic functions, they have an

imaginary period. They are thus doubly periodic in the complex plane. One can define

Jacobi elliptic functions in terms of the inverse of the incomplete elliptic integral of the first

kind. If we take

u =

∫ ϕ

0

dθ√
1 − k2 sin2 θ

,

then the Jacobi elliptic function, sn u (sine amplitude) is given by

sn u := sinϕ,

cnu (cosine amplitude) is given by

cn u := cosϕ,

and the delta amplitude is given by

dn u :=

√
1 − k2 sin2 ϕ.

There are a total of twelve Jacobi elliptic functions given in terms of quotients and reciprocals

of sn , cn and dn .

2.6 Associated Legendre functions

Associated Legendre functions (Chapter 8 in Abramowitz & Stegun (1972) [1], Chapter 4 and

§5.4 in Magnus, Oberhettinger & Soni (1966) [67]) satisfy the associated Legendre differential

equation

(1 − z2)
d2w

dz2
− 2z

dw

dz
+

[
ν(ν + 1) − µ2

1 − z2

]
w = 0, (2.39)

where ν, µ ∈ C and z ∈ C\(−∞, 1] are referred to as degree, order and argument respectively.

The associated Legendre differential equation (2.39) has 3 regular singular points at z = +1,

z = −1, and z = ∞. The associated Legendre functions are special cases of the Gauss

hypergeometric function 2F1(a, b; c; z) where the parameters a, b, c are such that a quadratic

transformation of the Gauss hypergeometric function exists. Because of this property it is

possible to express a solution of the associated Legendre differential equation in terms of the

Gauss hypergeometric function with a choice of 18 different arguments in 72 different ways
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(see §4.1.1 in Magnus, Oberhettinger & Soni (1966) [67]).

Solutions of the associated Legendre differential equation are given by the associated

Legendre functions of the first kind P µ
ν and the associated Legendre functions of the second

kind Qµ
ν respectively. Associated Legendre functions of the first kind are regular in the

neighbourhood of z = 1 and are singular at infinity. Associated Legendre functions of the

second kind have a singularity at z = 1 and vanish at infinity. Note that there is an important

convention for associated Legendre functions such that when the order µ in P µ
ν or Qµ

ν is left

off, i.e. Pν or Qν , this indicates that µ = 0.

For |z| > 1 (and by analytic continuation elsewhere), the associated Legendre function of

the first kind can be defined by

P µ
ν (z) =

Γ
(
−1

2
− ν
)
zµ−ν−1

2ν+1
√
π(z2 − 1)µ/2Γ(−ν − µ)

2F1

(
ν − µ+ 1

2
,
ν − µ+ 2

2
; ν +

3

2
;

1

z2

)

+
2νΓ

(
1
2

+ ν
)
zµ+ν

(z2 − 1)µ/2Γ(ν − µ+ 1)
2F1

(−ν − µ

2
,
−ν − µ+ 1

2
;
1

2
− ν;

1

z2

)

(see (8.1.5) in Abramowitz & Stegun (1972) [1]). For any expression of the form (z2 − 1)α,

read this as

(z2 − 1)α := (z + 1)α(z − 1)α, (2.40)

for any fixed α ∈ C and z ∈ C\{−1, 1}. For |z| > 1 (and by analytic continuation elsewhere),

the associated Legendre function of the second kind can be defined by the following relation

with the Gauss hypergeometric function

Qµ
ν (z) =

√
πeiπµΓ(ν + µ+ 1)(z2 − 1)µ/2

2ν+1Γ(ν + 3
2
)zν+µ+1 2F1

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
;

1

z2

)
(2.41)

(see (8.1.3) in Abramowitz & Stegun (1972) [1]). The associated Legendre functions of the

second kind, Qµ
ν (z) are defined for all ν, µ ∈ C except for

(ν, µ) /∈
∞⋃

n=0

n⋃

k=−n

(
−1

2
+ k,−1

2
− n

)
.

This is due to the fact that the associated Legendre function of the second kind Qµ
ν (z) has

simple poles at these values of (ν, µ) which originate from the factor Γ(ν + µ+ 1) in (2.41).

If the variable z is real and lies in the open interval (−1, 1), then we relabel the argument

as x and then the corresponding associated Legendre functions are defined as follows (§8.3
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in Abramowitz & Stegun (1972) [1], §4.3.1 in Magnus, Oberhettinger & Soni (1966) [67])

P µ
ν (x) = eiπµ/2P µ

ν (x + i0) = e−iπµ/2P µ
ν (x− i0) =

1

2

[
eiπµ/2P µ

ν (x+ i0) + eiπµ/2P µ
ν (x− i0)

]
,

where

f(x± i0) := lim
ǫ→0

f(x± iǫ).

Associated Legendre functions of the first kind in this interval can then be defined for x ∈
(−1, 1) in terms of the Gauss hypergeometric function as

P µ
ν (x) =

1

Γ(1 − µ)

[
1 + x

1 − x

]µ/2
2F1

(
−ν, 1 + ν; 1 − µ;

1 − x

2

)
. (2.42)

One interesting consequence of (2.42) is the closed-form expression for a particular associated

Legendre function

P−n
0 (x) =

1

n!

(
1 − x

1 + x

)n/2
, (2.43)

where n ∈ N0. An analogous expression to (2.42) for Qµ
ν (x) in terms of the Gauss hyper-

geometric function exists (§4.3.1 in Magnus, Oberhettinger and Soni (1966)), but since this

particular associated Legendre function is not used in this thesis, we will not list it here.

2.6.1 General properties of associated Legendre functions

As mentioned above, associated Legendre functions are functions which satisfy quadratic

transformations of the hypergeometric function (see §2.4.3 of Magnus, Oberhettinger & Soni

(1966) [67]). One such example of a quadratic transformations of the hypergeometric function

is given by (cf. (2.42))

2F1

(
a, b; a + b− 1

2
; x

)
= 22+b−3/2Γ

(
a + b− 1

2

)
x(3−2a−2b)/4

√
1 − x

P
3/2−a−b
b−a−1/2

(√
1 − x

)
, (2.44)

where x ∈ (0, 1) (see for instance Magnus, Oberhettinger & Soni (1966) [67], p. 53).

In Magnus, Oberhettinger & Soni (1966) pp. 156–163 [67] there is a table that expresses

associated Legendre functions of the first and second kind for z ∈ C \ (−∞, 1] in terms of
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hypergeometric functions with 36 entries. Some of these, that we will use, are entry (27)

e−iπµQµ
ν (z) =

√
π2µ−1Γ

(
ν+µ+1

2

)
e±iπ(µ−ν−1)/2)(z2 − 1)−µ/2

Γ
(
ν−µ+2

2

) 2F1

(−ν − µ

2
,
ν − µ+ 1

2
;

1

2
; z2

)

+

√
π2µΓ

(
ν+µ+2

2

)
e±iπ(µ−ν)/2)z(z2 − 1)−µ/2

Γ
(
ν−µ+1

2

) 2F1

(−ν − µ+ 1

2
,
ν − µ+ 2

2
;

3

2
; z2

)
. (2.45)

and entry (30)

e−iπµQµ
ν (z) =

√
π2µ−1Γ

(
ν+µ+1

2

)
e∓iπ(ν+1/2)(z2 − 1)ν/2

Γ
(
ν−µ+2

2

) 2F1

(−ν − µ

2
,
µ− ν

2
;
1

2
;

z2

z2 − 1

)

+

√
π2µΓ

(
ν+µ+2

2

)
e∓iπ(ν−1/2)z

Γ
(
ν−µ+1

2

)
(z2 − 1)(1−ν)/2 2F1

(−ν − µ+ 1

2
,
−ν + µ+ 1

2
;
3

2
;

z2

z2 − 1

)
. (2.46)

In both of these formulae the upper or lower sign is used accordingly whether Im z ≷ 0.

The associated Legendre functions (of both kinds) satisfy three-term recurrence relations

in terms of the order (Gradshteyn & Ryzhik (2007) [48] (8.732.3)) are

Qµ+1
ν (z) =

1√
z2 − 1

[
(ν − µ)zQµ

ν (z) − (ν + µ)Qµ
ν−1(z)

]
, (2.47)

Qµ+2
ν (z) = −2(µ+ 1)

z√
z2 − 1

Qµ+1
ν (z) + (ν − µ)(ν + µ+ 1)Qµ

ν (z), (2.48)

and

Qµ+1
ν (cosh η) = −µ coth η Qµ

ν (cosh η) +
dQµ

ν

dη
. (2.49)

The recurrence relation for associated Legendre functions in terms of the degree is

(2ν + 1)zQµ
ν (z) = (ν − µ+ 1)Qµ

ν+1(z) + (ν + µ)Qµ
ν−1(z). (2.50)

Some other properties of associated Legendre functions are as follows. The negative-degree

condition for associated Legendre functions of the first kind, cf. (8.2.1) in Abramowitz &

Stegun (1972) [1],

P µ

−ν− 1

2

(z) = P µ

ν− 1

2

(z); (2.51)

the negative-degree condition for associated Legendre functions of the second kind, cf. (8.2.2)

in Abramowitz & Stegun (1972) [1],
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Qµ

−ν− 1

2

(z) =
1

cosπ(ν − µ)

[
cosπ(ν + µ) Qµ

ν− 1

2

(z) + πeiµπ sin νπ P µ

ν− 1

2

(z)

]
; (2.52)

the negative-order condition for associated Legendre functions of the first kind, cf. (8.2.5) in

Abramowitz & Stegun (1972) [1],

P−µ
ν− 1

2

(z) =
Γ(ν − µ+ 1

2
)

Γ(ν + µ+ 1
2
)

[
P µ

ν− 1

2

(z) − 2

π
e−iµπ sin µπ Qµ

ν− 1

2

(z)

]
; (2.53)

and, finally, the negative-order condition for associated Legendre functions of the second

kind, cf. (8.2.6) in Abramowitz & Stegun (1972) [1],

Q−µ
ν− 1

2

(z) = e−2iµπΓ(ν − µ+ 1
2
)

Γ(ν + µ+ 1
2
)
Qµ

ν− 1

2

(z). (2.54)

2.6.2 The Whipple formulae for associated Legendre functions

There is a transformation over an open subset of the complex plane which is particularly

useful in studying associated Legendre functions (see Abramowitz & Stegun (1972) [1] and

Hobson (1955) [51]). This transformation, which is valid on a certain domain of the complex

numbers, accomplishes the following

cosh z ↔ cothw

coth z ↔ coshw

sinh z ↔ (sinhw)−1





. (2.55)

This transformation is accomplished using the map w : D → C, with

D := C \
{
z ∈ C : Re z ≤ 0 and Im z = 2πn, n ∈ Z

}
,

and w defined by

w(z) := log coth
z

2
. (2.56)

The map w is periodic with period 2πi and is locally injective. The map w restricted to

D ∩ {z ∈ C : −π < Im z < π} is verified to be an involution. The transformation (2.55) is

the restriction of the mapping w to this restricted domain.

This transformation is particularly useful for certain associated Legendre functions which

have natural domain given by the real interval (1,∞), such as toroidal harmonics (see Cohl

et al. (2001) [25], Cohl & Tohline (1999) [26]) (and for other associated Legendre functions
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which one might encounter in potential theory), associated Legendre functions of the first

and second kind with odd-half-integer degree and integer-order. The real argument of these

associated Legendre functions naturally occur in [1,∞), and these are the simultaneous ranges

of both the real hyperbolic cosine and cotangent functions. One application of this map

occurs with the Whipple formulae for associated Legendre functions (Cohl & al. (2000) [27],

Whipple (1917) [107]) under index (degree and order) interchange. See for instance, (8.2.7)

and (8.2.8) in Abramowitz & Stegun (1972) [1], namely

P
−ν−1/2
−µ−1/2

(
z√
z2 − 1

)
=

√
2

π

(z2 − 1)1/4e−iµπ

Γ(ν + µ+ 1)
Qµ
ν (z), (2.57)

and

Q
−ν−1/2
−µ−1/2

(
z√

z2 − 1

)
= −i(π/2)1/2Γ(−ν − µ)(z2 − 1)1/4e−iνπP µ

ν (z),

which are valid for Rez > 0 and for all complex ν and µ, except where the functions are not

defined.

2.6.3 Explicit forms for associated Legendre functions of the sec-

ond kind

There are some specific closed-form expressions for Qµ
ν (z) such that ν, µ ∈ C and z ∈

C \ (−∞, 1]. For instance, the 1/2-order associated Legendre functions of the second kind

((8.6.10) in Abramowitz & Stegun (1972) [1]) are given by

Q1/2
ν (z) = i

√
π

2
(z2 − 1)−1/4

[
z +

√
z2 − 1

]−ν−1/2

, (2.58)

One special case of (2.58) is

Q
1/2
−1/2(z) = i

√
π

2
(z2 − 1)−1/4. (2.59)

Similarly the −1/2-order associated Legendre functions of the second kind ((8.6.11) in Abramowitz

& Stegun (1972) [1]) are

Q−1/2
ν (z) = −i

√
2π

2ν + 1
(z2 − 1)−1/4

[
z +

√
z2 − 1

]−ν−1/2

. (2.60)
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Using (2.48), (2.60) and (2.58) we can compute the 3/2-order associated Legendre functions

of the second kind

Q3/2
ν (z) = −i

√
π

2
(z2 − 1)−3/4

(
z +

√
z2 − 1

)−(ν+1/2)
[
z +

(
ν +

1

2

)√
z2 − 1

]
. (2.61)

Some special cases of (2.61) are given by

Q
3/2
−1/2(z) =

1

i

√
π

2
z(z2 − 1)−3/4, (2.62)

Q
3/2
1/2(z) =

1

i

√
π

2
(z2 − 1)−3/4. (2.63)

Some useful odd-half-integer degree, integer-order associated Legendre functions of the

second kind (see Cohl (2003) [22]) are given by

Q−1/2(z) =

√
2

z + 1
K

(√
2

z + 1

)

, (2.64)

Q1/2(z) = z

√
2

z + 1
K

(√
2

z + 1

)

−
√

2(z + 1)E

(√
2

z + 1

)

,

Q1
−1/2(z) =

−1√
2(z − 1)

E

(√
2

z + 1

)

, (2.65)

and

Q1
1/2(z) =

−z√
2(z − 1)

E

(√
2

z + 1

)
+

√
z − 1

2
K

(√
2

z + 1

)
, (2.66)

where K and E are Legendre’s complete elliptic integrals of the first and second kind re-

spectively (see §2.5). The rest of the functions Qm
n−1/2, for n,m ∈ Z can be generated using

(2.50), and they are called toroidal harmonics (see §5.2).

The associated Legendre functions of second kind Qn for n ∈ {0, 1, 2} (see (8.4.2), (8.4.4)

and (8.4.6) in Abramowitz & Stegun (1972) [1]) are given by

Q0(z) =
1

2
log

(
z + 1

z − 1

)
, (2.67)

Q1(z) =
z

2
log

(
z + 1

z − 1

)
− 1, and (2.68)

Q2(z) =
3z2 − 1

4
log

(
z + 1

z − 1

)
− 3z

2
. (2.69)
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For n > 2 one can use (2.50) to generate the rest of these.

2.6.4 Derivatives with respect to the degree of certain integer-

order associated Legendre functions of the first kind

The derivative with respect to its degree for the associated Legendre function of the first kind

evaluated at the zero degree is given in §4.4.3 of Magnus, Oberhettinger & Soni (1966) [67]

as [
∂

∂ν
Pν(z)

]

ν=0

=
z − 1

2
2F1

(
1, 1; 2;

1 − z

2

)
. (2.70)

An important generalization of this formula has recently been derived (see Szmytkowski

(2009) [95]) and is given by

[
∂

∂ν
Pm
ν (z)

]

ν=p

= Pm
p (z) log

z + 1

2

+ [2ψ(2p+ 1) − ψ(p+ 1) − ψ(p−m+ 1)]Pm
p (z)

+ (−1)p+m
p−m−1∑

k=0

(−1)k
2k + 2m + 1

(p−m− k)(p+m+ k + 1)

×
[
1 +

k!(p+m)!

(k + 2m)!(p−m)!

]
Pm
k+m(z)

+ (−1)p
(p+m)!

(p−m)!

m−1∑

k=0

(−1)k
2k + 1

(p− k)(p+ k + 1)
P−m
k (z), (2.71)

where p,m ∈ N0 and 0 ≤ m ≤ p. Some special cases of (2.71) include for m = 0

[
∂

∂ν
Pν(z)

]

ν=p

= Pp(z) log
z + 1

2
+ 2 [ψ(2p+ 1) − ψ(p+ 1)]Pp(z)

+ 2(−1)p
p−1∑

k=0

(−1)k
2k + 1

(p− k)(p+ k + 1)
Pk(z), (2.72)

for m = p

[
∂

∂ν
P p
ν (z)

]

ν=p

= P p
p (z) log

z + 1

2
+ [2ψ(2p+ 1) − ψ(p+ 1) + γ]P p

p (z)

+ (−1)p(2p)!

p−1∑

k=0

(−1)k
2k + 1

(p− k)(p+ k + 1)
P−p
k (z), (2.73)
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where γ is Euler’s constant defined in (2.18). Of course we also have for m = p = 0

[
∂

∂ν
Pν(z)

]

ν=0

= log
z + 1

2
,

which exactly matches (2.70).

2.6.5 Derivatives with respect to the degree and order of asso-

ciated Legendre functions for |z| > 1 using modified Bessel

functions

We present results for parameter derivatives of associated Legendre functions which have

been recently published in Cohl (2010) [23]. We should note that these results are not

going to be used in the rest of this thesis. However we present them nonetheless, since they

represent interesting and new research by the author. In this section, we present and derive

formulae for parameter derivatives of associated Legendre functions of the first kind P µ
ν and

the second kind Qµ
ν , with respect to their parameters, namely the degree ν and the order

µ. Some formulae relating to these derivatives have been previously noted (see §4.4.3 in

Magnus, Oberhettinger & Soni (1966) [67]) and also there has been recent work in this area

[16, 92, 93, 94, 95] with Brychkov (2009) [17] giving a recent reference covering the regime

for argument z ∈ (−1, 1). We cover parameter derivatives of associated Legendre functions

for argument z ∈ C \ (−∞, 1].

We incorporate derivatives with respect to order evaluated at integer-orders for modi-

fied Bessel functions (see Abramowitz & Stegun (1972) [1], Brychkov & Geddes (2005) [18],

Magnus, Oberhettinger & Soni (1966) [67]) to compute derivatives with respect to the de-

gree and the order of associated Legendre functions. Below we apply these results through

certain integral representations of associated Legendre functions in terms of modified Bessel

functions. Modified Bessel functions of the first and second kind respectively can be defined

for unrestricted values of ν (see for instance §3.7 in Watson (1944) [104]) by

Iν(z) :=

∞∑

m=0

(z/2)ν+2m

m!Γ(ν +m + 1)
,

and

Kν(z) :=
π

2

I−ν(z) − Iν(z)

sin πν
.

For ν = n ∈ N0, the first equation yields

In(z) = I−n(z).
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It may be verified that

Kn(z) = lim
ν→n

Kν(z)

is well defined. The modified Bessel function of the second kind is commonly referred to as

a Macdonald function.

The strategy applied in this section is to use integral representations of associated Legen-

dre functions, expressed in terms of modified Bessel functions, and differentiate with respect

to the relevant parameters.

In the following proposition, we have used the convention (2.40).

Proposition 2.6.1. Define the function f : C \ {−1, 1} → C by

f(z) =
z√
z2 − 1

:=
z√

z + 1
√
z − 1

.

This function f has the following properties

1. f
∣∣
C\[−1,1]

is even and f
∣∣
(−1,1)

is odd.

2. The sets (0, 1) and (−1, 0) are mapped onto i(−∞, 0) and i(0,∞) respectively.

3. The sets i(−∞, 0) and i(0,∞) are both mapped to (0, 1).

4. f(0) = 0.

5. If z ∈ C \ [−1, 1] then Re
z√

z2 − 1
> 0.

Proof. Note that

arg (
√
w) =

1

2
arg w,

for w ∈ C \ {0}. If z ∈ C and Im z > 0 then

arg (−(z ± 1)) = −π + arg (z ± 1),

so

arg
(√

−(z ± 1)
)

= −π
2

+ arg
(√

z ± 1
)
,

and we have √
−(z ± 1) = −i

√
z ± 1.

Hence

f(−z) =
−z

i2
√
z + 1

√
z − 1

= f(z).
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Similarly if Im z < 0 then √
−(z ± 1) = i

√
z ± 1,

and we have the same result.

Let x > 1. Then

arg
√
−(x± 1) =

π

2
,

so

f(−x) =
−x√

−(x + 1)
√
−(x + 1)

=
x√

x + 1
√
x− 1

= f(x).

Therefore f
∣∣
C\[−1,1]

is even.

If x ∈ (0, 1) then

f(x) =
−ix√

1 + x
√

1 − x
,

and

f(−x) =
ix√

1 + x
√

1 − x
= −f(x).

Moreover, f(0) = 0. Therefore f
∣∣
(−1,1)

maps to the imaginary axis and is odd.

If x ∈ (0,∞) then

f(ix) =
ix√

ix + 1
√
ix− 1

=
x√

1 + x2
,

and

f(−ix) =
−ix√

−ix + 1
√
−ix− 1

=
x√

1 + x2
,

so f maps both the positive and negative imaginary axes to the real interval (0, 1). Clearly

f(0) = 0. This completes the proof of 1, 2, 3 and 4.

Before we prove 5 we first show that f maps quadrant I into quadrant IV. This is non-

trivial. Let r ∈ (0,∞) and θ ∈ (0, π/2). Then

f(reiθ) =
r exp

[
i(θ − 1

2
φ− 1

2
ψ)
]

(r4 − 2r2 cos(2θ) + 1)1/4
,

where

φ := tan−1

(
r sin θ

r cos θ + 1

)
,

and

ψ :=






π + tan−1

(
r sin θ

r cos θ − 1

)
if r cos θ < 1,

π
2

if r cos θ = 1,

tan−1

(
r sin θ

r cos θ − 1

)
if r cos θ > 1.
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Firstly we would like to prove that θ − 1
2
φ− 1

2
ψ < 0, or equivalently

φ+ ψ > 2θ. (2.74)

We will break the problem into nine main cases:





I. θ ∈
(

0,
π

4

)
.

II. θ =
π

4
.

III. θ ∈
(π

4
,
π

2

)
.





A. r cos θ < 1.

B. r cos θ = 1.

C. r cos θ > 1.

Case IA. We need to show that

tan−1

(
r sin θ

r cos θ + 1

)
+ π + tan−1

(
r sin θ

r cos θ − 1

)
> 2θ,

for all r < 1/ cos θ and θ ∈ (0, π/4). First note that

tan−1

(
r sin θ

r cos θ + 1

)
∈
(

0,
π

2

)
,

and

tan−1

(
r sin θ

r cos θ − 1

)
∈
(
−π

2
, 0
)
,

so

tan−1

(
r sin θ

r cos θ + 1

)
+ π + tan−1

(
r sin θ

r cos θ − 1

)
∈
(
π

2
,
3π

2

)
,

and since 2θ ∈ (0, π/2), we have the desired result.

Case IB. We need to show that

tan−1

(
r sin θ

r cos θ + 1

)
+
π

2
> 2θ,
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for r = 1/ cos θ and θ ∈ (0, π/4). Since r = 1/ cos θ this reduces to

tan−1

(
1

2
tan θ

)
+
π

2
> 2θ.

Which is true since 2θ ∈ (0, π/2) and tan−1
(

1
2

tan θ
)
> 0.

Case IC. Define g : {(θ, r) : θ ∈ (0, π/4), r ∈ (1/ cos θ,∞)} → R by

g(θ, r) := tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
− 2θ.

We need to show that g(θ, r) > 0 for all θ ∈ (0, π/4) and r > 1/ cos θ. Fix θ ∈ (0, π/4). Then

∂g

∂r
(θ, r) = − 4r cos θ sin θ

r4 − 2r2 cos(2θ) + 1
< 0.

Therefore r 7→ g(θ, r) is strictly decreasing. Moreover

lim
r→∞

g(θ, r) = tan−1(tan θ) + tan−1(tan θ) − 2θ = 0.

Hence g(θ, r) > 0 for all r ∈ (1/ cos θ,∞).

Case IIA. This follows as in Case IA.

Case IIB. Trivial.

Case IIC. In this case θ = π/4 and r >
√

2. Consider the function g : (
√

2,∞) → R defined

by

g(r) := tan−1

(
1

1 +
√

2
r

)

+ tan−1

(
1

1 −
√

2
r

)

.

We need to show that g > π/2. The derivative of g is given by

dg(r)

dr
= − 2r

1 + r4
< 0.

This implies that g is a strictly decreasing function. Taking the limit

lim
r→∞

g(r) = tan−1(1) + tan−1(1) =
π

4
+
π

4
=
π

2
.

Since g is a strictly decreasing function of r, we have the desired result.

Case IIIA. Define g : {(θ, r) : θ ∈ (π/4, π/2), r ∈ (0, 1/ cos θ)} → R by

g(θ, r) := tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
− 2θ.
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We need to show that g(θ, r) > −π for all θ ∈ (π/4, π/2) and r < 1/ cos θ. Fix r ∈ (0,∞).

Then if θ > cos−1(1/r) and θ ∈ (π/4, π/2),

∂g

∂r
(θ, r) =

2(r2 cos(2θ) − 1)

r4 − 2r2 cos(2θ) + 1
< 0,

since cos(2θ) ∈ (−1, 0). Therefore θ 7→ g(θ, r) is strictly decreasing. Since

lim
θ→π

2
−
g(θ, r) = tan−1(r) + tan−1(−r) − π = −π,

the required inequality follows.

Case IIIB. For θ ∈ (π/4, π/2), would like to prove the inequality

tan−1

(
r sin θ

r cos θ + 1

)
+
π

2
> 2θ,

with r = 1/ cos θ, or equivalently,

tan−1

(
1

2
tan θ

)
+
π

2
> 2θ.

Consider g : (π/4, π/2) → R defined by

g(θ) := tan−1

(
1

2
tan θ

)
− 2θ +

π

2
.

We need to show that g > 0. Then

∂g

∂θ
(θ) = − 6

4 + tan2 θ
< 0

and

lim
θ→π

2
−
g(θ) = lim

θ→π
2
−

tan−1

(
1

2
tan θ

)
− π +

π

2
= 0.

The required estimate follows.

Case IIIC. Define g : {(θ, r) : θ ∈ (0, π/2), r > 1/ cos θ} → R by

g(θ, r) := tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
.

We would like to prove the inequality g(θ, r) > 2θ for all θ ∈ (π/4, π/2) and r > 1/ cos θ. We
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first show that g(θ, r) > π/2 for all θ ∈ (π/4, π/2) and r > 1/ cos θ. Then

∂g

∂θ
(θ, r) =

2r2(r2 − cos(2θ))

(r2 + 2r cos θ + 1)(r2 − 2r cos θ + 1)
> 0,

for all θ ∈ (π/4, cos−1(1/r)) since cos(2θ) < 0 and all factors are positive. Hence g(θ, r) >

g(π/4, r) for all θ ∈ (π/4, π/2) and r > 1/ cos θ. Next

dg

dr

(π
4
, r
)

=
−2r

(r2 +
√

2r + 1)(r2 −
√

2r + 1)
< 0,

for all r ∈ (
√

2,∞) and

lim
r→∞

g
(π

4
, r
)

=
π

2
.

Therefore g
(π

4
, r
)
>
π

2
for all r ∈ (

√
2,∞) and hence g(θ, r) >

π

2
for all θ ∈

(π
4
,
π

2

)
and

r > 1/ cos θ. We have shown that

tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
>
π

2
,

for all θ ∈ (π/4, π/2) and r > 1/ cos θ. Since also 2θ > π/2, the inequality

tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
> 2θ,

is equivalent to the inequality

tan(2θ) < tan

[
tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)]
.

Using the addition formula for the tangent function (2.2), the above inequality reduces to

tan(2θ) <
r2 sin(2θ)

r2 cos(2θ) − 1
,

which is trivially verified. Thus (2.74) is valid for all θ ∈
(

0,
π

2

)
.

Secondly we would like to show that θ − 1
2
φ− 1

2
ψ > −π

2
or equivalently

φ+ ψ − 2θ < π. (2.75)

This inequality if clear for cases B, C, IIA and IIIA. All that remains is to prove (2.75) for
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case IA. Define g : {(θ, r) : θ ∈ (0, π/4), r ∈ (0, 1/ cos θ)} → R by

g(θ, r) := tan−1

(
r sin θ

r cos θ + 1

)
+ tan−1

(
r sin θ

r cos θ − 1

)
− 2θ.

We need to show that g < 0. Fix θ ∈ (0, π/4). Then

∂g

∂r
(θ, r) = − 4r cos θ sin θ

r4 − 2r2 cos(2θ) + 1
< 0.

Therefore r 7→ g(θ, r) is strictly decreasing. Moreover

lim
r→ 1

cos θ
−
g(θ, r) = tan−1

(
1

2
tan θ

)
− π

2
− 2θ.

However 2θ+ π
2
∈ (π/2, π). It follows that g(θ, r) < 0 for all θ ∈ (0, π/4) and r ∈ (0, 1/ cos θ).

Thus f maps quadrant I into quadrant IV.

Due to the evenness of the f , quadrants I & III are mapped to quadrants IV, and quadrants

II & IV are mapped to quadrant I. Therefore if z ∈ C \ [−1, 1] then Re
z√
z2 − 1

> 0. This

completes the proof of 5. The range of f is {z ∈ C : Re z ≥ 0 and z 6= 1}. Every complex

number in the range of the function is taken twice except for elements in (0, 1) and on the

imaginary axis. These complex numbers are taken only once.

Parameter derivative formulas from Kν(t)

By starting with Gradshteyn & Ryzhik (2007) (6.628.7) [48] (see also Prudnikov et al. (1988)

(2.16.6.3) [81]) and using the Whipple formulae (2.57), we have for Re z > −1 and Re µ >

|Re ν| − 1
2
,

∫ ∞

0

e−ztKν(t)t
µ−1/2dt =

√
π

2
Γ

(
µ− ν +

1

2

)
Γ

(
µ+ ν +

1

2

)(
z2 − 1

)−µ/2
P−µ
ν−1/2(z)

= Γ

(
µ− ν +

1

2

)(
z2 − 1

)−µ/2−1/4
e−iπνQν

µ−1/2

(
z√
z2 − 1

)
, (2.76)

where Kν is a modified Bessel function of the second kind with order ν. We would like to

generate an analytical expression for the derivative of the associated Legendre function of

the second kind with respect to its order, evaluated at integer-orders. In order to do this

our strategy is to solve the above integral expression for the associated Legendre function of

the second kind, differentiate with respect to the order, evaluate at integer-orders, and take

advantage of the corresponding formula for differentiation with respect to order for modified
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Bessel functions of the second kind (see Abramowitz & Stegun (1972) [1], Brychkov (2010)

[17], Brychkov & Geddes (2005) [18], Magnus, Oberhettinger & Soni (1966) [67]). Using the

expression for the associated Legendre function of the second kind in (2.76), we solve for

Qµ
ν−1/2(z) and re-express using the map in (2.56). This gives us the following expression

Qµ
ν−1/2(z) =

(z2 − 1)
−ν/2−1/4

eiπµ

Γ
(
ν − µ+ 1

2

)
∫ ∞

0

exp

( −zt√
z2 − 1

)
Kµ(t)tν−1/2dt. (2.77)

In order to justify differentiation under the integral sign we use the following well-known

corollary of the bounded convergence theorem (cf. §8.2 in Lang (1993) [64]).

Proposition 2.6.2. Let (X,µ) be a measure space, U ⊂ R open and f : X × U → R a

function. Suppose

1. for all y ∈ U the function x 7→ f(x, y) is measurable,

2. ∂f
∂y

(x, y) exists for all (x, y) ∈ X × U ,

3. there exists g ∈ L1(X) such that
∣∣∣∂f∂y (x, y)

∣∣∣ ≤ g(x) for all (x, y) ∈ X × U .

Then the function y 7→
∫
X
f(x, y)dµ(x) is differentiable on U and

d

dy

(∫

X

f(x, y)dµ(x)

)
=

∫

X

∂f

∂y
(x, y)dµ(x).

We call g a L1-majorant.

We wish to differentiate (2.77) with respect to the order µ and evaluate at µ0 = ±m, where

m ∈ N0. The derivative of the modified Bessel function of the second kind with respect to

its order (see Abramowitz & Stegun (1972) [1], Brychkov (2010) [17], Brychkov & Geddes

(2005) [18], Magnus, Oberhettinger & Soni (1966) [67]) is given by

[
∂

∂µ
Kµ(t)

]

µ=±m
= ±m!

m−1∑

k=0

2m−1−k

k!(m− k)
tk−mKk(t) (2.78)

(see for instance (1.14.2.2) in Brychkov (2008) [16]). For a fixed t, Kµ(t) is an even function

of µ ∈ R (see (9.6.6) in Abramowitz & Stegun (1972) [1]), i.e.

K−µ(t) = Kµ(t),

and for µ ∈ [0,∞), Kµ(t) is a strictly increasing function of µ. Also, for a fixed t, ∂Kµ(t)
∂µ

is

an odd function of µ ∈ R and for µ ∈ [0,∞), ∂Kµ(t)
∂µ

is also a strictly increasing function of
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µ. Using (2.78) we can make the following estimate

∣∣∣∣
∂

∂µ
Kµ(t)

∣∣∣∣ <
∂Kτ

∂τ

∣∣∣∣
τ=±(m+1)

, (2.79)

for all µ ∈ (µ0 − 1, µ0 + 1).

To justify differentiation under the integral sign in (2.77), with respect to µ, evaluated at

µ0, we use Proposition 2.6.2. If we fix z and ν, the integrand of (2.77) can be given by the

function f : R × (0,∞) → C defined by

f(µ, t) := exp

( −zt√
z2 − 1

)
tν−1/2Kµ(t).

Since
∂Kµ(t)

∂µ
is a strictly increasing function of µ ∈ [0,∞), we have for all µ ∈ (µ0−1, µ0 +1)

∣∣∣∣
∂f

∂µ
(µ, t)

∣∣∣∣ = exp

( −zt√
z2 − 1

)
tν−1/2

∣∣∣∣
∂

∂µ
Kµ(t)

∣∣∣∣

< exp

( −zt√
z2 − 1

)
tν−1/2

∣∣∣∣∣

[
∂

∂τ
Kτ (t)

]

τ=±(m+1)

∣∣∣∣∣

= exp

( −zt√
z2 − 1

)
tν−1/2

∣∣∣∣

[
∂

∂τ
Kτ (t)

]

τ=m+1

∣∣∣∣ ,

≤ exp

( −zt√
z2 − 1

)
tν−1/2(m + 1)!

m∑

k=0

2m−k

k!(m+ 1 − k)
tk−m−1Kk(t),

≤ exp

( −zt√
z2 − 1

)
tν−1/2(m + 1)!2mt−1Km(t) =: g(t),

where we used (2.78) and the fact that Kk(t) ≤ Km(t) for all k ∈ {0, . . . , m − 1}. Then g

is a L1-majorant for the derivative of the integrand, since the integral (2.77) converges for

Re
z√
z2 − 1

> −1 and Re ν > m− 1
2
.

The conditions for differentiating under the integral sign have been satisfied and we can
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re-write (2.77) as

[
∂

∂µ
Qµ
ν−1/2(z)

]

µ=±m
=
(
z2 − 1

)−ν/2−1/4

[
∂

∂µ

eiπµ

Γ
(
ν − µ+ 1

2

)
]

µ=±m

(2.80)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)
K±m(t)tν−1/2dt

+
(z2 − 1)

−ν/2−1/4
(−1)m

Γ
(
ν ∓m + 1

2

)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)
tν−1/2

[
∂

∂µ
Kµ(t)

]

µ=±m
dt.

The derivative from the first term is given as

[
∂

∂µ

eiπµ

Γ
(
ν − µ+ 1

2

)
]

µ=±m

=
(−1)m

Γ
(
ν ∓m+ 1

2

)
[
iπ + ψ

(
ν ∓m+

1

2

)]
,

where the ψ is the digamma function, (2.15).

Substituting these expressions for the derivatives into the two integrals and using the

map in (2.56) to re-evaluate these integrals in terms of associated Legendre functions gives

the following general expression for the derivative of the associated Legendre function of the

second kind with respect to its order evaluated at integer-orders as

Γ(ν ∓m + 1
2
)

Γ(ν −m + 1
2
)

[
∂

∂µ
Qµ
ν−1/2(z)

]

µ=±m
=

[
iπ + ψ

(
ν ∓m+

1

2

)]
Qm
ν−1/2(z)

±m!

m−1∑

k=0

(−1)k−m (z2 − 1)
(k−m)/2

k!(m− k)2k−m+1
Qk
ν+k−m−1/2(z).

We are now able to obtain formulas for integer values of µ. For µ = 0, the sum gives no

contribution and therefore

[
∂

∂µ
Qµ
ν−1/2(z)

]

µ=0

=

[
iπ + ψ

(
ν +

1

2

)]
Qν−1/2(z).

This agrees with that given in §4.4.3 of Magnus, Oberhettinger & Soni (1966) [67]. For

µ = −1 we have

(
ν2 − 1

4

)[
∂

∂µ
Qµ
ν−1/2(z)

]

µ=−1

=

[
iπ + ψ

(
ν +

3

2

)]
Q1
ν−1/2(z) +

(
z2 − 1

)−1/2
Qν−3/2(z),
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and for µ = +1 we have

[
∂

∂µ
Qµ
ν−1/2(z)

]

µ=1

=

[
iπ + ψ

(
ν − 1

2

)]
Q1
ν−1/2(z) −

(
z2 − 1

)−1/2
Qν−3/2(z).

If we start with the expression for the associated Legendre function of the first kind in

(2.76) and solve for P−µ
ν−1/2(z) we have

P−µ
ν−1/2(z) =

√
2

π

(z2 − 1)
µ/2

Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

)
∫ ∞

0

e−ztKν(t)t
µ−1/2dt. (2.81)

To justify differentiation under the integral sign in (2.81), with respect to ν, evaluated at

ν = ±n, where n ∈ N0, we use as similar argument as in (2.77) only with modification µ 7→ ν

and m 7→ n. The same modified L1-majorant will work for the derivative of this integrand,

since the integral (2.81) converges for Re z > −1 and Re ν > |Reµ| − 1
2
.

The conditions for differentiating under the integral sign have been satisfied and we can

re-write (2.81) as

[
∂

∂ν
P−µ
ν−1/2(p)

]

ν=±n
=

√
2

π

(
z2 − 1

)µ/2
[
∂

∂ν

1

Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

)
]

ν=±n

(2.82)

×
∫ ∞

0

e−ztK±n(t)tµ−1/2dt

+

√
2

π

(z2 − 1)
µ/2

Γ
(
µ∓ n+ 1

2

)
Γ
(
µ± n+ 1

2

)

×
∫ ∞

0

e−zttµ−1/2

[
∂

∂ν
Kν(t)

]

ν=±n
dt.

The derivative from the first term in (2.82) is given as

[
∂

∂ν

1

Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

)
]

ν=±n

=
ψ
(
µ∓ n+ 1

2

)
− ψ

(
µ± n + 1

2

)

Γ
(
µ± n+ 1

2

)
Γ
(
µ∓ n+ 1

2

) .

Substituting this expression for the derivative and that given in (2.78) yields the following

general expression for the derivative of the associated Legendre function of the first kind with
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respect to its degree evaluated at odd-half-integer degrees as

±
[
∂

∂ν
P−µ
ν−1/2(z)

]

ν=±n
=

[
ψ

(
µ− n +

1

2

)
− ψ

(
µ+ n +

1

2

)]
P−µ
n−1/2(z)

+
n!

Γ
(
µ+ n+ 1

2

)
n−1∑

k=0

Γ
(
µ− n+ 2k + 1

2

)
(z2 − 1)

(n−k)/2

k!(n− k)2k−n+1
P−µ+n−k
k−1/2 (z).

If one makes a global replacement −µ 7→ µ, using the properties of gamma and digamma

functions, this result reduces to

±
[
∂

∂ν
P µ
ν−1/2(z)

]

ν=±n
=

[
ψ

(
µ+ n +

1

2

)
− ψ

(
µ− n+

1

2

)]
P µ
n−1/2(z)

+ n! Γ

(
µ− n+

1

2

) n−1∑

k=0

(z2 − 1)
(n−k)/2

Γ
(
µ+ n− 2k + 1

2

)
k!(n− k)2k−n+1

P µ+n−k
k−1/2 (z).

Note that by using the recurrence relation for digamma functions (2.16) we establish

ψ

(
µ+ n +

1

2

)
− ψ

(
µ− n+

1

2

)
= 2µ

n∑

l=1

[
µ2 −

(
l − 1

2

)2
]−1

.

We are now able to compute these derivatives for integer values of ν. For ν = 0 there is no

contribution from the sum and we have

[
∂

∂ν
P µ
ν−1/2(z)

]

ν=0

= 0,

which agrees with that given in §4.4.3 of Magnus, Oberhettinger & Soni (1966) [67]. We also

have for ν = ±1

±
(
µ2 − 1

4

)[
∂

∂ν
P µ
ν−1/2(z)

]

ν=±1

= 2µP µ
1/2(z) +

(
z2 − 1

)1/2
P µ+1
−1/2(z).

Note that this method does not seem amenable to computing derivatives with respect to

the degree of associated Legendre functions of the form P µ
ν evaluated at integer-degrees, since

shifting the degree by +1/2 in (2.81) converts the modified Bessel function of the second kind

to a form like Kν+1/2, and the derivative with respect to order of this Bessel function (see

Abramowitz & Stegun (1972) [1], Brychkov & Geddes (2005) [18], Magnus, Oberhettinger &

Soni (1966) [67]) is not of a form which is easily integrated.
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Parameter derivative formulas from Iν(t)

By starting with Gradshteyn & Ryzhik (2007) (6.624.5) [48] (see also Prudnikov et al. (1988)

(2.15.3.2) [81]) and using the Whipple formulae (2.57), we have for Re z > 1 and Re µ >

−Re ν − 1
2
,

∫ ∞

0

e−ztIν(t)t
µ−1/2dt =

√
2

π
e−iπµ

(
z2 − 1

)−µ/2
Qµ
ν−1/2(z)

= Γ

(
µ+ ν +

1

2

)(
z2 − 1

)−µ/2−1/4
P−ν
µ−1/2

(
z√
z2 − 1

)
, (2.83)

where Iν is a modified Bessel function of the first kind with order ν.

We will use this particular integral representation of associated Legendre functions to

compute certain derivatives of the associated Legendre functions with respect to the degree

and order. We start with the integral representation of the associated Legendre function of

the second kind (2.83), namely

Qµ
ν−1/2(z) =

√
π

2
eiπµ

(
z2 − 1

)µ/2
∫ ∞

0

e−zttµ−1/2Iν(t)dt. (2.84)

To justify differentiation under the integral sign in (2.84), with respect to ν, evaluated at

ν0 = ±n, where n ∈ N, we use again Proposition 2.6.2. If we fix z and µ, the integrand of

(2.84) can be given by the function f : R× (0,∞) → C defined by

f(ν, t) := e−zttµ−1/2Iν(t).

We use the following integral representation for the derivative with respect to order of the

modified Bessel function of the first kind (see (75) in Apelblat & Kravitsky (1985) [4])

∂Iν(t)

∂ν
= −ν

∫ t

0

K0(t− x)Iν(x)x−1dx. (2.85)

Let δ ∈ (0, 1) and M > 2. Consider g : (0,∞) → [0,∞) defined by

g(t) := Me−tRe ztReµ−1/2

∫ t

0

K0(t− x)Iδ(x)x−1dx.
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Using (2.85) we have for all ν ∈ (δ,M)

∣∣∣∣
∂f(ν, t)

∂ν

∣∣∣∣ = e−tRe ztReµ−1/2

∣∣∣∣
∂Iν(t)

∂ν

∣∣∣∣

= νe−tRe ztReµ−1/2

∫ t

0

K0(t− x)Iν(x)x−1dx

≤Me−tRe ztReµ−1/2

∫ t

0

K0(t− x)Iδ(x)x−1dx

= g(t),

since for fixed t, ν 7→ Iν(t) is strictly decreasing. Now we show that g ∈ L1. The integral of

g over its domain is

∫ ∞

0

g(t)dt = M

∫ ∞

0

e−tRe ztReµ−1/2

∫ t

0

K0(t− x)Iδ(x)x−1dxdt.

By making a change of variables in the integral, (x, t) 7→ (x, y) such that y = t− x, yields

∫ ∞

0

g(t)dt = M

∫ ∞

0

e−yRe zK0(y)

∫ ∞

0

e−xRe z(x+ y)Reµ−1/2x−1Iδ(x)dx dy.

First we show that g is integrable in a neighbourhood of zero. Suppose Re µ − 1/2 < 0,

x, y ∈ (0, 1] and a ∈ (0, 1) then

(x+ y)Reµ−1/2 = (x + y)−a(x + y)Reµ−1/2+a ≤ y−a max
(
2Reµ−1/2+a, xReµ−1/2+a

)

then since K0(y) ∼ − log(y) ((9.6.8) in Abramowitz & Stegun (1972) [1]) it follows that

∫ 1

0

K0(y)y−ady <∞.

Furthermore since Iδ(x) ∼ (x/2)δ/Γ(δ + 1) ((9.6.7) in Abramowitz & Stegun (1972) [1]) it

follows that ∫ 1

0

Iδ(x)x−1dx <∞.

Now we show that ∫ 1

0

Iδ(x)xReµ−1/2+a−1dx <∞, (2.86)
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which is convergent if Reµ− 1/2 + a+ δ > 0. If we define

ǫ :=
Reµ+ ν0 + 1

2

3
> 0,

then Reµ = −ν0 − 1/2 + 3ǫ. Therefore if we take a := 1 − ǫ and δ := ν0 − ǫ < ν0 then

Reµ− 1

2
+ a+ δ = ǫ > 0,

and hence (2.86) is convergent and thus g is integrable near the origin. If Reµ− 1
2
≥ 0 then

similarly g is integrable near the origin.

Now we show that g is integrable. Suppose Reµ− 1/2 > 0. Then

(x + y)Re µ−1/2 ≤ [2 max(x, y))]Re µ−1/2 = 2Re µ−1/2 max(xRe µ−1/2, yRe µ−1/2)

for all x, y ≥ 0. For y → ∞ one has Kν(y) ∼
√
π/(2y)e−y ((8.0.4) in Olver (1997) [74]).

Hence it follows that ∫ ∞

1

K0(y)e−yRe zyRe µ−1/2dy <∞,

and ∫ ∞

1

K0(y)e−yRe zdy <∞.

Furthermore since for x→ ∞, Iδ(x) ∼ ex/
√

2πx (p. 83 in Olver (1997) [74]) it follows that

∫ ∞

1

e−xRe zIδ(x)xRe µ−3/2dx <∞,

and ∫ ∞

1

e−xRe zIδ(x)x−1dx <∞.

If Reµ− 1
2
≤ 0 then similarly g is integrable.

Therefore g is a L1-majorant for the derivative with respect to ν 6= 0 of the integral

(2.84). It is unclear whether differentiation under the integral sign is also possible for ν0 = 0.

However, we show below that our derived results for derivatives with respect to the degree

for associated Legendre functions match up with the to be derived results for degree ν = 0.

It is true that relatively little is known about the properties of Bessel functions in relation

to operations (differentiation and integration) with respect to their order (cf. Apelblat &

Kravitsky (1985) [4]).

Differentiating with respect to the degree ν and evaluating at ν = ±n, where n ∈ N, one
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obtains

[
∂

∂ν
Qµ
ν−1/2(z)

]

ν=±n
=

√
π

2
eiπµ

(
z2 − 1

)µ/2
∫ ∞

0

e−zttµ−1/2

[
∂

∂ν
Iν(t)

]

ν=±n
dt. (2.87)

The derivative of the modified Bessel function of the first kind (2.87) (see Abramowitz & Ste-

gun (1972) [1], Brychkov (2010) [17], Brychkov & Geddes (2005) [18], Magnus, Oberhettinger

& Soni (1966) [67]) is given by

[
∂

∂ν
Iν(t)

]

ν=±n
= (−1)n+1Kn(t) ± n!

n−1∑

k=0

(−1)k−n

k!(n− k)

tk−n

2k−n+1
Ik(t) (2.88)

(see for instance (1.13.2.1) in Brychkov (2008) [16]).

Inserting (2.88) into (2.87) and using (2.76) and (2.83), we obtain the following general

expression for the derivative of the associated Legendre function of the second kind with

respect to its degree evaluated at odd-half-integer degrees as

[
∂

∂ν
Qµ
ν−1/2(z)

]

ν=±n
= −

√
π

2
eiπµΓ

(
µ− n +

1

2

)(
z2 − 1

)−1/4
Qn
µ−1/2

(
z√

z2 − 1

)

± n!
n−1∑

k=0

(z2 − 1)
(n−k)/2

2k−n+1k!(n− k)
Qµ+k−n
k−1/2 (z). (2.89)

We are now able to compute these derivatives for non-zero integer values of ν. For instance,

we have for ν = ±1

[
∂

∂ν
Qµ
ν−1/2(z)

]

ν=±1

= −
√
π

2
eiπµΓ

(
µ− 1

2

)(
z2 − 1

)−1/4
Q1
µ−1/2

(
z√

z2 − 1

)

±
(
z2 − 1

)1/2
Qµ−1

−1/2(z).

Note that

[
∂

∂ν
Qµ
ν−1/2(z)

]

ν=0

= −
√
π

2
eiπµΓ

(
µ+

1

2

)(
z2 − 1

)−1/4
Qµ−1/2

(
z√

z2 − 1

)
,

by Magnus, Oberhettinger & Soni (1966) [67]. Therefore (2.89) is also valid if ν = 0.

Similarly, we can see that this method will not be useful for computing derivatives with

respect to the degree of associated Legendre functions of the form Qµ
ν evaluated at integer-

degrees. Shifting the degree by +1/2 in (2.87) converts the modified Bessel function of the

first kind to Iν+1/2(t), and the derivative with respect to order of this Bessel function (see
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Abramowitz & Stegun (1972) [1], Brychkov & Geddes (2005) [18], Magnus, Oberhettinger &

Soni (1966) [67]) is easily integrable.

Finally, we obtain a formula for the derivative with respect to the order for the associated

Legendre function of the first kind evaluated at integer-orders. In order to do this we use the

integral expression for the associated Legendre function of the first kind given by (2.83) and

the map given in (2.56) to convert to the appropriate argument. Now use the negative-order

condition for associated Legendre functions of the first kind (see for example (22) in Cohl et

al. (2000) [27]) to convert to a positive order, namely

P µ
ν−1/2(z) =

2

π
e−iµπ sin(µπ)Qµ

ν−1/2(z)

+
(z2 − 1)−ν/2−1/4

Γ(ν − µ+ 1
2
)

∫ ∞

0

exp

( −zt√
z2 − 1

)
Iµ(t)tν−1/2dt. (2.90)

To justify differentiation under the integral sign in (2.90), with respect to µ, evaluated

at µ = ±m, where m ∈ N, we use as similar argument as in (2.84) only with modification

ν 7→ µ and n 7→ m. The same modified L1-majorant will work for the derivative of this

integrand, since the integral (2.90) converges for Re
z√

z2 − 1
> 1 and Re µ > −Re ν − 1

2
.

Since we were unable to justify differentiation under the integral for ν = 0 before, the case

for differentiation under the integral (2.90) with respect to µ evaluated at µ = 0 remains

open. However, below we show that our derived results for derivatives with respect to the

order for associated Legendre functions match up to previously established results for order

µ = 0.

Differentiating both sides of the resulting expression with respect to the order µ and

evaluating at µ = ±m, where m ∈ N yields

[
∂

∂µ
P µ
ν−1/2(z)

]

µ=±m
= 2Q±m

ν−1/2(z)

+
(
z2 − 1

)−ν/2−1/4

{
∂

∂µ

[
Γ

(
ν − µ+

1

2

)]−1
}

µ=±m

×
∫ ∞

0

exp

( −zt√
z2 − 1

)
I±m(t)tν−1/2dt

+
(z2 − 1)

−ν/2−1/4

Γ
(
ν ∓m+ 1

2

)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)
tν−1/2

[
∂

∂µ
Iµ(t)

]

µ=±m
dt.
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The derivative of the reciprocal of the gamma function reduces to

{
∂

∂µ

[
Γ

(
ν − µ+

1

2

)]−1
}

µ=±m

=
ψ
(
ν ∓m + 1

2

)

Γ
(
ν ∓m + 1

2

) .

The derivative with respect to order for the modified Bessel function of the first kind is given

in (2.88). The integrals are easily obtained by applying the map given by (2.56) as necessary

to (2.76) and (2.83). Hence by also using standard properties of associated Legendre, gamma,

and digamma functions we obtain the following compact form

Γ(ν ∓m + 1
2
)

Γ(ν −m + 1
2
)

[
∂

∂µ
P µ
ν−1/2(z)

]

µ=±m
= Qm

ν−1/2(z) + ψ

(
ν ∓m+

1

2

)
Pm
ν−1/2(z)

±m!

m−1∑

k=0

(−1)k−m (z2 − 1)
(k−m)/2

2k−m+1k!(m− k)
P k
ν+k−m−1/2(z). (2.91)

We are now able to obtain formulas for integer values of µ. For instance, for µ = −1 we have

(
ν2 − 1

4

)[
∂

∂µ
P µ
ν−1/2(z)

]

µ=−1

= Q1
ν−1/2(z) + ψ

(
ν +

3

2

)
P 1
ν−1/2(z) +

(
z2 − 1

)−1/2
Pν−3/2(z),

and for µ = +1 we have

[
∂

∂µ
P µ
ν−1/2(z)

]

µ=1

= Q1
ν−1/2(z) + ψ

(
ν − 1

2

)
P 1
ν−1/2(z) −

(
z2 − 1

)−1/2
Pν−3/2(z).

Note that [
∂

∂µ
P µ
ν−1/2(z)

]

µ=0

= Qν−1/2(z) + ψ

(
ν +

1

2

)
Pν−1/2(z),

by §4.4.3 of Magnus, Oberhettinger & Soni (1966) [67]. So (2.91) is also valid if µ = 0.

2.7 Orthogonal polynomials

Jacobi functions of both kinds are general with 3 complex parameters as well as a complex

argument. Associated Legendre functions can be written in terms of Jacobi functions (see

§7.4.3 in Vilenkin & Klimyk (1991) [101]), and these are both special cases of the Gauss

hypergeometric function. We will restrict our attention mostly to associated Legendre func-

tions. However, Jacobi polynomials, a restriction of Jacobi functions play an important role

the study of hyperspherical harmonics in higher dimensions (see Chapter 6).

The Jacobi polynomials are a general class of orthogonal polynomials which are given in
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terms of a finite Gauss hypergeometric series

P (α,β)
n (x) =

(α + 1)n
n!

2F1

(
−n, 1 + α + β + n;α + 1;

1 − x

2

)
, (2.92)

where n ∈ N0, α, β ∈ C and x ∈ [−1, 1]. Gegenbauer polynomials are specific cases of the

Jacobi polynomials (see (6.4.9) in Andrews, Askey & Roy (1999) [3])

Cλ
n(x) =

Γ(2λ+ n)Γ
(
λ+ 1

2

)

Γ(2λ)Γ
(
λ+ n+ 1

2

)P (λ−1/2,λ−1/2)
n (x), (2.93)

where λ ∈ C. One useful special value for the Gegenbauer polynomials is

Cλ
n(1) =

(
2λ+ n− 1

n

)
(2.94)

(see (8.937.4) in Gradshteyn & Ryzhik (2007) [48]). The generating function for Gegenbauer

polynomials is given by
1

(1 + z2 − 2xz)λ
=

∞∑

n=0

Cλ
n(x)zn, (2.95)

where |z| < 1 (see for instance, p. 222 in Magnus, Oberhettinger & Soni (1966) [67]). Cheby-

shev polynomials of the first kind are also given as special cases of Jacobi and Gegenbauer

polynomials (see (22.5.23) in Abramowitz & Stegun (1972) [1])

Tn(x) =
4n(
2n
n

)P (−1/2,−1/2)
n (x).

The Chebyshev polynomials of the first kind can also be written concisely as follows (see

(22.3.15) in Abramowitz & Stegun (1972) [1])

Tn(cosψ) = cos(nψ).

The generating function for Chebyshev polynomials of the first kind (Magnus, Oberhettinger

& Soni (1966) [67] and Fox & Parker (1968) [41], p. 51) is given as

1 − z2

1 + z2 − 2xz
=

∞∑

n=0

ǫnTn(x)zn, (2.96)

where |z| < 1 and ǫn := 2 − δn,0 is the Neumann factor (see p. 744 in Morse & Feshbach

(1953) [71]), commonly-occurring in Fourier cosine series, with δi,j being the Kronecker delta
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symbol

δi,j :=

{
1 if i = j,

0 if i 6= j,

for i, j ∈ Z. Associated Legendre functions Pm
l (x) for l ∈ N0 and m ∈ {−l, . . . , l} are

expressible in terms of Gegenbauer polynomials and therefore also in terms of Jacobi poly-

nomials

Pm
l (x) = (−1)m(2m− 1)!!(1 − x2)m/2C

m+1/2
l−m (x) (2.97)

(see (8.936.2) in Gradshteyn & Ryzhik (2007) [48]).
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3
Normalized fundamental solutions for

powers of the Laplacian in Rd

In this chapter we review some literature concerning normalized fundamental solutions for

powers of the Laplacian in Rd. The classical results reviewed in this chapter will be necessary

material for the rest of this thesis. One may gather further fundamental background material

from Gilbarg & Trudinger (1983) [47], Folland (1976) [40], Friedman (1969) [42] and Boyling

(1996) [14].

We begin this chapter by introducing the Laplace equation, Poisson’s equation, and in-

tegral solutions of Poisson’s equation through a normalized fundamental solution for the

Laplacian. Then we discuss some known results relating to integral solutions of the inhomo-

geneous polyharmonic equation, and conclude this chapter by presenting a theorem which

gives a closed-form expression for normalized fundamental solutions for powers of the Lapla-

cian in Rd.

49
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3.1 Normalized fundamental solution for the Laplacian

If Φ satisfies Laplace’s equation, in Euclidean space Rd, given by

−∆Φ(x) = 0,

where d ∈ N, x ∈ Rd, and ∆ is the Laplacian operator defined by

∆ :=

d∑

i=1

∂2

∂x2
i

,

then Φ is called a harmonic function. By Euclidean space Rd, we mean the normed vector

space given by the pair (Rd, ‖ · ‖), where ‖ · ‖ is the Euclidean norm on Rd defined by

‖x‖ :=
√
x2

1 + · · · + x2
d.

Next, Poisson’s equation (the inhomogeneous Laplace equation) is given by

−∆Φ(x) = ρ(x), (3.1)

where ρ : Rd → R integrable, or even more generally ρ ∈ (D(Rd))′, where D(Rd) is the

space of smooth compactly supported functions on Rd with a suitable notion of convergence

which makes it into a complete locally convex topological vector space (see §2.1 in Hörmander

(2003) [52]).

A fundamental solution for the Laplacian in Rd is a function gd1 which satisfies the equation

−∆gd1(x,x′) = cδ(x − x′),

where x′ ∈ Rd, δ is the d-dimensional Dirac delta function (see for instance p. 90 in John

(1982) [61]), and c ∈ R, c 6= 0. If c 6= 1 then we call a fundamental solution of the Laplacian

in Rd unnormalized. A normalized fundamental solution Gd1 for the Laplacian satisfies the

above equation, with c = 1, namely

−∆Gd1 (x,x′) = δ(x − x′). (3.2)

In Euclidean space Rd, a normalized Green’s function for Laplace’s equation (normalized

fundamental solution for the Laplacian) is well-known and is given in the following theorem

(see Folland (1976) [40], p. 94, Gilbarg & Trudinger (1983) [47], p. 17, Bers et al. (1964) [11],

p. 211).
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Theorem 3.1.1. Let d ∈ N. Define

Gd1 (x,x′) =






Γ(d/2)

2πd/2(d− 2)
‖x − x′‖2−d if d = 1 or d ≥ 3,

1

2π
log ‖x − x′‖−1 if d = 2,

then Gd1 is a normalized fundamental solution for −∆ in Euclidean space Rd, where ∆ is the

Laplace operator in Rd.

Note most authors only present the above theorem for the case d ≥ 2 but it is easily-verified

to also be valid for the case d = 1 as well. By expressing the gamma function in terms of the

factorial and double factorial functions we can re-write Gd1 as follows

Gd1(x,x′) =






(d− 4)!!

2(d+1)/2π(d−1)/2
‖x − x′‖2−d if d = 1 or d ≥ 3 odd,

1

2π
log ‖x − x′‖−1 if d = 2,

(d/2 − 2)!

4πd/2
‖x − x′‖2−d if d ≥ 4 even.

It is clear that in general Gd1 is not unique since one can add any harmonic function

h : Rd → R to Gd1 and still obtain a solution to (3.2) since h is in the kernel of −∆.

Proposition 3.1.2. There exists precisely one C∞-function G : (Rd × Rd) \ {(x,x) : x ∈
Rd} → R such that for all x′ ∈ Rd the function Gx′ : Rd \ {x′} → R defined by Gx′(x) =

G(x,x′) is a distribution on Rd with

−∆Gx′ = δ(· − x′)

and

lim
‖x‖→∞

Gx′(x) = 0. (3.3)

Proof. Existence: clear. Uniqueness. Suppose G and G̃ are two such functions. Let x′ ∈ Rd.

Define the C∞-function h : Rd \ {x′} → R by h = Gx′ − G̃x′ . Then h is a distribution on

Rd with −∆h = 0. By elliptic regularity h can be extended to a C∞-function ĥ : Rd → R.

It follows from (3.3) for G and G̃ that lim‖x‖→∞ ĥ(x) = 0. Hence ĥ is bounded. But every

bounded harmonic function on Rd is constant. So ĥ is constant. Since lim‖x‖→∞ ĥ(x) = 0,

this constant vanishes. Therefore h = 0 and G(x,x′) = G̃(x,x′) for all x ∈ Rd \ {x′}.
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We wish to consider solutions Φ : Rd → R to Poisson’s equation (3.1) given an integrable

function ρ : Rd → R. An integral solution of Poisson’s equation is given by

Φ(x) =

∫

Rd

Gd1 (x,x′)ρ(x′)dx′. (3.4)

This is called the Newtonian potential Φ with density ρ (see Gilbarg & Trudinger (1983) [47],

p. 51).

By Proposition 3.1.2 the function Gd1 is the unique normalized fundamental solution which

satisfies the decay (3.3), if d ≥ 3.

3.2 Normalized fundamental solutions for powers of

the Laplacian

If Φ satisfies the polyharmonic equation given by

(−∆)kΦ(x) = 0, (3.5)

where k ∈ N and Φ ∈ C2k(Rd) then Φ is called polyharmonic. If the power k of the Laplacian

equals two, then (3.5) is called the biharmonic equation and Φ is called biharmonic. The

inhomogeneous polyharmonic equation is given by

(−∆)kΦ(x) = ρ(x). (3.6)

We would also like to take ρ to be an integrable function so that a solution to (3.6) exists.

A fundamental solution for the polyharmonic equation in Rd is a function gdk which satisfies

the equation

(−∆)kgdk(x,x
′) = cδ(x − x′), (3.7)

where c ∈ R, c 6= 0. If c 6= 1 then we call a fundamental solution of the polyharmonic equation

in Rd unnormalized. A normalized fundamental solution Gdk for the Laplacian satisfies the

above equation, with c = 1, namely

(−∆)kGdk(x,x′) = δ(x − x′).
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Proposition 3.2.1. Let k ∈ N. There exists precisely one C∞-function G : (Rd × Rd) \
{(x,x) : x ∈ Rd} → R such that for all x′ ∈ Rd the function Gx′ : Rd \ {x′} → R defined by

Gx′(x) = G(x,x′) is a distribution on Rd with

(−∆)kGx′ = δ(· − x′),

and

lim
‖x‖→∞

(−∆)jGx′(x) = 0, (3.8)

for all j ∈ {0, . . . , k − 1}.

Proof. This follows by induction, similarly to the proof of Proposition 3.1.2.

We would like to construct a sequence of fundamental solutions such that

−∆Gdk+1(x,x
′) = Gdk(x,x′). (3.9)

Standard references which refer to the form of a normalized fundamental solution for

powers of the Laplacian include Aronszajn et al. (1983) ([6], p. 8), Boyling (1996) [14],

Friedman (1969) ([42], p. 5), John (1955) ([60], p. 44), and Schwartz (1950) ([87], p. 45). A

fundamental solution of the polyharmonic equation in Rd is given in terms of the Euclidean

distance between two points x,x′ ∈ Rd. A straightforward computation verifies that the

formula for the Laplacian acting on a power of the Euclidean distance between two points is

given by

−∆‖x − x′‖ν = −ν(d+ ν − 2)‖x− x′‖ν−2, (3.10)

and the formula for the Laplacian acting on a power of the Euclidean distance between two

points multiplied by the logarithm of the Euclidean distance between two points is given by

−∆‖x − x′‖ν log ‖x − x′‖ = −‖x − x′‖ν−2 [ν(d + ν − 2) log ‖x − x′‖ + 2ν + d− 2] . (3.11)

These two expressions are very important for deriving fundamental solutions for the Laplacian

in Rd.

3.2.1 Integral solutions for arbitrary natural powers of the Lapla-

cian

In what follows we will utilize Green’s second identity, namely (see for instance p. 17 in

Gilbarg & Trudinger (1983) [47])
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∫

V

φ(−∆′ψ)dx′ =

∫

V

ψ(−∆′φ)dx′ +

∮

∂V

(
ψ
∂φ

∂n
− φ

∂ψ

∂n

)
dS ′, (3.12)

valid for all φ, ψ ∈ C2(V̄ ), where we denote the Laplacian with respect to the primed coor-

dinates by ∆′, V is a bounded connected region in Rd with C1 boundary ∂V , ∂/∂n is the

normal derivative at the boundary, dx′ is the infinitesimal ‘volume’ element, and dS ′ is the

infinitesimal ‘surface area’ element. Note that when Green’s second identity (3.12) is used,

all derivatives with respect to variables under the integral sign are to be taken with respect

to the primed variable.

Let ρ ∈ C2
c (Rd). We use (3.12) with V = Bs(x) \ B̄r(x) with s large and r small, where

Br(x) = {x ∈ Rd : ‖x‖ < r}. In the limit r ↓ 0 the surface terms originating from ∂Br(x)

vanish (see for example p. 18 in Gilbarg & Trudinger (1983) [47]). Since ρ ∈ C2
c (Rd) an

integral solution of the inhomogeneous polyharmonic equation (3.6) is given by

Φ(x) =

∫

Rd

Gdk(x,x′)ρ(x′)dx′. (3.13)

We can repeatedly apply Green’s second identity (3.12) to an integral solution of the in-

homogeneous polyharmonic equation (3.13) to derive alternative forms of an integral solution

for the inhomogeneous polyharmonic equation. For instance, for all p ∈ N and ρ ∈ C2
c (Rd),

one can verify that an integral solution of Poisson’s equation, (3.6) with k = 1, is given by

Φ1(x) =

∫

Rd

((−∆′)pρ(x′))Gd1+p(x,x′)dx′.

In exactly the same fashion, one can verify that an integral solution of the inhomogeneous

biharmonic equation, (3.6) with k = 2, is given by

Φ2(x) =

∫

Rd

((−∆′)pρ(x′))Gd2+p(x,x′)dx′.

And more generally, an integral solution of the inhomogeneous polyharmonic equation (3.6),

is given by

Φk(x) =

∫

Rd

((−∆′)pρ(x′))Gdk+p(x,x′)dx′.

3.2.2 Normalized fundamental solutions for powers of the Lapla-

cian in R3 (and R)

One method for computing a Green’s function for higher-harmonic equations is to use ap-

propriate powers of the Euclidean distance between two points and repeatedly integrating
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by parts (twice) by using Green’s second identity (3.12) as applied to an integral solution of

the inhomogeneous polyharmonic equation (3.13). In the following example we demonstrate

how to compute a closed-form expression for a Green’s function of the biharmonic equation

and for higher-harmonic equations in R3. An analogous result is presented in R. This ex-

ample is given to illustrate how a fundamental solution of the polyharmonic equation may

be generated in Rd.

In d = 3 the Euclidean distance between two points is given by

‖x − x′‖ =
(
(x1 − x′1)

2 + (x2 − x′2)
2 + (x3 − x′3)

2
)1/2

, (3.14)

and using (3.10) we obtain

−∆‖x − x′‖ = −2‖x − x′‖−1. (3.15)

A fundamental solution for the Laplacian in R3 is given by

G3
1(x,x′) =

1

4π‖x − x′‖ ,

then through (3.4), the Newtonian potential in R3 with integrable density ρ is given by

Φ(x) =
1

4π

∫

R3

ρ(x′)

‖x − x′‖dx
′. (3.16)

If ρ ∈ C2
c (R3) and we apply Green’s second identity (3.12) to (3.16), and use (3.15) then

Φ(x) =
1

4π

∫

R3

ρ(x′)
1

2
∆′‖x − x′‖ dx′

=
−1

8π

∫

R3

ρ(x′)(−∆′‖x − x′‖) dx′

=
−1

8π

∫

R3

(−∆′ρ(x′)) ‖x − x′‖ dx′.

This yields an alternative solution to Poisson’s equation.

The above procedure produced an algebraic function such that when the Laplacian acts

twice upon it, it produces a Dirac delta function. Through (3.15) we have

−∆
1

8π
‖x − x′‖ =

1

4π‖x − x′‖ = G3
1(x,x′).
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However, through (3.9) we know that

−∆G3
2(x,x′) = G3

1(x,x′).

Therefore a Green’s function for the biharmonic equation is given by

G3
2(x,x′) =

−1

8π
‖x − x′‖.

Applying the above procedure repeatedly, yields for general natural powers of the Laplacian

(3.10),

−∆‖x − x′‖2k−1 = −(2k − 1)(2k)‖x − x′‖2k−3,

for all k ∈ N. Repeated use of Green’s second identity and requirements at least that

ρ ∈ C2k−2
c (R3), for k ≥ 2 yields alternative descriptions of a solution to Poisson’s equation,

namely

Φ(x) =
(−1)k+1

4(2k − 2)! π

∫

R3

(
(−∆′)k−1ρ(x′)

)
‖x − x′‖2k−3 dx′.

Our iterative procedure has produced an algebraic function such that when the Laplacian

acts k times upon it, it produces a Dirac delta function. Therefore, we can now see that a

normalized fundamental solution for the polyharmonic equation in R3 is given by

G3
k(x,x′) =

(−1)k+1‖x − x′‖2k−3

4π(2k − 2)!
.

A similar procedure produces a normalized fundamental solution for natural powers of

the Laplacian in R. This is given by

G1
k(x, x′) =

(−1)k|x− x′|2k−1

2(2k − 1)!
,

where the Euclidean norm ‖ · ‖ on R coincides with the absolute value function | · | on R.

3.2.3 Logarithmic fundamental solutions for d even and k ≥ d/2

In even dimensions d for powers of the Laplacian k greater than or equal to the dimension

divided by two, a normalized fundamental solution seriously changes character. It is has

logarithmic behaviour. The point is that there is no power-law function which when twice

differentiated gives a reciprocal square. A fundamental solution of the Laplacian for all even

dimensions greater than or equal to four is proportional to ‖x−x′‖2−d. For instance in d = 4,

a fundamental solution of the Laplacian is proportional to ‖x − x′‖−2. The only function
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which when twice differentiated is a reciprocal square is one which is logarithmic.

In order to treat this behaviour we look for a sequence of functions Θp
d(r), where r :=

‖x − x′‖, x 6= x′, whose first term in the sequence is given by

Θ0
d(r) := log r.

The terms in the sequence satisfy the following recursion relation

−∆Θp+1
d (r) = Θp

d(r), (3.17)

(cf. (3.9) and (3.11)). It is verified that the general form for such a sequence of functions is

given by

Θp
d(r) = αp(d)r2p (log r − βp(d)) , (3.18)

where αp, βp : {2, 4, . . .} → R and p ∈ N0. By inserting the general form for the solution

(3.18) into (3.17), we obtain recursive formulae for αp such that

αp(d) =
−1

2p(2p+ d− 2)
αp−1(d),

and

βp(d) = βp−1(d) +
4p+ d− 2

2p(2p+ d− 2)
. (3.19)

Now clearly since α0 := 1 and β0 := 0 we obtain

αp(d) =
(−1)p(d− 2)!!

2pp!(d+ 2p− 2)!!
,

and

βp(d) =
1

2

p∑

i=1

d+ 4i− 2

i(d + 2i− 2)
. (3.20)

Using partial fraction decomposition we can re-express βp in terms of the Hj , the jth harmonic

number

Hj :=

j∑

i=1

1

i
,

as follows

βp(d) =
1

2

[
Hp +Hd/2+p−1 −Hd/2−1

]
. (3.21)

By getting a common denominator for (3.20) we see that one can extract a common term

given by (d−2)!!/(d+ 2p−2)!!. Verification that βp(d) is divisible by (d+ 2p) can be seen by
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noticing that it vanishes for d = −2p. Our sequence of functions is seen to behave as follows

for p ∈ {1, 2, 3, 4} :

Θ1
d(r) =

−r2

2d

(
log r − d+ 2

2d

)
,

Θ2
d(r) =

r4

8d(d+ 2)

(
log r − (d+ 4)(3d+ 2)

4d(d+ 2)

)
,

Θ3
d(r) =

−r6

48d(d+ 2)(d+ 4)

(
log r − (d+ 6)(11d2 + 36d+ 16)

12d(d+ 2)(d+ 4)

)
,

and

Θ4
d(r) =

r8

384d(d+ 2)(d+ 4)(d+ 6)

(
log r − (d+ 8)(25d3 + 196d2 + 396d+ 144)

24d(d+ 2)(d+ 4)(d+ 6)

)
.

One may compare the form of βp(d) used in the theorems which are presented in the next

section to those given in Boyling (1996) [14]. Boyling has also computed a sequence of

logarithmic functions given in this section subject to the recursion on the Laplacian given

by (3.17). In order to make this recursion work, one has the freedom to replace an arbitrary

function f(d) with the first two terms in (3.21). We have chosen our function f in such a

way that β0(d) vanishes for all even positive d, whereas Boyling has chosen his f such that

β0(d) vanishes only for d = 2.

3.2.4 Normalized fundamental solution of the polyharmonic equa-

tion

We summarize the previous results.

Theorem 3.2.2. Let d, k ∈ N. Define

Gdk(x,x′) =






(−1)k+d/2+1 ‖x − x′‖2k−d

(k − 1)! (k − d/2)! 22k−1πd/2
(
log ‖x − x′‖ − βk−d/2

)
if d even, k ≥ d/2,

Γ(d/2 − k)‖x − x′‖2k−d

(k − 1)! 22kπd/2
otherwise,

then Gdk is a normalized fundamental solution for (−∆)k, where ∆ is the Laplace operator in

Rd.
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Theorem 3.2.3. Let d, k ∈ N. Define

Gdk(x,x′) =






(−1)k+(d−1)/2 ‖x − x′‖2k−d

(k − 1)! (2k − d)!! 2k(2π)(d−1)/2
if d odd ≥ 1, k ≥ d+ 1

2
,

(−1)k+d/2+1 ‖x − x′‖2k−d

(k − 1)! (k − d/2)! 22k−1πd/2
(
log ‖x − x′‖ − βk−d/2

)
if d even ≥ 2, k ≥ d

2
,

(d− 2k − 2)!! ‖x − x′‖2k−d

(k − 1)! 2k(2π)(d−1)/2
if d odd ≥ 3, k ≤ d− 1

2
,

(d/2 − k − 1)! ‖x − x′‖2k−d

(k − 1)! 22kπd/2
if d even ≥ 4, k ≤ d

2
− 1,

then Gdk is a normalized fundamental solution for (−∆)k, where ∆ is the Laplace operator in

Rd.

By Proposition 3.2.1 the function Gdk is the unique normalized fundamental solution which

satisfies the decay (3.8), if d ≥ 3 and k ≤ (d− 1)/2.
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4
Separable subgroup type coordinates for

Laplace’s equation in Rd

In this chapter we review results in the literature concerning subgroup type coordinate sys-

tems, and their specific properties, in Rd. The results reviewed in this chapter will be

necessary material for the rest of this thesis. Related fundamental background material is in

Vilenkin (1968) [100], Kalnins (1986) [62] and Izmest′ev et al. (2001) [59].

In particular, we review subgroup type coordinate systems in Rd. Subgroup type coordi-

nate systems in Rd are coordinate system which can be described by a chain of subgroups

of the Euclidean group E(d). We describe how certain subgroup type coordinate systems in

Rd can be broken into two categories, pure hyperspherical coordinates and mixed Euclidean-

hyperspherical coordinates.

Pure hyperspherical coordinates are a specific subgroup type coordinate system for Rd

which is described by a radial coordinate r ∈ [0,∞) plus d − 1 angles which together

parametrize points on a d − 1-dimensional hypersphere. A mixed Euclidean-hyperspherical

coordinate system is a subgroup type coordinate system for the k-dimensional subspace Rk

of Rd. This type of coordinate system is given by k-dimensional pure hyperspherical co-

ordinate system (k ≤ d) with the remaining d − k coordinates being Cartesian in nature.

61
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Pure hyperspherical coordinate systems are those mixed-Euclidean hyperspherical coordinate

systems in which d = k. We give a general procedure for constructing pure hyperspherical

coordinate systems called a “method of trees.” We conclude the chapter by describing several

examples of these subgroup type coordinates, and in particular we describe what we refer to

as standard hyperspherical coordinates, a pure hyperspherical coordinate system which is a

generalization of spherical coordinates in R3 to arbitrary dimension.

The only coordinate systems we will describe in this thesis are those which can be obtained

through the method of separation of variables. We refer to these coordinate systems as

separable coordinates. We will ignore those coordinate systems which can be obtained in

other ways. It is important to note that there clearly exist separable coordinate systems

which are not of subgroup type, such as ellipsoidal coordinates (see for instance Kalnins

(1986) [62]). For the sake of simplicity in our discussion, we will not refer to non-subgroup

type coordinate systems unless specifically mentioned. When we refer to general coordinate

systems we mean those particular subgroup type coordinate systems which satisfy a certain

quality. For instance, if we refer to general hyperspherical (or general pure hyperspherical)

coordinate systems, we mean all those coordinate systems which are of pure hyperspherical

subgroup type in Rd.

4.1 Subgroup type coordinates

Subgroup type coordinates are coordinates are obtained when we take a chain of subgroups

G1 ⊃ G2 ⊃ · · ·Gk.

A subgroup chain is defined such that for each chain link

Gk ⊃ Gk+1,

Gk+1 is a maximal subgroup of Gk, i.e. Gk+1 is a maximal subgroup of Gk if Gk+1 6= Gk and

there does not exist a subgroup K ⊂ G such that Gk ⊃ K ⊃ Gk+1. A chain of such links is

referred to as a subgroup chain.

4.1.1 Subgroup type coordinates in Rd

The class of coordinate systems which allow separation of variables for Laplace’s equation

in Euclidean space Rd (see §3.6 in Miller (1977) [69], Moon & Spencer (1988) [70]), can be

broken up into two types, those which are subgroup type coordinates and those which are
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not. Take for instance the proper subgroups of the Euclidean E(2)

E(2) ⊃ O(2), and, (4.1)

E(2) ⊃ E(1) ⊗E(1), (4.2)

or for instance the proper subgroups of E(3)

E(3) ⊃ O(3) ⊃ O(2), (4.3)

E(3) ⊃ E(2) ⊗E(1) ⊃ O(2) ⊗E(1), and, (4.4)

E(3) ⊃ E(2) ⊗E(1) ⊃ E(1) ⊗E(1), (4.5)

or for instance the proper subgroups of E(4)

E(4) ⊃ O(4) ⊃ O(3) ⊃ O(2), (4.6)

E(4) ⊃ O(4) ⊃ O(2) ⊗ O(2), (4.7)

E(4) ⊃ E(3) ⊗ E(1) ⊃ O(3) ⊃ O(2), (4.8)

E(4) ⊃ E(2) ⊗ E(2) ⊃ O(2) ⊗ O(2), (4.9)

E(4) ⊃ E(2) ⊗ E(2) ⊃ O(2) ⊗ E(1) ⊗E(1), and, (4.10)

E(4) ⊃ E(2) ⊗ E(2) ⊃ E(1) ⊗ E(1) ⊗E(1) ⊗ E(1). (4.11)

Possible subgroup chain links for the Euclidean group (often referred to as the Euclidean

motion group) are as follows. Subgroups are either of Euclidean group type or Orthogonal

group type. For subgroups of the Euclidean group, the subgroup links can be

E(p) ⊃ O(p),

E(p) ⊃ E(p1) ⊗ E(p2), p1 + p2 = p, p1 ≥ p2 ≥ 1,

or for subgroups of the orthogonal group, the subgroup links can be

O(p) ⊃ O(p− 1),

O(p) ⊃ O(p1) ⊗ O(p2), p1 + p2 = p, p1 ≥ p2 ≥ 1.

The set of general hyperspherical coordinate systems are in correspondence with the different

subgroup chains for O(d) (see Izmest′ev et al. (1999) [58], Izmest′ev et al. (2001) [59], Wen

& Avery (1985) [106]) of O(d).
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There are many examples of subgroup type coordinates in Euclidean space. One example

is Cartesian coordinates, such as in the subgroup chains (4.2), (4.5) and (4.11). Also, there

are pure hyperspherical coordinate systems in which the subgroup chain contains a maximal

copy of O(d), such as in the subgroup chains (4.1), (4.3), (4.6) and (4.7). Also there are mixed

Euclidean-hyperspherical coordinates which contain a copy of O(p) for p ∈ {2, . . . , d − 1},
such as in the subgroup chains (4.4), (4.8) and (4.10). Subgroup chains such as (4.9) will

not be of interest to us, because when we Fourier expand about an angle in these coordinate

systems, the results in these types of coordinates will be indistinguishable from a particular

mixed Euclidean-hyperspherical coordinate system (as will be evident below). Pure Cartesian

coordinate systems will also not be of interest to us either, since there is no natural angle in

these coordinate systems in which to Fourier expand about. Non-subgroup type coordinates

include those which are analogous to ellipsoidal coordinates, parabolic coordinates, toroidal

coordinates, etc.

4.1.2 Method of trees

Subgroup type coordinates are coordinates in which the very useful “method of trees” (a

graphical method for generating coordinate transformations for subgroup type coordinates)

can be adopted. Corresponding to each of these subgroup chains are a set of tree diagrams.

Each of these trees corresponds to a particular separable hyperspherical coordinate system in

d-dimensions. See Izmest′ev et al. (1999) [58] (and below) for explicit parametrizations for the

corresponding coordinate systems and trees. Describing the set of all general hyperspherical

coordinate systems in terms of rooted trees was originally developed by Vilenkin (1968) [100]

and has furthermore been used extensively by others in a variety of contexts (see Izmest′ev

et al. (1999) [58], Izmest′ev et al. (2001) [59], Kil′dyushov (1972) [63], Vilenkin, Kuznetsov &

Smorodinskĭı (1965) [102]). In these rooted trees, there are two types of nodes, the leaf nodes

and the branching nodes. In a particular tree, chosen from the set of all general hyperspherical

coordinate systems, there are d leaf nodes, each corresponding to the particular Cartesian

component of an arbitrary position vector x ∈ Rd. In our trees, the branching nodes always

split into two separate branches, one up to the left and one up to the right. Each branch

emanating from a branching node will end on either a leaf node or on another branching

node. There are four possibilities for branching nodes:

• Type a, both branches of the branching node end on a leaf node. The angle corre-

sponding to this type of branching node is φa ∈ [0, 2π).

• Type b, the left branch of a branching node ends on a leaf node and the right branch

of the branching node ends on a branching node. The angle corresponding to this type
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of branching node is θb ∈ [0, π].

• Type b′, the left-branch of the branching node ends on a branching node and the right

branch of the branching node ends on a leaf node. The angle corresponding to this

type of branching node is θb′ ∈ [−π/2, π/2].

• Type c, both the left and right branches of the branching node ends on branching nodes

(cells of type c are only possible for d ≥ 4). The angle corresponding to this type of

branching node is ϑc ∈ [0, π/2].

φ
a

lβ ,Sβ

θ
b

lα ,Sα

θ
b’

lα ,Sα
lβ ,Sβ

ϑ
c

Figure 4.1: This figure show the possibilities from left to right for branching nodes of type a, b, b
′ and c.

A linear partial differential equation on Rd may admit solutions via the separation of

variables method. If the method works, then it produces d ordinary differential equations

with d − 1 separation constants which are determined by the conditions imposed on the

problem being solved. The sets which the separation constants are contained in depend on

the geometric structure of the problem being solved.

For instance, separation of variables in hyperspherical coordinates with d − 1 angles,

for Laplace’s equation in Rd produces d − 1 separation constants, each of which are called

quantum numbers. The quantum numbers corresponding to these angles are all integers.

This is due to the fact that a hypersphere is a compact manifold. As described above, each

hyperspherical coordinate system is associated with a tree. Quantum numbers for a particular

tree label the basis of separable solutions for Laplace’s equation in that particular coordinate

system. With each branching node of the tree, we associate a quantum number.

The quantum number corresponding to a 2π periodic (azimuthal) angle is called an az-

imuthal quantum number. Each azimuthal angle corresponds to a branching node of type

a, we associate with an azimuthal quantum number m ∈ Z. A natural consequence of the
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“method of trees” is that there must exist at least one azimuthal angle for each tree, and

therefore also for each pure hyperspherical coordinate system.

Each branching nodes of type b, b′ and c, as described above, are associated with an-

gles, which in turn are associated with quantum numbers which we call angular momentum

quantum numbers l ∈ N0. The naming of these quantum numbers is due to the intimate

connection between the properties of the rotation group SO(d) and the quantum/classical

description of angular momentum in physics. See for instance Chapter 10 in Fano & Rau

(1996) [38].

There is always at least one branching node (the root branching node) and all branching

nodes correspond to a particular angle and quantum number. Hence, let us conveniently as-

sociate each particular branching node with a particular angle and its corresponding quantum

number. One particular general hyperspherical coordinate system is parametrized as follows.

Starting at the root branching node, traverse the tree upward until you reach the leaf node

corresponding to xi. The parametrization for xi is given by the hyperspherical radius r mul-

tiplied by cosine or sine of each angle encountered as you traversed the tree upward until you

reached the leaf node corresponding to xi. If you branched upwards to the left or upwards to

the right at each branching node, multiply by the cosine or sine of the corresponding angle

respectively. This procedure produces the appropriate transformation from hyperspherical

coordinates to Cartesian coordinates. Note: The infinitesimal element of the solid angle is

given by the absolute value of the Jacobian determinant of the transformation.

There are large numbers of equivalent trees and an even larger number of possible trees,

each with their own specific hyperspherical coordinate system. The enumeration of these

trees are characterized as follows. For all d ∈ N, let bd be the total number of possible

trees dimension d. Then b1 = 1 is the number of possible 1-branch trees. A 1-branch tree

corresponding to a hyperspherical coordinate system does not exist in isolation. However,

the concept of a 1-branch tree is useful. For instance, one can generate a new tree from a

pre-existing tree by adding a single branch to either the left or to the right of a pre-existing

tree and in order to perform the correct enumeration, one must incorporate 1-branch trees.

The following recurrence relation gives the total number of possible hyperspherical coordinate

systems for arbitrary dimension

bd =

d−1∑

i=1

bibd−i. (4.12)

Using the recurrence relation given by (4.12), we can see that the first few elements of the

sequence are given by

(bd : d ∈ {1, . . . , 13}) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012).
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These numbers, or the way to count these types of trees, are given in terms of the Catalan

numbers (see for instance Sloane Integer Sequence A000108 [90] or p. 200 in Stanley (1999)

[91]), i.e.

bd = Cd−1 =
1

d

(
2d− 2

d− 1

)
,

where Cn is the nth Catalan number.

If ad is the total number of equivalent trees for dimension d, then the following recurrence

relation gives their number for arbitrary d

ad =






⌊d/2⌋∑

i=1

aiad−i, if d odd

d/2−1∑

i=1

aiad−i +
1

2
ad/2

(
ad/2 + 1

)
, if d even.

(4.13)

Using the recurrence relation given by (4.13), we can see that the first few elements of the

sequence are given by

(ad : d ∈ {1, . . . , 13}) = (1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983).

These numbers, or the way to count these types of trees, are given in terms of the Wedderburn-

Etherington numbers (see for instance Sloane Integer Sequence A001190 [90]).

As one can see from the recurrence relations, equivalence of the trees is established by a left-

right symmetry in the topology of the trees. The types of spherical coordinates which one

can construct, for a given dimension, are described in Izmest’ev et al. (1999, 2001) [58, 59].

In dimensions d ≥ 3, there are several choices (some of them equivalent) on how one might

parametrize the hyper-sphere.

We now describe a left-to-right recursive naming language for our trees, which is based on

listing the types of branching nodes available in a particular tree. Each tree is described by a

word composed of letters corresponding to the branching node types a,b,b′, c. The naming of

a tree is based on the naming of its subtrees. The word corresponding to a particular subtree

is given as a list of branching node types. We order the branching nodes in a particular

subtree by executing a left-branch algorithm (depth-first search, pp. 540-549 in Cormen et

al. (2001) [31]) with input given by a particular branching node (subtree root) whose aim is

to describe the subtree to the left of the subtree root. The left-branch algorithm proceeds as

follows: The first letter of the word is the subtree root type. We then proceed upward along

the left-branch of subtree root until we encounter another branching node, whose type is the

next letter of the subtree word. After that, we continue to proceed left upward writing down
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the types of all the branching nodes we encounter. Once a leaf node is encountered, we then

reverse direction and proceed downward along the left subtree branch until we encounter a

branching node whose right branch proceeds upward to another branching node that we have

not encountered before. This is the next letter of our word. Then we execute the left-branch

algorithm on this branching node. We continue this process until we have described the

entire subtree. The left-branch algorithm applied to the root branching node gives a naming

convention for the tree.

4.2 Pure hyperspherical coordinates

A particular general hyperspherical coordinate system partitions Rd into a family of concen-

tric (d− 1)-dimensional hyper-spheres, each with a radius r ∈ (0,∞), on which all separable

hyperspherical coordinate systems for Sd−1 may be used. One must also consider the limiting

case for r = 0 to fill out all of Rd. The hyperspherical radius is computed using Cartesian

coordinates through

r2 := r2
d =

d∑

i=1

x2
i .

A general hyperspherical coordinate system, one which is chosen to parametrize the (d− 1)-

dimensional hyper-sphere, yields solutions to Laplace’s equation on Rd through separation of

variables. We refer a particular choice from the the set of all separable pure hyperspherical

coordinate systems as a general hyperspherical coordinate system. In a particular general

hyperspherical coordinate system

dx1dx2 · · · dxd = rd−1drdΩd.

There will be a unique decomposition of dΩd in each general hyperspherical coordinate system,

depending on the choice of angles used to parametrize the unit (d − 1)-dimensional hyper-

sphere. In the discussion below, we describe how to assemble each general hyperspherical

coordinate system in Rd.

In a hyperspherical coordinate system one may define the separation angle γ. The sepa-

ration angle γ ∈ [0, π], is the smallest angle measured between two arbitrary non-zero length

position vectors x,x′ ∈ Rd. It is defined through the relation

cos γ :=
(x,x′)

‖x‖‖x′‖ , (4.14)
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where

(x,x′) := x1x
′
1 + . . .+ xdx

′
d, (4.15)

is the Euclidean inner product of two arbitrary position vectors in Rd. One can see from this

definition that the method of trees can be used to construct the separation angle in a direct

manner.

The cosine of the separation angle will be given by the sum of d terms, each corresponding

a leaf node of the tree. There is a unique path starting from the root branching node to each

leaf node. The cosine of the separation angle can be constructed using the following formula

cos γ =
d∑

i=1

Ni∏

j=1

Ai,j(ψi,j)Ai,j(ψ
′
i,j),

where Ni is the number of branching nodes encountered from the root branching node to the

leaf node, Ai,j equals either the cos or sin function depending respectively on whether the

left branch or right branch is chosen and ψi,j is the angle corresponding to the jth branching

node for each ith leaf node. The separation angle is unique for each tree.

4.2.1 Examples of pure hyperspherical coordinate systems

The simplest example of a hyperspherical coordinate system occurs in d = 2 where there is

one branching node (the root branching node) and two leaf nodes. The left-branch ends on

the leaf node corresponding to x1 and the right branch ends on the leaf node corresponding

to x2. Therefore for d = 2 we have the following coordinate system whose transformation

formulae to Cartesian coordinates is given by

x1 = r cosφ

x2 = r sinφ




 , (4.16)

which is unique. In d = 2 one parametrizes the corresponding hyper-sphere (circle) uniquely

using polar coordinates with an angle, φ ∈ [0, 2π). Using the left-branch algorithm we see

this is a tree of type a. These coordinates are adapted to the canonical subgroup chain

E(2) ⊃ O(2).

The infinitesimal volume element is given by

dΩ2 = dφ,
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the separation angle is given in terms of

cos γ = cos(φ− φ′),

and corresponding to the angle φ is the quantum number m ∈ Z (See Figure 4.2)

φ

m

x
1

x
2

Figure 4.2: This figure is a tree diagram for type a pure hyperspherical coordinates in R
2, where the root

branching node is of type a corresponding to an angle φ and quantum number m. These
coordinates correspond to Transformation (4.16).

In d = 3 there are 2 possible topological trees, each corresponding to one of two different

trees. Both coordinate systems are adapted to the canonical subgroup chain

E(3) ⊃ O(3) ⊃ O(2).

The first tree corresponds to the following coordinate system whose transformation formulae

to Cartesian coordinates is given by

x1 = r cos θ

x2 = r sin θ cosφ

x3 = r sin θ sinφ





, (4.17)

where θ ∈ [0, π]. We call these coordinates standard spherical coordinates. Using the left-
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branch algorithm we see this is a tree of type ba. The infinitesimal volume element is given

by

dΩ3 = sin θdθdφ,

the separation angle is given in terms of

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′), (4.18)

and corresponding to the angles θ and φ are the quantum numbers l ∈ N0 and m ∈ Z

respectively.

θ

l

φ

m

x
1

x
2

x
3

Figure 4.3: This figure is a tree diagram for type ba pure hyperspherical coordinates in R
3. The root

branching node is of type b corresponding to an angle θ and quantum number l. The other
branching node is of type a corresponding to an angle φ and quantum number m. These
coordinates correspond to Transformation (4.17).

The second tree corresponds to the following coordinate system whose transformation

formulae to Cartesian coordinates are given by

x1 = r cos θ cosφ

x2 = r cos θ sinφ

x3 = r sin θ





, (4.19)

where θ ∈ [−π/2, π/2]. Using the left-branch algorithm we see this is a tree of type b′a. The
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infinitesimal volume element is given by

dΩ3 = cos θdθdφ,

the separation angle is given in terms of

cos γ = sin θ sin θ′ + cos θ cos θ′ cos(φ− φ′), (4.20)

and corresponding to the angles θ and φ are the quantum numbers l ∈ N0 and m ∈ Z

respectively. It is clear from examination of the corresponding trees, that the coordinate

θ

l

φ

m

x
1

x
2

x
3

Figure 4.4: This figure is a tree diagram for type b
′
a pure hyperspherical coordinates in R

3. The root
branching node is of type b

′ corresponding to an angle θ and quantum number l. The other
branching node is of type a corresponding to an angle φ and quantum number m. These
coordinates correspond to Transformation (4.19).

systems of type ba and b′a are equivalent.

Circular cylindrical coordinates are also subgroup type coordinates in d = 3. However

these coordinates are not of pure hyperspherical type, they are given in terms of a hyper-

spherical coordinate system, d = 2, which also includes one Cartesian dimension. These are

referred to as mixed Euclidean-hyperspherical coordinates, and they will be covered in §4.3.

In d = 4 there are 5 possible topological trees for pure hyperspherical coordinates, each

corresponding to a different tree. The first four coordinate systems are adapted to the



4.2 Pure hyperspherical coordinates 73

canonical subgroup chain

E(4) ⊃ O(4) ⊃ O(3) ⊃ O(2).

The first tree corresponds to the following coordinate system, whose transformation formulae

to Cartesian coordinates are given by

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cosφ

x4 = r sin θ1 sin θ2 sinφ






, (4.21)

where θ1, θ2 ∈ [0, π]. Using the left-branch algorithm we see this is a tree of type b2a. The

infinitesimal volume element is given by

dΩ4 = sin2 θ1 sin θ2dθ1dθ2dφ,

and

cos γ = cos θ1 cos θ′1 + sin θ1 sin θ′1 (cos θ2 cos θ′2 + sin θ2 sin θ′2 cos(φ− φ′)) (4.22)

(see Figure 4.5). The second tree corresponds to the following coordinate system whose

transformation formulae to Cartesian coordinates are given by

x1 = r cos θ1

x2 = r sin θ1 cos θ2 cosφ

x3 = r sin θ1 sin θ2 sin φ

x4 = r sin θ1 sin θ2






, (4.23)

where θ1 ∈ [0, π] and θ2 ∈ [−π/2, π/2]. Using the left-branch algorithm we see this is a tree

of type bb′a. The infinitesimal volume element is given by

dΩ4 = sin2 θ1 cos θ2dθ1dθ2dφ,

and

cos γ = cos θ1 cos θ′1 + sin θ1 sin θ′1 (sin θ2 sin θ′2 + cos θ2 cos θ′2 cos(φ− φ′)) (4.24)

(see Figure 4.6). The third tree corresponds to the following coordinate system, whose
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Figure 4.5: This figure is a tree diagram for type b
2
a pure hyperspherical coordinates in R

4. The first two
branching nodes are both of type b. These correspond to the angles θ1 and θ2 with quantum
numbers l1 and l2 respectively. The third branching node is of type a corresponding to an angle
φ and quantum number m. These coordinates correspond to Transformation (4.21).

transformation formulae to Cartesian coordinates are given by

x1 = r cos θ1 cos θ2

x2 = r cos θ1 sin θ2 cosφ

x3 = r cos θ1 sin θ2 sin φ

x4 = r sin θ1






, (4.25)

where θ1 ∈ [−π/2, π/2] and θ2 ∈ [0, π]. Using the left-branch algorithm we see this is a tree

of type b′ba. The infinitesimal volume element is given by

dΩ4 = cos2 θ1 sin θ2dθ1dθ2dφ,

and

cos γ = sin θ1 sin θ′1 + cos θ1 cos θ′1 (cos θ2 cos θ′2 + sin θ2 sin θ′2 cos(φ− φ′)) (4.26)

(see Figure 4.7). The fourth tree corresponds to the following coordinate system, whose
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Figure 4.6: This figure is a tree diagram for type bb
′
a pure hyperspherical coordinates in R

4. The root
branching node is of type b which corresponds to the angle θ1 and quantum number l1. The
second branching node is of type b

′ which corresponds to the angle θ2 and quantum number
l2. The third branching node is of type a corresponding to the angle φ and quantum number
m. These coordinates correspond to Transformation (4.23).

transformation formulae to Cartesian coordinates are given by

x1 = r cos θ1 cos θ2 cos φ

x2 = r cos θ1 cos θ2 sin φ

x3 = r cos θ1 sin θ2

x4 = r sin θ2






, (4.27)

where θ1, θ2 ∈ [−π/2, π/2]. Using the left-branch algorithm we see this is a tree of type b′2a.

The infinitesimal volume element is given by

dΩ4 = cos2 θ1 cos θ2dθ1dθ2dφ,

and

cos γ = sin θ1 sin θ′1 + cos θ1 cos θ′1 (sin θ2 sin θ′2 + cos θ2 cos θ′2 cos(φ− φ′)) (4.28)

(see Figure 4.8). The fifth tree corresponds to the following coordinate system (Hopf coordi-
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Figure 4.7: This figure is a tree diagram for type b
′
ba pure hyperspherical coordinates in R

4. The root
branching node is of type b

′ which corresponds to the angle θ1 and quantum number l1. The
second branching node is of type b which corresponds to the angle θ2 and quantum number l2.
The third branching node is of type a corresponding to the angle φ and quantum number m.
These coordinates correspond to Transformation (4.25).

nates) whose transformation formulae to Cartesian coordinates are given by

x1 = r cosϑ cosφ1

x2 = r cosϑ sinφ1

x3 = r sinϑ cosφ2

x4 = r sinϑ sinφ2






, (4.29)

where ϑ ∈ [0, π/2] and φ1, φ2 ∈ [0, 2π). Using the left-branch algorithm we see this is a tree

of type ca2. This coordinate system is adapted to the canonical subgroup chain

E(4) ⊃ O(4) ⊃ O(2) ⊗ O(2).

The infinitesimal volume element is given by

dΩ4 = cosϑ sin ϑdϑdφ1dφ2,
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Figure 4.8: This figure is a tree diagram for type b
′2
a pure hyperspherical coordinates in R

4. The first two
branching nodes are of type b

′ which correspond to the angles θ1 and θ2 and quantum numbers
l1 and l2 respectively. The third branching node is of type a corresponding to the angle φ and
quantum number m. These coordinates correspond to Transformation (4.27).

and

cos γ = cosϑ cos ϑ′ cos(φ1 − φ′
1) + sinϑ sin ϑ′ cos(φ2 − φ′

2). (4.30)

(see Figure 4.9). We can see that there are many choices for pure hyperspherical coordinate

systems in Rd. The simplest example is what we will call the standard hyperspherical co-

ordinate system. Standard hyperspherical coordinates are a generalization of (4.21). This

coordinate system (and all which are equivalent to it) is adapted to the canonical subgroup

chain

E(d) ⊃ O(d) ⊃ O(d− 1) ⊃ · · · ⊃ O(2).

It is suitably defined for any number of dimensions, d ≥ 2. The transformation formulae to
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Figure 4.9: This figure is a tree diagram for type ca
2 pure hyperspherical coordinates in R

4. The first
branching node is of type c which corresponds to the angle ϑ and quantum number l. The
second and third branching nodes are of type a corresponding to angles φ1 and φ2 with quantum
numbers m1 and m2 respectively. These coordinates correspond to Transformation (4.29).

Cartesian coordinates are given by

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3
...

xd−2 = r sin θ1 · · · sin θd−3 cos θd−2

xd−1 = r sin θ1 · · · sin θd−3 sin θd−2 cosφ

xd = r sin θ1 · · · sin θd−3 sin θd−2 sinφ






, (4.31)

where θi ∈ [0, π] for i ∈ {1, . . . , d − 2} and φ ∈ [0, 2π). Using the left-branch algorithm we

see this is a tree of type bd−2a. These are the standard hyperspherical coordinates that are

usually adopted in multi-variable calculus and in physical applications (see for instance Fano

& Rau (1996) [38]). In these coordinates

dΩd = (sin θ1)d−2(sin θ2)d−3 · · · (sin θd−3)2 sin θd−2dθ1 · · · dθd−2dφ,
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and

cos γ =

d−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′ + cos(φ− φ′)

d−2∏

i=1

sin θisin θi
′

(see Figure 4.10).
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Figure 4.10: This figure is a tree diagram for type b
d−2

a pure hyperspherical coordinates in R
d. The first

d− 2 branching nodes are of type b which correspond to the angles θi and quantum numbers
li, where i ∈ {1, . . . , d − 2}. The final branching node is of type a corresponding to angle φ

and quantum number m. These coordinates correspond to Transformation (4.31).

4.3 Mixed Euclidean-hyperspherical coordinate systems

In general we define mixed Euclidean-hyperspherical coordinates, (a generalization of pure

hyperspherical coordinates) as follows. The (d, k) Euclidean-hyperspherical coordinate sys-

tem, where 2 ≤ k ≤ d, is one adapted from the following subgroup chain

E(d) ⊃ E(d− 1) ⊃ · · ·E(k) ⊃ O(k) ⊃ · · · .

Note that for the case for k = d, i.e. (d, d) Euclidean-hyperspherical coordinates, this cor-

responds to pure hyperspherical coordinates in Rd. For mixed Euclidean-hyperspherical

coordinates, all maximal subgroup chains for O(k) are possible.
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4.3.1 Examples of mixed Euclidean-hyperspherical coordinate sys-

tems

Now we present some examples of mixed Euclidean-hyperspherical coordinate systems. Take

for instance, type a (d, 2) Euclidean-hyperspherical coordinates. This coordinate system is

given in terms of the following coordinate transformation

x1 = r cosφ

x2 = r sinφ

x3 = x3

...

xd−2 = xd−2

xd−1 = xd−1

xd = xd






, (4.32)

and is adapted from the following subgroup chain

E(d) ⊃ E(d− 1) ⊃ · · · ⊃ E(2) ⊃ O(2).

The most common example of this type of coordinate system is circular cylindrical coordinates

in R3, i.e. (3, 2) Euclidean-hyperspherical coordinates. These coordinates are unique in that

there is only one way to put coordinates on a 1-sphere. (see Figure 4.11).

Another example is type ba (d, 3) Euclidean-hyperspherical coordinates (see Figure 4.12)

x1 = r cos θ1

x2 = r sin θ1 cos φ

x3 = r sin θ1 sin φ

x4 = x4

...

xd−2 = xd−2

xd−1 = xd−1

xd = xd,






, (4.33)

and is adapted from the following subgroup chain

E(d) ⊃ E(d− 1) ⊃ · · · ⊃ E(3) ⊃ O(3) ⊃ O(2).
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Figure 4.11: This figure is a tree diagram for type a (d, 2) Euclidean-hyperspherical coordinates in R
d.

There is only the root branching node and it is of type a which correspond to the angle φ and
quantum number m. There are d − 2 Cartesian components. These coordinates correspond
to Transformation (4.32).

The other coordinate system adapted from this particular subgroup chain is type b′a (d, 3)

Euclidean-hyperspherical coordinates.

Of course the number of choices of types for mixed coordinate systems increases as we

increase k. For instance there are the types b2a, bb′a, b′ba, b′2a, and ca2 (d, 4) Euclidean-

hyperspherical coordinates. Standard type bk−2a (d, k) Euclidean-hyperspherical coordinates

(mixed standard Euclidean-hyperspherical coordinates) is adapted from the following sub-

group chain

E(d) ⊃ E(d− 1) ⊃ · · · ⊃ E(k) ⊃ O(k) ⊃ O(k − 1) ⊃ · · · ⊃ O(2),

and is given by the following coordinate transformation
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Figure 4.12: This figure is a tree diagram for type ba (d, 3) Euclidean-hyperspherical coordinates in R
d.

The root branching node is of type b which correspond to the angle θ and quantum number l.
The second branching node is of type a which corresponds to the angle φ and quantum number
m. There are d − 3 Cartesian components. These coordinates correspond to Transformation
(4.33).

x1 = rk cos θ1

x2 = rk sin θ1 cos θ2

x3 = rk sin θ1 sin θ2 cos θ3
...

xk−2 = rk sin θ1 · · · sin θk−3 cos θk−2

xk−1 = rk sin θ1 · · · sin θk−3 sin θk−2 sinφ

xk = rk sin θ1 · · · sin θk−3 sin θk−2 cosφ

xk+1 = xk+1

...

xd = xd






(see Figure 4.13). For mixed standard Euclidean-hyperspherical coordinate systems we can
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Figure 4.13: This figure is a tree diagram for type b
k−2

a (d, k) Euclidean-hyperspherical coordinates in R
d

(mixed standard Euclidean-hyperspherical coordinates). The root branching nodes, angles,
and quantum numbers are given by standard hyperspherical coordinates (4.31). There are
d − k Cartesian components. These coordinates correspond to Transformation (4.34).

naturally define the following quantities, the sub-radii

r2
k :=

k∑

i=1

x2
i ,

and the separation angle

cos γk = cos(φ− φ′)
k−2∏

i=1

sin θisin θi
′ +

k−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′.
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The Euclidean distance between two points in these coordinates is given by

‖x − x′‖ =

√√√√2rkr
′
k

k−2∏

i=1

sin θisin θi
′ [χdk − cos(φ− φ′)

]1/2
,

where the toroidal parameter χdk (see Cohl & Tohline (1999) [26]), is given by

χdk :=

r2 + r′2 − 2rr′
k−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′ +

d∑

i=k+1

(xi − x′i)
2

2rr′
k−2∏

i=1

sin θisin θi
′

, (4.34)

where χdk > 1. Note that in pure standard hyperspherical coordinates

χdd =

r2 + r′2 − 2rr′
d−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′

2rr′
d−2∏

i=1

sin θisin θi
′

, (4.35)

and if d = 2 or if θi = θ′i =
π

2
for all i ∈ {1, . . . , k − 2} then

χ =
r2 + r′2

2rr′
.

Now consider a general type (d, k) Euclidean-hyperspherical coordinate system, namely

one with a k-dimensional Euclidean subspace whose points are parametrized by the method

of trees. The Euclidean distance between two points in any of these coordinate systems are

given by

‖x − x′‖ =
√

2rkr′k
[
χdk − cos γk

]1/2
, (4.36)

where the toroidal parameter χdk, is given by

χdk :=

r2
k + r′k

2 +

d∑

i=k+1

(xi − x′i)
2

2rkr
′
k

, (4.37)
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and the separation angle is given by

cos γk =
(y,y′)

rkr
′
k

, (4.38)

where y = (x1, . . . , xk) and y′ = (x′1, . . . , x
′
k). Note that the sub-radii are given as rk = ‖y‖

and r′k = ‖y′‖.
In every curvilinear coordinate system there will be a unique representation of χ. However

the hypersurfaces given by χ equals constant are independent of coordinate system and

represent hyper-tori of revolution. We use these quantities in Chapters 5 and 6 to perform

Fourier expansions of normalized fundamental solutions for powers of the Laplacian in these

coordinate systems and to generate multi-summation addition theorems.
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5
Fourier expansions for fundamental

solutions in Rd

In this chapter we present joint research with Diego Dominici (see Cohl & Dominici (2010)

[24]) and Tom ter Elst.

We compute Fourier cosine series of unnormalized fundamental solutions for powers of the

Laplacian in Rd which was presented in Chapter 3. As far as the author is aware, the main

results of this chapter are new, namely the Fourier cosine series of a fundamental solution

for powers of the Laplacian with k ≥ (d + 1)/2. The Fourier cosine series for the functional

form of a fundamental solution for powers of the Laplacian in Rd has been previously given

for k ≤ (d − 1)/2 (see p. 182 in Magnus, Oberhettinger & Soni (1966) [67]). The new

results which apply in this range for unnormalized fundamental solutions for powers of the

Laplacian in Rd are those functions appearing in §5.2 on the generalized Heine identity, and

the particularly challenging logarithmic functions in §5.3. Also new are the results in §5.2.3

on finite-summation expressions for associated Legendre functions of the second kind and

§5.4.1 on Fourier expansions in mixed Euclidean-hyperspherical coordinate systems.

87
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5.1 The functions for Fourier expansions

Consider the following functions. For d odd and for d even with k ≤ d/2 − 1, define

gdk(x,x
′) := ‖x − x′‖2k−d,

and for d even, k ≥ d/2, define

ldk(x,x
′) := ‖x − x′‖2p

(
log ‖x − x′‖ − βk− d

2

)
,

where p = k−d/2. By Theorem 3.2.2 we see that the functions gdk and ldk equal real non-zero

constant multiples of Gdk for the same parameters. Therefore by (3.7), gdk and ldk are unnor-

malized fundamental solutions of the polyharmonic equation with the same parameters. In

Chapter 4, for mixed Euclidean-hyperspherical coordinates, we used the letter k to enumerate

the dimension of the subspace of Rd which was pure hyperspherical coordinates. This now

gives a clash with the k used for the power of the Laplacian operator. Therefore in the next

paragraph we temporarily write κ for the dimension of this subspace.

Using (4.36) we can write gdk in terms of mixed Euclidean-hyperspherical coordinates as

follows. For d odd, and for d even with k ≤ d/2 − 1 we have

gdk(x,x
′) = (2rκr

′
κ)
k−d/2 [

χdκ − cos γκ
]k−d/2

, (5.1)

where χdκ is given in (4.37), cos γκ is given in (4.38). For d even with k ≥ d/2 we have

ldk(x,x
′) = (2rκr

′
κ)
p

[
1

2
log (2rκr

′
κ) − βk−d/2

] [
χdκ − cos γκ

]p

+
1

2
(2rκr

′
κ)
p [
χdκ − cos γκ

]p
log
(
χdκ − cos γκ

)
. (5.2)

By examining (5.1) and (5.2), we see that for computation of Fourier expansions about the

separation angle γκ of gdk and ldk, all that is required is to compute the Fourier cosine series



5.2 Generalized Heine identity 89

for the following four functions, defined for χ > 1,

1

[χ− cosψ]µ
if d odd, k ∈ N, µ being an odd-half-integer,

1

[χ− cosψ]µ
if d even, k ≤ d/2 − 1, µ ∈ N,

[χ− cosψ]p if d even, k ≥ d/2, p ∈ N0, and

[χ− cosψ]p log (χ− cosψ) if d even, k ≥ d/2, p ∈ N0.

Construction of a hyperspherical coordinate system using the method of trees ensures the

existence of an azimuthal angle φ in that coordinate system. One may also compute Fourier

expansions for gdk and ldk about an angle φ − φ′ in Rd. With an appropriately modified

χ = χdκ−1, azimuthal Fourier expansions may be computed using these same four functions.

In the mixed Euclidean-hyperspherical coordinate system used in (5.1) and (5.2), consider

the angle

γκ−1 := γκ

∣∣∣
φ=φ′

.

For azimuthal Fourier expansions, the property χdκ−1 > 1 is logically equivalent to

r2 + r′
2 − 2rr′ cos γκ−1 > 0,

where r 6= r′.

In the following section we derive an identity which will actually give us the Fourier cosine

series for the first three cases. The fourth Fourier cosine series will be established in Section

5.3.

5.2 Generalized Heine identity

Gauss (1812) ([46], p. 128 in Werke III) was able to write down closed-form expressions for

the Fourier series for the related function [r2
1 + r2

2 −2r1r2 cosψ]−µ. Gauss recognised that the

coefficients of the expansion are given in terms of the 2F1 hypergeometric function, and he

was able to write down a closed-form solution (where we have used modern notations) given

by

1

[r2
1 + r2

2 − 2r1r2 cosψ]µ
=

∞∑

n=0

ǫn cos(nψ)
(µ)n
n!

rn2
r2µ+n
1

2F1

(
n+ µ, µ;n+ 1;

r2
2

r2
1

)
, (5.3)
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assuming r1, r2 ∈ R, 0 ≤ r2 < r1, (µ)n is the Pochhammer symbol for rising factorials

(see (2.10) and (2.11)), and the Gauss hypergeometric function is defined through (2.19).

Neumann (1864) ([72], pp. 33–34) was one of the first to study separable solutions to Laplace’s

equation in toroidal coordinates. He examined and wrote down the Fourier expansion in term

of Gauss hypergeometric functions for the instance µ = 1
2
.

But it was not until Heine (1881) ([50], p. 286) in his Handbuch der Kugelfunctionen that

it was recognised that this particular Gauss hypergeometric function represented a certain

special class of higher transcendental functions, namely associated Legendre functions of the

second kind with odd-half-integer degree. These associated Legendre functions, and in partic-

ular, those with integer-order, are toroidal harmonics, the functions which separate Laplace’s

equation in toroidal coordinates. The fact that the algebraic function of present study re-

lates to behaviour on toroids of revolution is an important consequence of a non-axisymmetric

Fourier description of potential theory in rotationally-invariant coordinate systems. We now

proceed to build upon Heine’s original identity (5.11) in order to derive a complex general-

ization of that identity (5.10).

5.2.1 Derivation of the identity

We are interested in computing the following Fourier expansion

1

[z − cosψ]µ
=

∞∑

n=0

cos(nψ)Aµ,n(z), (5.4)

where µ ∈ C, z ∈ C \ (−∞, 1], and |z| > 1. The expression for these Fourier coefficients is

given in the standard manner by

Aµ,n(z) =
ǫn
π

∫ π

0

cos(nψ)

[z − cosψ]µ
dψ. (5.5)

We can take advantage of the fact that the summand is an even function of the Fourier

quantum number n ∈ Z in order to sum over n ∈ N0, in that case

∞∑

n=−∞
Aµ,n(z)einψ =

∞∑

n=0

ǫnAµ,n(z) cos(nψ).

In order to use the complex binomial theorem, we first show that

arg (z − cosψ) = arg(z) + arg

(
1 − cosψ

z

)
, (5.6)



5.2 Generalized Heine identity 91

which is verified as follows. We define the function f : [−1, 1] → R by

f(x) = arg (z + x) − arg(z) − arg
(

1 +
x

z

)
.

f is clearly continuous and since [−1, 1] is connected, f([−1, 1]) must be connected and

f([−1, 1]) ⊂ 2πZ. Hence f([−1, 1]) is a one-point set and since f(0) = 0, f is a constant

equal to zero. Therefore we have shown that (5.6) is true and therefore we can re-write the

left-hand side of (5.4) without loss of generality as

1

[z − cosψ]µ
=

1

zµ
[
1 − cosψ

z

]µ .

Since |z| > 1 and cosψ ∈ [−1, 1] this implies that |(cosψ)/z| < 1, and we are in a position to

employ Newton’s binomial series (2.20), where the generalized binomial coefficient is defined

in (2.13). Combining (2.13), (2.12), and (2.20), we obtain

1

[z − cosψ]µ
=

∞∑

k=0

(µ)k
k!

z−µ−k cosk ψ. (5.7)

We can expand the powers of cosine using the following trigonometric identity

cosk ψ =
1

2k

k∑

n=0

(
k

n

)
cos[(2n− k)ψ],

which is the standard expansion for powers using Chebyshev polynomials (see for instance

p. 52 in Fox & Parker (1968) [41]). Inserting this expression in (5.7), we obtain the following

double-summation expression

1

[z − cosψ]µ
=

∞∑

k=0

k∑

n=0

(µ)k
k!

1

2kzµ+k

(
k

n

)
cos[(2n− k)ψ]. (5.8)

Now we perform a double-index replacement in (5.8). There are two separate cases k ≤ 2n

and k ≥ 2n. There is an overlap if both have an equality, and in that case we must multiply

by 1/2 after we sum over both cases. If k ≤ 2n make the substitution k′ = k − n and

n′ = 2n− k. It follows that k = 2k′ + n′ and n = n′ + k′, therefore

(
k

n

)
=

(
2k′ + n′

n′ + k′

)
=

(
2k′ + n′

k′

)
.

If k ≥ 2n make the substitution k′ = n and n′ = k − 2n. Then k = 2k′ + n′ and n = k′
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therefore (
k

n

)
=

(
2k′ + n′

k′

)
=

(
2k′ + n′

k′ + n′

)
,

where the equalities of the binomial coefficients are confirmed using the binomial identity

(2.14). To take into account the double-counting which occurs when k = 2n (which occurs

when n′ = 0), we introduce a factor of ǫn′/2 into the expression (and relabel k′ 7→ k and

n′ 7→ n). We are left with

1

[z − cosψ]µ
=

1

2zµ

∞∑

n=0

ǫn cos(nψ)

∞∑

k=0

(µ)2k+n

(2k + n)!

1

(2z)2k+n

[(
2k + n

k

)
+

(
2k + n

k + n

)]
,

which is straightforwardly simplified by using the definition of the binomial coefficients and

(2.14)

1

[z − cosψ]µ
=

1

zµ

∞∑

n=0

ǫn cos(nψ)
1

(2z)n

∞∑

k=0

(µ)2k+n

k!(k + n)!

1

4k

(
1

z2

)k
.

The second sum is given in terms of a Gauss hypergeometric series

1

[z − cosψ]µ
=

∞∑

n=0

ǫn cos(nψ)
(µ)n

n!2nzµ+n 2F1

(
µ+ n

2
,
µ+ n+ 1

2
;n+ 1;

1

z2

)
. (5.9)

This expression (5.9) with

z =
r2
1 + r2

2

2r1r2
,

is equivalent to Gauss’ original formula (5.3) by utilization of (2.34) with

z =

(
r<
r>

)2

.

Only now we have shown that µ ∈ C, and z ∈ {z : z ∈ C, |z| > 1}. This Gauss hypergeo-

metric function is expressible in terms of the associated Legendre function of the second kind

by using (2.41) and taking ν 7→ ν − 1
2

and µ 7→ µ− 1
2
.

If we substitute ν = n ∈ Z in the hypergeometric function and take advantage of the

following property of associated Legendre functions of the second kind for z ∈ C \ (−∞, 1]

(Cohl et al. (2000) [27])

Qµ
−n−1/2(z) = Qµ

n−1/2(z),

in (5.9), for all n ∈ Z and µ ∈ C, we obtain a complex generalization of Heine’s reciprocal
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square root identity given as follows

1

[z − cosψ]µ
=

√
2

π

e−iπ(µ−1/2)(z2 − 1)−µ/2+1/4

Γ(µ)

∞∑

n=−∞
einψQ

µ−1/2
n−1/2(z), (5.10)

where Heine’s original identity Heine (1881) ([50], p. 286) is the case for µ = 1
2

given by

1√
z − cosψ

=

√
2

π

∞∑

m=−∞
Qm− 1

2

(z) eimψ. (5.11)

(see Cohl & Tohline (1999) [26] for exact forms of these toroidal harmonics and for their

recurrence relations.)

The expansion given by (5.10) is actually given in Magnus, Oberhettinger & Soni (1966)

([67], p. 182) and more recently in Conway (2007) [28]. Both of the results contained in

these references contain the restriction that Reµ > 0. Recently Selvaggi et al. (2008) ([89],

p. 033913-6) generalized (5.11) for µ given by odd-half-integers, even those µ less than or

equal to −1
2

(this was also suggested in Cohl (2003) [22]). The main result of §5.2 is that our

proof confirms that which is suggested by Selvaggi et al. (2008), i.e. that (5.10) is not only

valid for Reµ > 0, but over the entire complex µ-plane.

The generalization given by (5.10) is also expressible in terms of associated Legendre func-

tions of the first kind, through the Whipple formulae for the associated Legendre functions

(Abramowitz & Stegun (1972) [1], Cohl et al. (2000) [27]) as

1

[z − cosψ]µ
=

(z2 − 1)−µ/2

Γ(µ)

∞∑

n=−∞
einψΓ(µ− n)P n

µ−1

(
z√
z2 − 1

)
.

In the following section we describe some specific examples of the generalized identity,

and present some interesting implications.

5.2.2 Examples and implications

We now have from (5.5), the value of the following definite integral

∫ π

−π

cos(nt)dt

[z − cos t]µ
= 23/2

√
π
e−iπ(µ−1/2)(z2 − 1)−µ/2+1/4

Γ(µ)
Q
µ−1/2
n−1/2(z). (5.12)

Note that this equation makes sense even for µ being a negative integer, µ = −q, q ∈ N0,

since
1

Γ(−q)Q
−q−1/2
n−1/2 (z) =

−(−q)n
Γ(n+ q + 1)

Q
q+1/2
n−1/2(z), (5.13)
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where we have used the definition of the Pochhammer symbol for (−q)n, (2.11), combined

with negative-order condition for the associated Legendre functions of the second kind (Cohl

et al. (2000) [27], p. 367).

In the previous section, we computed the integral (5.12), valid for for z ∈ C\(−∞, 1], µ ∈
C. However, we may compare this definite integral with the integral representation of the

associated Legendre function of the second kind, Qµ
ν(z) given in Gradshteyn & Ryzhik (2007)

[48], (8.713.1). In that integral representation, if we make the replacement µ 7→ µ − 1
2

and

set ν = n − 1
2
, where n ∈ Z, we can obtain the same form as (5.12). However, in that

reference, the restriction is given that Reµ > 0. There is no such restriction for µ and n for

our derivation of the integral representation, (5.12); µ is arbitrary complex and n ∈ Z.

The principal example for the generalized Heine identity which was first proven in Selvaggi

et al. (2008) [89] (see also Magnus, Oberhettinger & Soni (1966) [67], p. 182 and Cohl (2003)

[22]) for µ = q + 1
2

where q ∈ Z is given by

1

[z − cosψ]q+1/2
=

2q+1/2(−1)q

π(2q − 1)!!(z2 − 1)q/2

∞∑

n=0

ǫn cos(nψ)Qq
n−1/2(z),

where (2q − 1)!! is the double factorial. For instance, for q = −1 (2.7) we have

√
z − cosψ =

√
z2 − 1√

2π

∞∑

n=0

ǫn cos(nψ)

n2 − 1
4

Q1
n−1/2(z),

and for q = +1

[z − cosψ]−3/2 =
−23/2

π
√
z2 − 1

∞∑

n=0

ǫn cos(nψ)Q1
n−1/2(z). (5.14)

Note that the minus sign in (5.14) expansion might seem initially troublesome, except that

it is important to notice that the unit-order associated Legendre functions of the second

kind are all negative in sign, as can be easily seen from the Gauss hypergeometric function

representation (2.41). Using (2.65) and (2.66), the rest of the unit-order, odd-half-integer

degree associated Legendre functions of the second kind can be computed, using the following

recurrence relation (cf. (2.50))

Q1
m+1/2(z) =

4mz

2m− 1
Q1
m−1/2(z) − 2m+ 1

2m− 1
Q1
m−3/2(z).

Notice that all odd-half-integer degree, integer-order associated Legendre functions can be

written in terms of elliptic integrals of the first and second kind (see §2.6.3). The analogous

formulas for q = 0 are given in Cohl & Tohline (1999) [26], (22)–(26).

Let us look at the behaviour of the generalized Heine identity (5.10) for µ being a negative-
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integer such that the binomial expansion should reduce to a polynomial in z. Using (5.13)

and setting µ = −q in (5.10), we obtain

(z − cosψ)q = −i
√

2

π
(−1)q(z2 − 1)q/2+1/4

q∑

n=0

ǫn cos(nψ)
(−q)n

(q + n)!
Q
q+1/2
n−1/2(z), (5.15)

where q ∈ N0.

Let us explicitly verify that

(z − cosψ)0 = 1.

The right-hand side of (5.15) is

√
2

π

(z2 − 1)1/4

i

0∑

n=0

ǫn cos(nψ)

n!
(0)nQ

1/2
n−1/2(z).

Hence for q = 0 in (5.15), the sum consists of merely one term. Using the associated Legendre

function (2.59), the right-hand side of (5.15) reduces to 1, as expected. Similarly (5.15) can

be verified to be true for all q ∈ N0.

Now we look at the behaviour of (5.10) for µ being a natural number. Substituting

µ = q ∈ N in (5.10) yields

1

[z − cosψ]q
= i

√
2

π

(−1)q(z2 − 1)−q/2+1/4

(q − 1)!

∞∑

n=0

ǫn cos(nψ)Q
q−1/2
n−1/2(z), (5.16)

where the right-hand side is verified to be positive real upon examination of the definition

of the associated Legendre function of the second kind in term of the Gauss hypergeometric

function, (2.41). For q = 1 the coefficients are associated Legendre functions with odd-half-

integer degree and 1
2

order. These can be evaluated using (2.60) and (2.58).

If we take z = cosh η and ν = n− 1
2
, where n ∈ Z and insert the resulting expression in

(5.16) we obtain

1

cosh η − cosψ
=

1

sinh η

∞∑

n=0

ǫne
−nη cos(nψ). (5.17)

This formula is elementary. It can be obtained directly by summing the geometric series

introduced by the definition of the cosine function (2.1) into the right-hand side of (5.17).

Similarly if we use (2.60) and the order recurrence relation for associated Legendre func-

tions (2.48), we are able to compute all required odd-half-integer-order associated Legendre

functions appearing in (5.16).
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By taking z = cosh η we have

1

(cosh η − cosψ)2
=

1

sinh3 η

∞∑

n=0

ǫn cos(nψ)e−nη(cosh η + n sinh η), (5.18)

1

(cosh η − cosψ)3
=

1

2 sinh5 η

×
∞∑

n=0

ǫn cos(nψ)e−nη
(
(n2 − 1) sinh2 η + 3n sinh η cosh η + 3 cosh2 η

)
, (5.19)

and

1

(cosh η − cosψ)4
=

1

6 sinh7 η

∞∑

n=0

ǫn cos(nψ)e−nη

×
(

(n3 − 4n) sinh3 η + (6n2 − 9) sinh2 η cosh η + 15n sinh η cosh2 η + 15 cosh3 η
)
. (5.20)

One way to verify these formulae is to start with the generating function for Chebyshev

polynomials of the first kind (2.96) and substitute z = cosh η, yielding (5.17). The rest of

the examples can be verified by direct repeated differentiation with respect to η.

5.2.3 Closed-form expressions for certain associated Legendre func-

tions

From (5.4), (5.9) and (5.10) we have

Aµ,n(z) =
(µ)n

2nn!zµ+n 2F1

(
µ+ n

2
,
µ+ n + 1

2
;n+ 1; z−2

)

=

√
2

π

e−iπ(µ−1/2)(z2 − 1)−µ/2+1/4

Γ(µ)
Q
µ−1/2
n−1/2(z). (5.21)

Letting

z = cosh η =
1

2

(
x + x−1

)
,

with x = e−η, and since η > 0, and 0 < x < 1, we have have

Aµ,n (cosh η) =
(µ)n
n!

2µxµ+n
(
1 + x2

)−(µ+n)
2F1

(
µ+ n

2
,
µ+ n + 1

2
;n+ 1;

4x2

(1 + x2)2

)
.
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Using (2.34) with a = µ+ n and b = µ, we get

Aµ,n (cosh η) =
(µ)n
n!

2µxµ+n
2F1

(
µ+ n, µ;n+ 1; x2

)
.

Using Pfaff’s transformation (2.25) we obtain

Aµ,n (cosh η) =
(µ)n
n!

2µxµ+n
(
1 − x2

)−µ
2F1

(
µ, 1 − µ;n+ 1;

x2

x2 − 1

)
.

Taking µ = q ∈ N, we can write

Aq,n (cosh η) =
(q)n
n!

2q
xq+n

(1 − x2)q

q−1∑

k=0

(q)k (1 − q)k
(n+ 1)k

1

k!

(
x2

x2 − 1

)k

or

Aq,n (cosh η) = 2q
xq+n

(1 − x2)q

q−1∑

k=0

(
q + n− 1

n + k

)(
q + k − 1

k

)
(−1)k

(
x2

x2 − 1

)k

=
xn

(
1−x2

2x

)q
q−1∑

k=0

(
q + n− 1

n+ k

)(
q + k − 1

k

)
2−k

(
x

1−x2

2x

)k

.

Since x = e−η, we get

Aq,n (cosh η) =
e−nη

sinhq (η)

q−1∑

k=0

(
q + n− 1

n+ k

)(
q + k − 1

k

)
e−kη

2k sinhk η
,

or for instance by using (2.14)

Aq,n(cosh η) =
e−nη

sinhq(η)

q−1∑

k=0

(
n + q − 1

q − k − 1

)(
q + k − 1

q − 1

)
e−kη

2k sinhk η
.

Using this formula and (5.21), we are able to write down a concise formula for odd-half-integer

degree, odd-half-integer-order associated Legendre functions

Q
q−1/2
n−1/2(z) =

√
π

2

i(−1)q+1(z −
√
z2 − 1)n

(q − 1)!(z2 − 1)1/4

q−1∑

k=0

(
n+ q − 1

q − k − 1

)(
q + k − 1

q − 1

)[
z −

√
z2 − 1

2(z2 − 1)1/2

]k
,
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or in terms of Pochhammer symbols

Q
q−1/2
n−1/2(z) = i(−1)q+1

√
π

2

Γ(q + n)

n!

(z −
√
z2 − 1)n

(z2 − 1)1/4

×
q−1∑

k=0

(q)k(1 − q)k
(n+ 1)kk!

[−z +
√
z2 − 1

2(z2 − 1)1/2

]k
, (5.22)

since

(−1)k
(q)n(q)k(1 − q)k

(n+ 1)kk!n!
=

(
q + k − 1

k

)(
q + n− 1

n+ k

)
.

We have seen that (5.22) can be generalized using entry (31) on p. 162 of Magnus, Oberhet-

tinger & Soni (1966) [67], q ∈ Z to obtain

Qq−1/2
ν (z) = i(−1)q+1

√
π

2

Γ
(
q + ν + 1

2

)

Γ
(
ν + 3

2

) (z +
√
z2 − 1)−ν−1/2

(z2 − 1)1/4

×
|q− 1

2
|− 1

2∑

k=0

(q)k(1 − q)k(
ν + 3

2

)
k
k!

[−z +
√
z2 − 1

2(z2 − 1)1/2

]k
. (5.23)

This is a generalization of the very important formulae given by (8.6.10) and (8.6.11) in

Abramowitz & Stegun (1972) [1] p. 334. Taking z = cosh η we have

Qq−1/2
ν (cosh η) = i(−1)q+1

√
π

2

Γ
(
q + ν + 1

2

)

Γ
(
ν + 3

2

) e−η(ν+1/2)

√
sinh η

|q− 1

2
|− 1

2∑

k=0

(q)k(1 − q)k(
ν + 3

2

)
k
k!

(−1)ke−kη

2k sinhk η
. (5.24)

An alternative procedure for computing these associated Legendre functions is to start with

(2.60) and (2.58) and use the associated Legendre function order recurrence relation. On the

other hand, the expressions given by (5.23) and (5.24), directly give closed-form expressions

for the associated Legendre functions, simply by evaluating a finite sum.

Not only is the generalized Heine identity useful for studying Poisson’s equation in three-

dimensions, but it is equally valid with fundamental solutions for k powers of the Laplacian

in Rd. These are given in terms of a functions which match exactly the left-hand side of the

generalized Heine identity, particularly those in odd dimensions and in the even dimensions

for k ≤ n
2
− 1. As will be seen in follow-up publications, the generalized Heine identity can

be used as a powerful tool for expressing geometric properties (multi-summation addition

theorems) for these unnormalized fundamental solutions in rotationally-invariant coordinate

systems which yield solutions to such equations through separation of variables.
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5.3 Algebraic approach to logarithmic Fourier series

The algebraic form of an unnormalized fundamental solution for d even and k ≥ d/2 is given

in (5.2). It is given in the form of (cosh η − cosψ)p log(cosh η − cosψ), where p ∈ N0. For

p = 0 the result is well-known (see for instance Magnus, Oberhettinger & Soni (1966) [67]

p. 259)

log(cosh η − cosψ) = η − log 2 − 2
∞∑

n=1

e−nη

n
cos(nψ). (5.25)

Now let us examine the p = 1 case

(cosh η − cosψ) log(cosh η − cosψ) = (η − log 2)(cosh η − cosψ)

− 2

∞∑

n=1

e−nη

n
cos(nψ)(cosh η − cosψ). (5.26)

Taking advantage of the formula

cos(nψ) cosψ =
1

2
{cos[(n+ 1)ψ] + cos[(n− 1)ψ]} , (5.27)

which is a direct consequence of (2.3), we have

(cosh η − cosψ) log(cosh η − cosψ) = (η − log 2) cosh η − (η − log 2) cosψ

− 2 cosh η

∞∑

n=1

e−nη

n
cos(nψ) +

∞∑

n=1

e−nη

n
cos[(n+ 1)ψ] +

∞∑

n=1

e−nη

n
cos[(n− 1)ψ]. (5.28)

Collecting the contributions to the Fourier cosine series, we obtain (compare with (5.18))

(cosh η − cosψ) log(cosh η − cosψ) = (1 + η − log 2) cosh η − sinh η

+ cosψ

(
log 2 − 1 − η − 1

2
e−2η

)
+ 2

∞∑

n=2

e−nη cosnψ

n(n2 − 1)
(cosh η + n sinh η). (5.29)
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For p = 2 and using (5.27), we similarly have

(cosh η − cosψ)2 log(cosh η − cosψ) = (η − log 2) cosh2 η − 2(η − log 2) cosh η cosψ

+ (η − log 2) cos2 ψ − (2 cosh2 η + 1)
∞∑

n=1

e−nη

n
cosnψ + 2 cosh η

∞∑

n=1

e−nη

n
cos[(n + 1)ψ]

+ 2 cosh η

∞∑

n=1

e−nη

n
cos[(n− 1)ψ] − 1

2

∞∑

n=1

e−nη

n
cos[(n + 2)ψ] − 1

2

∞∑

n=1

e−nη

n
cos[(n− 2)ψ].

Collecting the contributions to the Fourier cosine series, we obtain (compare with (5.19))

(cosh η − cosψ)2 log(cosh η − cosψ) = (η − log 2)

(
cosh2 η +

1

2

)
+ 2(cosh η)e−η − 1

4
e−2η

+

(
−2(η − log 2) cosh η −

(
2 cosh2 η +

3

2

)
e−η + (cosh η) e−2η − 1

6
e−3η

)
cosψ

+

(
1

2
(η − log 2) + 2(cosh η)e−η − 1

2
(2 cosh2 η + 1)e−2η +

2

3
(cosh η)e−3η − 1

8
e−4η

)
cos 2ψ

− 4

∞∑

n=3

e−nη cos(nψ)

n(n2 − 1)(n2 − 4)

[
(n2 − 1) sinh2 η + 3n sinh η cosh η + 3 cosh2 η

]
. (5.30)

We now see how to generalize this process. Starting with (5.25) and repeatedly multiplying

by factors of cosh η − cosψ, we see that the general Fourier expansion is by

(cosh η − cosψ)p log(cosh η − cosψ) = (η − log 2)(cosh η − cosψ)p

+ 2

p∑

k=−p
(−1)k+1Rk

p(cosh η)

∞∑

n=1

e−nη

n
cos[(n + k)ψ], (5.31)

where Rk
p(x) are what we refer to as logarithmic polynomials with x = cosh η (in our notation

p and k are both indices) which are nonvanishing only for k ∈ {−p, . . . , 0, . . . , p}, and are

satisfied by the following recurrence relation

Rk
p(x) =

1

2
Rk−1
p−1(x) + xRk

p−1(x) +
1

2
Rk+1
p−1(x).

We see that R0
0(x) = 1 from (5.25), which gives us the starting point for the recursion. These

polynomials are even in the index k, i.e.

Rk
p(x) = R−k

p (x).
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The derivative of the polynomials are given by

d

dx
R±k
p (x) = pR±k

p−1(x).

Some of the first few logarithmic polynomials are given by

R0
0(x) = 1

R0
1(x) = x, R±1

1 (x) =
1

2

R0
2(x) =

1

2
+ x2, R±1

2 (x) = x, R±2
2 (x) =

1

4

R0
3(x) =

3

2
x + x3, R±1

3 (x) =
3

8
+

3

2
x2, R±2

3 (x) =
3

4
x, R±3

3 (x) =
1

8

R0
4(x) =

3

8
+ 3x2 + x4, R±1

4 (x) =
3

2
x+ 2x3, R±2

4 (x) =
1

4
+

3

2
x2, R±3

4 (x) =
1

2
x, R±4

4 (x) =
1

16
.

We can find the generating function for the polynomials Rk
p(x) as follows. Let

F (x, y, z) =
∞∑

p=0

∞∑

k=−∞
Rk
p(x)ykzp

be the generating function for the polynomials Rk
p(x). If we define the function

Sp(x, y) =
∞∑

k=−∞
Rk
p(x)yk,

then using the recurrence relation for Rk
p(x) we can show

Sp(x, y) =

(
x +

1

2

(
y +

1

y

))
Sp−1(x, y).

Combining this result along with the fact that R0
0(x) = 1 we have

Sp(x, y) =

(
x +

1

2

(
y +

1

y

))p
,
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so therefore the generating function for the polynomials Rp(x) is given by

F (x, y, z) =
1

1 − z

(
x +

1

2

(
y +

1

y

)) .

We can re-write (5.31) by rearranging the order to the k and n summations

(cosh η − cosψ)p log(cosh η − cosψ) = (η − log 2)(cosh η − cosψ)p

+

p−1∑

n=1

cos(nψ)enη r−n−1,−p
−n,p (cosh η) +

p∑

n=0

cos(nψ)e−nη r−p,−1
n,p (cosh η)

+

p∑

n=1

cos(nψ)e−nη r0,n−1
n,p (cosh η) +

∞∑

n=p+1

cos(nψ)e−nη

(n2 − p2) · · · (n2 − 1)n
ℜn,p(cosh η), (5.32)

where

rk1,k2n,p (cosh η) :=

k2∑

k=k1

ρkp(cosh η)

n− k
,

ρkp(cosh η) := 2(−1)k+1ekηRk
p(cosh η),

and

ℜn,p(cosh η) :=

p∑

k=−p

(n+ p)!ρkp(cosh η)

(n− p− 1)!(n− k)
.

Note that the above expression is well-behaved because ℜn,p is only defined for n ≥ p+ 1. It

is also interesting to notice that for η > 0 we may write eη and therefore η as a function of

cosh η since

sinh η =

√
cosh2 η − 1,

eη = cosh η +

√
cosh2 η − 1,

and therefore

η = log

(
cosh η +

√
cosh2 η − 1

)
.
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If we make the following definition

Pn,p(cosh η) =






r−p,−1
0,p (cosh η) if n = 0,

e−nηr−p,−1
n,p (cosh η) +Dn,p(cosh η) + En,p(cosh η) if 1 ≤ n ≤ p− 1,

e−pηr−p,p−1
p,p (cosh η) if n = p,

e−nη

(n2 − p2) · · · (n2 − 1)n
ℜn,p(cosh η) if n ≥ p+ 1,

where

Dn,p(cosh η) =





enηr−n−1,−p

−n,p (cosh η) if p ≥ 2,

0 if p ∈ {0, 1},

and

En,p(cosh η) =





e−nηr0,n−1

n,p (cosh η) if p ≥ 1,

0 if p = 0,

then we can write (5.32) as

(cosh η − cosψ)p log(cosh η − cosψ) =

(η − log 2)(cosh η − cosψ)p +
∞∑

n=0

cos(nψ)Pn,p(cosh η). (5.33)

In fact, if we use (5.15) then we can write

(cosh η − cosψ)p log(cosh η − cosψ) =

i(η − log 2)

√
2

π
(−1)p+1(sinh η)p+1/2

p∑

n=0

ǫn cos(nψ)
(−p)n

(p + n)!
Q
p+1/2
n−1/2(cosh η)

+

∞∑

n=0

cos(nψ)Pn,p(cosh η). (5.34)

If we define

Qn,p(cosh η) = ℜn,p(cosh η) + iǫn(η − log 2)

√
2

π
(−1)p+1(sinh η)p+1/2 (−p)n

(p+ n)!
Q
p+1/2
n−1/2(cosh η),

then we have

(cosh η − cosψ)p log(cosh η − cosψ) =
∞∑

n=0

cos(nψ)Qn,p(cosh η). (5.35)
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We shall prove in (6.46) in §6.3 that the “ending” function ℜn,p (cf. (5.32), (5.29), (5.30),

(5.18), and (5.19)) is directly related to associated Legendre functions of the second kind.

Explicitly,

ℜn,q(cosh η) = 2

√
2

π
iq!enη (sinh η)q+1/2Q

q+1/2
n−1/2(cosh η). (5.36)

Therefore we have

1

(cosh η − cosψ)q
=

(−1)q

2[(q − 1)!]2 sinh2q−1 η

∞∑

n=0

ǫn cos(nψ)e−nηℜn,q−1(cosh η), (5.37)

and also that

(
cosh η − cosψ

)p
log(cosh η − cosψ) = (η − log 2)

(
cosh η − cosψ

)p

+
−1∑

n=1−p
cos(nψ)e−nη rn−1,−p

n,p (cosh η) +

p∑

n=0

cos(nψ)e−nη r−p,−1
n,p (cosh η)

+

p∑

n=1

cos(nψ)e−nη r0,n−1
n,p (cosh η)

+ 2

√
2

π
ip! (sinh η)p+1/2

∞∑

n=p+1

cos(nψ)

(n2 − p2) · · · (n2 − 1)n
Q
p+1/2
n−1/2(cosh η). (5.38)

This establishes a firm connection between the results in this section and the potential the-

oretic results in §5.2.

5.4 Fourier expansions

In this section we take advantage of the above derived Fourier cosine series to compute Fourier

expansions for an unnormalized fundamental solution for powers of the Laplacian in Rd.

5.4.1 Azimuthal Fourier expansions in pure and mixed coordinates

Fourier expansions of fundamental solutions for powers of the Laplacian in pure and mixed

Euclidean-hyperspherical coordinate systems can now be obtained. We write down the al-

gebraic expressions for unnormalized fundamental solutions in §5.1 and in these coordinate

systems use the Fourier cosine series obtained this chapter to write down the Fourier expan-
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sions in these coordinate systems.

The quintessential example of mixed Euclidean-hyperspherical coordinates is given by

circular cylindrical coordinates in R3 i.e. type a (3, 2) Euclidean-hyperspherical coordinates

(see Figure 4.11). In this case we have

1

‖x − x′‖ =
1√
2rr′

1

[χ− cos(φ− φ′)]1/2
,

where

χ =
r2 + r′2 + (x3 − x′3)2

2rr′
.

By applying (5.11) we have

1

‖x − x′‖ =
1

π
√
rr′

∞∑

m=−∞
eim(φ−φ′)Qm−1/2(χ).

More generally, in type a (d, 2) Euclidean-hyperspherical coordinates (see Figure 4.11), for

arbitrary powers of ν using (5.10) we have

‖x − x′‖ν =

√
π

2

eiπ(ν+1)/2

Γ (−ν/2)
(2rr′)ν/2

(
χ2 − 1

)(ν+1)/4
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χ),

where

χ =
r2 + r′2 + (x3 − x′3)2 + . . .+ (xd − x′d)

2

2rr′
.

Another example of Fourier expansions for mixed Euclidean-hyperspherical coordinates is

type ba (d, 3) Euclidean-hyperspherical coordinates (see Figure 4.12). The Fourier expansion

for arbitrary powers of ν is

‖x − x′‖ν =

√
π

2

eiπ(ν+1)/2

Γ (−ν/2)
(2rr′ sin θ sin θ′)ν/2

(
χ2 − 1

)(ν+1)/4
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χ),

where

χ =
r2 + r′2 − 2rr′ cos θ cos θ′ + (x4 − x′4)2 + . . .+ (xd − x′d)

2

2rr′ sin θ sin θ′
.
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Many more examples of Fourier expansions are now possible in general mixed Euclidean-

hyperspherical coordinate systems. Take for instance standard type bk−2a (d, k) Euclidean-

hyperspherical coordinates (see Figure 4.13). In these coordinates we have

‖x − x′‖ν =

√
π

2

eiπ(ν+1)/2

Γ (−ν/2)

(

2rr′
k−2∏

i=1

sin θisin θi
′

)ν/2
(
χ2 − 1

)(ν+1)/4

×
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χdk), (5.39)

where χdk is given in (4.34).

The fact that these Fourier expansions are valid in every rotationally invariant coordinate

system which contains these embedded k-dimensional hyperspherical coordinate systems (of

which there are many), and yields solutions via separation of variables presents a powerful

method for constructing multi-integration addition theorems/definite integrals (for an exam-

ple of this utility in R3 see Cohl et al. (2000) [27]). Your ability to construct these addition

theorems rests on your capacity to generate eigenfunction expansions (or integrals) for fun-

damental solutions in certain coordinate systems. It happens that for pure hyperspherical

coordinate systems, this capacity is available, and this is the subject of the following chapter.

In the pure standard hyperspherical coordinate system (4.31) we have

‖x − x′‖ν =

√
π

2

eiπ(ν+1)/2

Γ (−ν/2)

(

2rr′
k−2∏

i=1

sin θisin θi
′

)ν/2
(
χ2 − 1

)(ν+1)/4

×
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χdd),

where χdd is given in (4.35), and many more examples of such expressions may be written

down in any other pure hyperspherical coordinate system using the appropriate expansion of

cos γ in the distance function to generate the toroidal parameter.

5.4.2 Fourier expansions for the separation angle

It should be noted that an unnormalized fundamental solution for powers of the Laplacian in

Rd can also be Fourier expanded in terms of a pure hyperspherical separation angle, γ. They

are computed using the specific point parametrization for cos γ on the unit-hyper-sphere

Sd−1. In pure hyperspherical coordinates we have fundamental solutions for powers of the
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Laplacian in Rd through (5.1) and (5.2) with κ = d, namely for d odd, and for d even with

k ≤ d/2 − 1 we have

gdk(x,x
′) = (2rdr

′
d)
k−d/2 [

χdd − cos γd
]k−d/2

,

where

χdd =
r2
d + r′d

2

2rdr′d
, (5.40)

cos γd is given in (4.38), and for d even with k ≥ d/2 we have

gdk(x,x
′) = (2rdr

′
d)
p

[
1

2
log (2rdr

′
d) − βk−d/2

] [
χdd − cos γd

]p

+
1

2
(2rdr

′
d)
p [
χdd − cos γd

]p
log
(
χdd − cos γd

)
.

Now we can use the previous Fourier cosine series results from this chapter to compute sep-

aration angle Fourier expansions in pure hyperspherical coordinate systems for fundamental

solutions of the Laplacian in Rd.

For instance in R3 we can use Heine’s reciprocal square root identity (5.11) to reproduce

the result in Cohl et al. (2001) [25], namely

1

‖x − x′‖ =
1

π
√
r3r′3

∞∑

n=−∞
einγQn−1/2(χ3

3), (5.41)

where cos γ is given in (4.18) for type ba coordinates. However (5.41) is also valid in type

b′a coordinates. In that case the only modification is to use (4.20) to define our γ.

Take also for instance, type b2a, b′2a, bb′a, b′ba and ca2 coordinates in R4. Then if we

use (5.17), we have

1

‖x − x′‖2
=

1

r2
> − r2

<

∞∑

n=0

ǫn cos(nγ)

(
r<
r>

)n
,

where r≶ is defined in the Glossary and cos γ is given by (4.22), (4.28), (4.24), (4.26), and

(4.30).

These types of expansions are now possible in all pure hyperspherical coordinate systems

because of our derivation of the Fourier series of unnormalized fundamental solutions for

powers of the Laplacian. Using (5.10) for any pure hyperspherical coordinate system in Rd,
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we now have the separation angle Fourier expansion for arbitrary powers of the distance,

namely
1

‖x − x′‖s =
eiπ(1−s)/2(r2

> − r2
<)(1−s)/2

√
πrr′Γ(s/2)

∞∑

n=−∞
einγQ

(1−s)/2
n−1/2 (χ),

for s ∈ C except if s ∈ {0,−2,−4, . . .}, i.e. s = −2p for p ∈ N0, then we have

‖x − x′‖2p =
i(−1)p+1

√
rr′

(r2
> − r2

<)p+1/2

∞∑

n=0

cos(nγ)
(−p)n

(p+ n)!
Q
p+1/2
n−1/2(χ). (5.42)

Through simple algebra we have the separation angle Fourier expansion for the logarithmic

fundamental solutions, namely through (5.35)

‖x − x′‖2p log ‖x − x′‖ = log(2rr′)‖x − x′‖2p + (2rr′)p
∞∑

n=0

cos(nγ)Qn,p(χ),

where the expansion of ‖x − x′‖2p is given by (5.42).



6
Addition theorems for pure

hyperspherical coordinates in Rd

In §6.1 we review the addition theorem for hyperspherical harmonics and in §6.2 we review

the computation of normalized hyperspherical harmonics in Rd. We shall use these results to

derive, in §6.3, new Gegenbauer polynomial expansions in Rd of a fundamental solution for

powers of the Laplacian in Rd. In §6.4 we present new multi-summation addition theorems

for hyperspherical harmonics in Rd. Fundamental background material for this chapter is

in Vilenkin (1968) [100], Izmest′ev et al. (2001) [59], and Wen & Avery (1985) [106]. For

directly relevant discussions, see §10.2.1 in Fano & Rau (1996), Chapter 9 in Andrews, Askey

& Roy (1999) [3] and especially Chapter XI in Erdélyi et al. Vol. II (1981) [36].

The aim of this chapter is to compute, for a general hyperspherical coordinate system, new

addition theorems using basis function expansions for unnormalized fundamental solutions of

Laplace’s equation in Rd. This is a generalization of the R3 results in Cohl et al. (2001) [25].

In that reference, we used the well-known addition theorem for spherical harmonics in order to

obtain a new addition theorem for spherical harmonics, one that involves a toroidal harmonic.

In the present case we have Fourier expansions of unnormalized fundamental solutions for

powers of the Laplacian in Rd and we generalize our previous result for expansions in terms

109
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of hyperspherical harmonics, the normalized angular solutions to Laplace’s equation in a

general hyperspherical coordinate system in Rd.

6.1 Addition theorem for hyperspherical harmonics

The addition theorem for spherical harmonics (in R3) is given by

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Yl,m(x̂)Y ∗

l,m(x̂′), (6.1)

where Pl is a Legendre polynomial of degree l ∈ N0, γ is the separation angle defined by

(4.14), m ∈ {−l, . . . , 0, . . . , l}, x̂ and x̂′ are the unit vectors in the direction of x,x′ ∈ R3

respectively, and Yl,m(x̂) is the normalized angular solution to Laplace’s equation in spherical

coordinates, the spherical harmonics.

The addition theorem for hyperspherical harmonics, which reduces to (6.1) for d = 3, is

given in terms of Gegenbauer polynomials. For the proof of the addition theorem, see Wen &

Avery (1985) [106] and for a relevant discussion, see §10.2.1 in Fano & Rau (1996) [38]. We

use the addition theorem for hyperspherical harmonics to generate basis function expansions

for unnormalized fundamental solutions of Laplace’s equation in Rd, in order to generate

new addition theorems in terms of the coefficients of the Fourier expansions computed in the

previous chapter. The addition theorem for hyperspherical harmonics is

C
d/2−1
λ (cos γ) =

Nd

(2λ+ d− 2)(d− 4)!!

∑

µ∈µ

Yλ,µ(x̂)Y ∗
λ,µ(x̂′), (6.2)

where Yλ,µ(x̂) for λ ∈ N0 and µ ∈ µ are the normalized separable hyperspherical harmonics,

µ stands for a set of d − 2 quantum numbers identifying degenerate harmonics for each λ,

λ := {λ} ∪ µ represents the set of all angular momentum quantum numbers in a general

hyperspherical coordinate system, x̂ and x̂′ are the unit vectors in the direction of x,x′ ∈
Rd respectively, γ is the separation angle (4.14), and Nd is defined below. The proper

normalization of the hyperspherical harmonics is given by the following integral

∫
dΩdYλ,µ(x̂)Y ∗

λ′,µ′(x̂) = δλ,λ′ δµ,µ′ .

The degeneracy of the space of hyperspherical harmonics as a function of d and λ is given

by

dim(d) =
(d− 2 + 2λ)(d− 3 + λ)!

λ!(d− 2)!
(6.3)
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(see (9.2.11) in Vilenkin (1968) [100]). The degeneracy (6.3) as a function of the dimension

d tells you how many linearly independent solutions exist for a particular λ value. The total

number of linearly independent solutions are described uniquely by the sum over µ in (6.2)

for each λ. Note that this formula reduces to the standard result in d = 3 with a degeneracy

given by 2λ + 1 and in d = 4 with a degeneracy given by (λ + 1)2. The “surface area” Sd

(the (d− 1)-dimensional volume of the (d− 1)-dimensional hyper-sphere at the boundary of

the d-dimensional hyper-sphere) of the d-dimensional unit hyper-sphere is given in terms of

∫
dΩd = Sd :=

Nd

(d− 2)!!
,

where dΩd is the infinitesimal element of the solid angle,

Sd =
2πd/2

Γ(d/2)
=






(2π)d/2

(d− 2)!!
if d even,

2(2π)(d−1)/2

(d− 2)!!
if d odd,

and therefore

Nd :=
2πd/2(d− 2)!!

Γ(d/2)
=






(2π)d/2 if d even,

2(2π)(d−1)/2 if d odd.
(6.4)

6.2 Hyperspherical harmonics

The general basis functions that one gets by putting coordinates on the d-dimensional hyper-

sphere Sd, can be specified as solutions to the angular part of Laplace’s equation on Rd+1

(these correspond to separated solutions of Laplace’s equation, using the Laplace-Beltrami

operator, on the hyper-sphere Sd) as

Ψ =
d∏

k=1

Ψk(θk).

The following numbers are associated with each cell m, l, lα, lβ (see Figure 4.1 in §4.2). The

number of vertices above each branching node lα and lβ are represented by Sα and Sβ re-

spectively. The numbers m ∈ Z, l, lα, lβ ∈ N0 label representations for the corresponding

rotation subgroup in the subgroup chain, i.e. angular momentum type quantum numbers (see

§4.1 and especially Izmest′ev et al. (2001) [59]).

The following eigenfunctions are generated at each branching node for normalized hyper-
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spherical harmonics using the method of trees:

• Type a:

Ψm(φa) =
1√
2π
eimφa ; m ∈ Z. (6.5)

• Type b:

Ψα
n,lβ

(θb) = Nα,α
n (sin θb)

lβP
(α,α)
n (cos θb);

n = l − lβ, α = lβ +
Sβ
2
, n ∈ N0





(6.6)

where P
(α,β)
n (x) is a Jacobi polynomial.

• Type b′:

Ψβ
n,lα

(θb′) = Nβ,β
n (cos θb′)

lαP
(β,β)
n (sin θb′);

n = l − lα, β = lα +
Sα
2
, n ∈ N0.





(6.7)

• Type c:

Ψα,β
n,lβ ,lα

(ϑc) = 2(α+β)/2+1Nα,β
n (sin ϑc)

lβ (cosϑc)
lαP

(α,β)
n (cos 2ϑc);

n =
1

2
(l − lα − lβ) , α = lβ +

Sβ
2
, β = lα +

Sα
2
, n ∈ N0.





(6.8)

Please see Figure 4.1. The normalization constants are given by

Nα,β
n =

√
(2n+ α + β + 1)Γ(n+ α + β + 1)n!

2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)
,

such that ∫ 1

−1

P (α,β)
m (x)P (α,β)

n (x)(1 − x)α(1 + x)βdx =
δm,n(
Nα,β
n

)2 ,

where Reα,Reβ > −1 (see (7.391.1) in Gradshteyn & Ryzhik (2007) [48]). Notice that the

eigenfunctions for cells of type b and b′ can be expressed in terms of Gegenbauer polynomials

using (2.93). We can re-write (6.6) as

Ψα
n,lβ

(θb) =
(2α)!

Γ (α + 1)

√
(2α + 2n+ 1)n!

22α+1(2α + n)!
(sin θb)

lβCα+1/2
n (cos θb),
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and (6.7) as

Ψβ
n,lα

(θb′) =
(2β)!

Γ (β + 1)

√
(2β + 2n + 1)n!

22β+1(2β + n)!
(sin θb′)

lαCβ+1/2
n (cos θb′).

6.2.1 Examples of hyperspherical harmonics

The simplest example occurs in d = 2, where the only hyperspherical coordinate system

generated is of type a through (4.16, see Figure 4.2). In this case there is one angle φ ∈ [0, 2π)

in correspondence with an azimuthal quantum number m ∈ Z, the only branching node is of

type a and the normalized harmonics are

Ym(φ) =
eimφ√

2π
.

In d = 3 there are two possible coordinate systems, that of type ba (4.17), and b′a (4.19).

In both cases there are two branching nodes. First we treat the type ba coordinate system

(see Figure 4.3) At the root branching node, there is an angle θ ∈ [0, π] which we correspond

to an angular momentum quantum number l ∈ N0 (6.6) and at the type a cell we have

m ∈ Z (6.5). Using (6.6) we see that α = m, n = l −m, lβ = m, and Sβ = 0 since there

are no vertices above the branching node m. Through reduction and multiplication by the φ

eigenfunction, the normalized spherical harmonics are

Yl,m(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (6.9)

These are the standard spherical harmonics.

Now we treat the type b′a coordinate system (see Figure 4.4). This tree is corresponding

to this coordinate system is equivalent to the previous tree. At the root branching node,

there is an angle θ ∈ [−π/2, π/2] which we correspond to an angular momentum quantum

number l ∈ N0 (6.7) and at the type a cell we have m ∈ Z (6.5). Using (6.7) we see that

α = m, n = l−m, lα = m, and Sα = 0 since there are no vertices above the branching node

m. Through reduction and multiplication by the φ eigenfunction, the normalized spherical

harmonics are

Yl,m(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (sin θ)eimφ. (6.10)

For certain combinations of indices, Gegenbauer polynomials reduce to Legendre polynomials

(2.97). We have relied on (2.97) in our use of (6.6) and (6.7), for these particular trees, to

derive the spherical harmonics (6.9) and (6.10). The natural domain of the function Pm
l is
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[−1, 1] (see for instance §12.5 of Arfken & Weber (1995) [5]). It will be understood that the

range of θ is chosen to be θ ∈ [0, π] or θ ∈ [−π/2, π/2] for nodes of type b and b′ respectively,

so that the appropriate domain for the associated Legendre functions is taken.

In d = 4 there are five possible pure hyperspherical coordinate systems, those of type b2a

(4.21), bb′a (4.23), b′ba (4.25), b′2a (4.27), and ca2 (4.29). Spherical coordinates in d = 4

can be represented in one of five ways.

The normalized hyperspherical harmonic in type b2a coordinates (see Figure 4.5) is

Yl1,l2,m(θ1, θ2, φ) =
(−1)m(2l2)!!

π

√
(2l2 + 1)(l1 + 1)(l1 − l2)!(l2 −m)!

2(l1 + l2 + 1)!(l2 +m)!

× (sin θ1)l2C l2+1
l1−l2(cos θ1)P

m
l2

(cos θ2)e
imφ. (6.11)

The normalized hyperspherical harmonic in type b′2a coordinates (see Figure 4.8) is

Yl1,l2,m(θ1, θ2, φ) =
(−1)m(2l2)!!

π

√
(2l2 + 1)(l1 + 1)(l1 − l2)!(l2 −m)!

2(l1 + l2 + 1)!(l2 +m)!

× (cos θ1)
l2C l2+1

l1−l2(sin θ1)P
m
l2

(sin θ2)eimφ.

The normalized hyperspherical harmonic in type bb′a coordinates (see Figure 4.6) is

Yl1,l2,m(θ1, θ2, φ) =
(−1)m(2l2)!!

π

√
(2l2 + 1)(l1 + 1)(l1 − l2)!(l2 −m)!

2(l1 + l2 + 1)!(l2 +m)!

× (sin θ1)l2C l2+1
l1−l2(cos θ1)P

m
l2 (sin θ2)eimφ.

The normalized hyperspherical harmonic in type b′ba coordinates (see Figure 4.7) is

Yl1,l2,m(θ1, θ2, φ) =
(−1)m(2l2)!!

π

√
(2l2 + 1)(l1 + 1)(l1 − l2)!(l2 −m)!

2(l1 + l2 + 1)!(l2 +m)!

× (cos θ1)
l2C l2+1

l1−l2(sin θ1)P
m
l2

(cos θ2)e
imφ.

The normalized hyperspherical harmonics in type ca2 hyperspherical coordinates (see Figure
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4.9) is

Yl,m1,m2
(ϑ, φ1, φ2) =

ei(m1φ1+m2φ2)

π

√
l + 1

2

[
1
2
(l + |m1| + |m2|

]
!
[

1
2
(l − |m1| − |m2|)

]
![

1
2
(l − |m1| + |m2|)

]
!
[

1
2
(l + |m1| − |m2|)

]
!

× (sinϑ)|m2|(cosϑ)|m1|P
(|m2|,|m1|)
(l−|m1|−|m2|)/2(cos 2ϑ),

with the restriction to the parameter space given by
1

2
(l − |m1| − |m2|) ∈ N0.

For arbitrary dimensions we can use standard hyperspherical coordinates. The hyper-

spherical harmonics corresponding to this coordinate system are basis functions for the ir-

reducible representations of O(d). In terms of these coordinates, the properly normalized

hyperspherical harmonics, i.e. the functions which yield separation of variables for the d-

dimensional Euclidean Laplace equation in standard hyperspherical coordinates are given

as

Yλ,µ(x̂) =

[
d−3∏

j=1

Θ(lj, lj+1; θj)

]
Yℓ,m(θd−2, φ), (6.12)

where µ = {l2, l3, . . . , ld−1},

l1 = λ ≥ l2 ≥ l3 ≥ · · · ≥ ld−3 ≥ ld−2 = ℓ ≥ |ld−1 = m| ≥ 0, (6.13)

and

Θ(lj , lj+1; θj) =

Γ

(
lj+1 +

d− j + 1

2

)

2lj+1 + d− j − 1

√
22lj+1+d−j−1(2lj + d− j − 1)(lj − lj+1)!

π(lj + lj+1 + d− j − 2)!

× (sin θj)
lj+1C

lj+1+(d−j−1)/2
lj−lj+1

(cos θj). (6.14)

The computation of (6.14) is a straightforward consequence of (6.6), and doing the proper

node counting for Sβ, in the tree depicted in Figure 4.10, for type bd−2a coordinates.
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6.3 Fundamental solution expansions in Gegenbauer

polynomials

One may compute eigenfunction expansions for unnormalized fundamental solutions for pow-

ers of the Laplacian in Rd in terms hyperspherical harmonics by using the generating function

for Gegenbauer polynomials (2.95). The generating function for Gegenbauer polynomials only

matches up to the addition theorem for hyperspherical harmonics with superscript d/2 − 1,

see (6.2). This corresponds to an unnormalized fundamental solution for a single power of

the Laplacian for d ≥ 3 in pure hyperspherical coordinates (r = rd, γ = γd) where

‖x − x′‖ =
(
r2 + r′

2 − 2rr′ cos γ
)1/2

.

If in the generating function for Gegenbauer polynomials (2.95) we substitute z = r</r>,

λ = d/2 − 1, and x = cos γ, then in the context of (6.2) we have

1

‖x − x′‖d−2
=

∞∑

n=0

rn<
rn+d−2
>

Cd/2−1
n (cos γ). (6.15)

This is a generalization of the generating function for Legendre polynomials (Laplace ex-

pansion), and reduces to such for d = 3. We may use (6.15) to compute single summation

fundamental solution expansions (d ≥ 3) for a single power of the Laplacian. But due to the

discrepancy of the superscript of the Gegenbauer polynomial in the generating function for

general powers of the Laplacian vs. that in (6.2), we are unable to straightforwardly use this

formula to compute eigenfunction expansions for an unnormalized fundamental solution for

the Laplacian in Rd in pure hyperspherical coordinates for general powers of the Laplacian

k.

We would like to be able to use the addition theorem for hyperspherical harmonics (6.2) to

compute eigenfunction expansions of unnormalized fundamental solutions for general powers

of the Laplacian k. In order to do this we must compute the angular projection for unnor-

malized fundamental solutions for powers of the Laplacian onto this particular Gegenbauer

polynomial with superscript d/2 − 1. We now see that not only are we able to expand an

unnormalized fundamental solutions for general powers of the Laplacian in a Fourier series,

but we are also able to expand unnormalized fundamental solutions in hyperspherical har-

monics. By comparison we are able to generate an addition theorem, by extracting out the

Fourier contribution from both sides of the equality.

One may compute the appropriate expansion as follows. For the case described above,

namely using the standard hyperspherical coordinates in (4.31) which are adapted to a specific
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canonical subgroup chain, in that case see (6.13) and we have

∑

µ∈µ

=
λ∑

l1=0

l1∑

l2=0

· · ·
ld−5∑

ld−4=0

ld−4∑

ℓ=0

ℓ∑

m=−ℓ
. (6.16)

For these coordinates, it is this multi-index sum which is used in the addition theorem for

hyperspherical harmonics. In order to be able to use this addition theorem, we need to be

able to expand unnormalized fundamental solutions in terms of Gegenbauer polynomials (see

p. 15 of Faraut & Harzallah (1987) [39]), namely

‖x − x′‖ν =

∞∑

λ=0

Rν,λ(r, r′)C
d/2−1
λ (cos γ). (6.17)

Through the use of the addition theorem for hyperspherical harmonics we see that the Gegen-

bauer polynomials C
d/2−1
λ (cos γ) are hyperspherical harmonics when regarded as a function

of x only. We would also like to consider Gegenbauer polynomial expansion formulas, in even

dimensions, of fundamental solutions for powers of the Laplacian greater than or equal to

d/2, namely

‖x − x′‖2p log ‖x − x′‖ =
∞∑

λ=0

S2p,λ(r, r
′)C

d/2−1
λ (cos γ), (6.18)

for p ∈ N0. These will be discussed below.

Sack (1964) [84] computed expansions in terms of Legendre polynomials for functions

which are a power of the distance in R3 (see also Hausner (1997) [49]). This is the limiting

case for d = 3 in (6.17). The result given in Sack (1964) [84] for Rν,λ(r, r
′) in R3 is given as a

specific Gauss hypergeometric function. Other relevant works give expressions for expanding

arbitrary functions of f(‖x − x′‖) in terms of the correct Gegenbauer polynomials (appro-

priate for its dimension) in R3 (see Avery (1979) [7]) and in Rd (see Wen & Avery (1985)

[106]). However, those formulae do not seem to be normalized properly and because of their

construction they will not work for fundamental solutions of Laplace’s equation. The result

given in Sack (1964) [84] is a general solution for our problem in R3.

We generalize Sack’s proof for Rd. Starting with (6.17), we apply the Laplacian in Rd

to both sides. We denote the Laplacian with respect to the unprimed coordinates in general

hyperspherical coordinates by ∆, and the Laplacian with respect to the primed coordinates

by ∆′. The Laplacian with respect to the unprimed and primed coordinates, in a general

hyperspherical coordinate system, satisfies the following partial differential equations

∆‖x − x′‖ν = ∆′‖x − x′‖ν = ν(ν + d− 2)‖x − x′‖ν−2. (6.19)
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Orthogonality for Gegenbauer polynomials (cf. (8.939.8) in Gradshteyn & Ryzhik (2007))

gives ∫ π

0

C
d/2−1
λ (cos γ)C

d/2−1
λ′ (cos γ)(sin γ)d−2dγ =

π24−dΓ(λ+ d− 2)δλ,λ′

λ!(2λ+ d− 2)[Γ(d/2 − 1)]2
,

therefore in conjunction with (6.17) we have

Rν,λ(r, r′) =
λ!(2λ+ d− 2)[Γ(d/2 − 1)]2

π24−dΓ(λ+ d− 2)

×
∫ π

0

C
d/2−1
λ (cos γ)

(
r2 + r′

2 − 2rr′ cos γ
)ν/2

(sin γ)d−2dγ. (6.20)

Since the integrand in (6.20) is regular, we may differentiate under the integral sign with

respect to the radial coordinates. For instance if we define

aλ,d :=
λ!(d− 2 + 2λ) [Γ(d/2 − 1)]2

π24−dΓ(λ+ d− 2)
,

then

∂2Rν,λ

∂r2
(r, r′) = aλ,d

∫ π

0

(sin γ)d−2C
d/2−1
λ (cos γ)

(
r2 + r′

2 − 2rr′ cos γ
)ν/2−2

×
[
ν
(
r2 + r′

2 − 2rr′ cos γ
)

+ ν(ν − 2)(r − r′ cos γ)2
]
dγ,

and

d− 1

r

∂Rν,λ

∂r
(r, r′) = aλ,d

∫ π

0

(sin γ)d−2C
d/2−1
λ (cos γ)

(
r2 + r′

2 − 2rr′ cos γ
)ν/2−2

× ν(d− 1)

(
1 − r′

r
cos γ

)(
r2 + r′

2 − 2rr′ cos γ
)
dγ.

Since Gegenbauer polynomials are hyperspherical harmonics in a single variable, namely

C
d/2−1
λ (cos γ) =

−1

λ(λ+ d− 2)
∆Sd−1C

d/2−1
λ (cos γ), (6.21)

and with respect to the integration variable, the entire integrand of (6.20) is a function of

cos γ, we can use (6.20) to re-write −λ(λ + d − 2)Rν,λ(r, r
′)/r2. In normal coordinates, the

hyperspherical Laplacian in (6.21), acting on a function f ∈ C2([−1, 1]), is

∆Sd−1f =
1

(sin γ)d−2

∂

∂γ
(sin γ)d−2 ∂

∂γ
f (6.22)
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(see for example p. 494 in Vilenkin (1968) [100]). Using (6.22) and (6.21) in (6.20), and

integrating by parts twice, demonstrates that the spherical Laplacian is symmetric. The

surface terms which appear when integrating by parts vanish due to the appearance of factors

proportional to sin γ. Note that the Gegenbauer polynomials are regular at the end points,

namely

C
d/2−1
λ (1) =

(d− 2)λ
λ!

=
(d− 3 + λ)!

λ!(d− 3)!
,

i.e. (2.94), and by the parity of Gegenbauer polynomials

C
d/2−1
λ (−1) = (−1)λ

(d− 2)λ
λ!

.

Evaluation of the double integration by parts results in

−λ(λ + d− 2)

r2
Rν,λ(r, r

′) = aλ,d

∫ π

0

(sin γ)d−2C
d/2−1
λ (cos γ)

(
r2 + r′

2 − 2rr′ cos γ
)ν/2−2

× ν
r′

r

[
(d− 1) cos γ

(
r2 + r′

2 − 2rr′ cos γ
)

+ (ν − 2)rr′(1 − cos2 γ)
]
dγ,

and therefore by symmetry

∂2Rν,λ

∂r2
+
d− 1

r

∂Rν,λ

∂r
− λ(λ+ d− 2)Rν,λ

r2

=
∂2Rν,λ

∂r′2
+
d− 1

r′
∂Rν,λ

∂r′
− λ(λ+ d− 2)Rν,λ

r′2
= ν(ν + d− 2)Rν−2,λ, (6.23)

which is satisfied for each λ ∈ N0.

Furthermore Rν,λ is a homogeneous function of degree ν in the variables r and r′, and

since ‖x − x′‖ν is a continuous function if r< = 0, it must contain the factor rλ< so that

Rν,λ(r, r
′) = rλ<r

ν−λ
> Gν,λ

(
r<
r>

)
,

where Gν,λ(x) is an analytic function for x ∈ [0, 1). Expressing Gν,λ as a power series

Gν,λ

(
r<
r>

)
=

∞∑

s=0

cν,λ,s

(
r<
r>

)s
,

we have

Rν,λ(r, r
′) = rλ<r

ν−λ
>

∞∑

s=0

cν,λ,s

(
r<
r>

)s
. (6.24)
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Substituting (6.24) into (6.23), we obtain the recurrence relations

(s+ 2)(2λ+ s+ d)cν,λ,s+2 = (ν − 2λ− s)(ν − s+ d− 2)cν,λ,s.

The sequence of coefficients thus begins with s = 0, as the other possibility s = −2λ − 1

would violate the continuity condition and cν,λ,s = 0 for all s ∈ {1, 3, 5, . . .}. Hence for even

s = 2p, where p ∈ N0,

cν,λ,2p =

(
λ− ν

2

)
p

(
1 − ν+d

2

)
p

p!
(
λ+ d

2

)
p

cν,λ,0,

where (z)p is a Pochhammer symbol for rising factorial. Hence with the definition of the

Gauss hypergeometric function given in (2.19), we have

Rν,λ(r, r
′) = K(ν, λ)rλ<r

ν−λ
> 2F1

(
λ− ν

2
, 1 − ν + d

2
;λ+

d

2
;

(
r<
r>

)2)
. (6.25)

The coefficients K(ν, λ) are most easily determined by considering the case γ = 0. In this

case, using the binomial theorem on the left-hand side of (6.17) we have

(r> − r<)ν =

∞∑

k=0

(−ν)k
k!

rk<r
ν−k
> , (6.26)

which also equals

‖x − x′‖ =
∞∑

λ=0

Rν,λ(r, r′)
(d− 2)λ

λ!
. (6.27)

If we insert (6.25) into (6.27) and compare with the rk<r
ν−k
> coefficients of (6.26) we obtain

the following recurrence relation for K(ν, λ)

(−ν)k
k!

=

⌊k/2⌋∑

n=0

K(ν, k − 2n)

(
d− 2

)
k−2n

(k − 2n)!

(
k − 2n− ν

2

)
n(

k − 2n+ d
2

)
n

(
1 − ν+d

2

)
n

n!
. (6.28)

Clearly (6.28) has a unique solution. We propose that

K(ν, λ) =
(−ν/2)λ

(d/2 − 1)λ
. (6.29)

We emphasize that this choice of coefficients is seen to be consistent with the generating

function for Gegenbauer polynomials (6.15) with ν = 2 − d since K(2 − d, λ) = 1 (see also

(6.34) below). This form of the coefficient clearly matches that given in Sack (1964) [84] for

R3. However Sack has failed to give a fully-rigorous proof of the form of his coefficient. We
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are able to prove that (6.29) is correct as follows. By inserting (6.29) into the right-hand-side

of (6.28) we obtain

⌊k/2⌋∑

n=0

(
−ν

2

)
k−2n(

d
2
− 1
)
k−2n

(
d− 2

)
k−2n

(k − 2n)!

(
k − 2n− ν

2

)
n(

k − 2n+ d
2

)
n

(
1 − ν+d

2

)
n

n!

=

⌊k/2⌋∑

n=0

√
π22−d(d− 2 + 2k − 4n)(d− 3 + k − 2n)!Γ(k − n− ν

2
)Γ(n− d+ν

2
+ 1)

Γ(d−1
2

)Γ(−ν
2
)Γ(1 − d+ν

2
)(k − 2n)!Γ(d

2
+ k − n)n!

. (6.30)

This sum can be calculated using Zeilberger’s algorithm (see Petkovšek, Wilf & Zeilberger

(1996) [77]). Let F (k, n) denote the individual terms in the finite sum. Then Zeilberger’s

algorithm produces the rational function

R(k, n) =
2n(2n− k − d+ 1)(2n− k − d+ 2)(2n− 2k + ν)

(2n− 2k − d)(2n− k − 1)(4n− 2k − d+ 2)

(see Paule & Schorn (1995) [76]). Now define G(k, n) = R(k, n)F (k, n). We will next show

that the telescoping recurrence relation

(k + 1)F (k + 1, n) + (ν − k)F (k, n) = G(k, n) −G(k, n+ 1), (6.31)

is valid. Expressing F (k, n) and G(k, n) in terms of gamma functions yields

(k + 1)F (k + 1, n)

=
22−d√π(1 + k)(d+ 2k − 4n)Γ(−1 + d+ k − 2n)Γ(1 + k − n− ν

2
)Γ(1 + n− d+ν

2
)

n!Γ(d−1
2

)Γ(2 + k − 2n)Γ(1 + d
2

+ k − n)Γ(1 − d+ν
2

)Γ(−ν
2
)

,

(ν − k)F (k, n)

= −22−d√π(−2 + d+ 2k − 4n)(k − ν)Γ(2 + d+ k − 2n)Γ(k − n− ν
2
)Γ(1 + n− d+ν

2
)

n!Γ(d−1
2

)Γ(1 + k − 2n)Γ(d
2

+ k − n)Γ(1 − d+ν
2

)Γ(−ν
2
)

,

G(k, n) =
23−d√πΓ(d+ k − 2n)Γ(1 + k − n− ν

2
)Γ(1 − d+ν

2
+ n)

(n− 1)!Γ(d−1
2

)Γ(2 + k − 2n)Γ(1 + d
2

+ k − n)Γ(1 − d+ν
2

)Γ(−ν
2
)
,

and

G(k, n+ 1) =
23−d√πΓ(2 + d+ k − 2n)Γ(k − n− ν

2
)Γ(2 + n− d+ν

2
)

n!Γ(d−1
2

)Γ(k − 2n)Γ(d
2

+ k − n)Γ(1 − d+ν
2

)Γ(−ν
2
)

.
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Then

(k + 1)F (k + 1, n) + (ν − k)F (k, n) −G(k, n) +G(k, n+ 1) =

1

(k − 2n)(1 + k − 2n)(d− 1 + k − 2n)(d+ 2k − 2n)(d+ k − 2(n+ 1))
×

× 22−d√πΓ(d+ k − 2n)Γ(k − n− ν
2
)Γ(1 + n− d+ν

2
)

n!Γ(d−1
2

)Γ(k − 2n)Γ(d
2

+ k − n)Γ(1 − d+ν
2

)Γ(−ν
2
)
×

(
(2k − 2n− ν)(d+ k − 2(1 + n))[(d+ 2k − 4n)(1 + k) − 2n(d− 1 + k − 2n)]

+ (d+ 2k − 2n)(1 + k − 2n)[−(k − ν)(d− 2 + 2k − 4n) − (k − 2n)(d− 2 − 2n+ ν)]
)
.

Since

(d+ 2k − 4n)(1 + k) − 2n(d− 1 + k − 2n) = (1 + k − 2n)(d+ 2k − 2n),

and

(k − ν)(d− 2 + 2k − 4n) − (k − 2n)(d− 2 − 2n+ ν) = (2k − 2n− ν)(d+ k − 2(1 + n)),

it follows that

(k + 1)F (k + 1, n) + (ν − k)F (k, n) −G(k, n) +G(k, n+ 1) = 0.

Hence (6.31) is satisfied.

Set

f(k) =
∑

n∈Z

F (k, n) =

⌊k/2⌋∑

n=0

F (k, n).

It follows from (6.31) that

f(k + 1) =
−ν + k

k + 1
f(k),

for all k ∈ N0. Clearly f(0) = 1. Therefore

f(k) =
(−ν)k
k!

,

for all k ∈ N0. Hence (6.29) is a solution of the recurrence relation (6.28). By the uniqueness

one deduces that (6.29) is valid.

It is interesting to point out that an alternate proof, that (6.29) is the correct choice for

K(ν, λ), can be given by expressing the sum in (6.30) as an instance of a very-well poised

terminating generalized hypergeometric series 5F4 (see §3.4 in Andrews, Askey & Roy (1999)
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[3] and also [30]). The generalized hypergeometric series 5F4 can be defined for |z| < 1 in

terms of the following sum

5F4

(
a1, a2, a3, a4, a5

b1, b2, b3, b4
; z

)
:=

∞∑

n=0

(a1)n(a2)n(a3)n(a4)n(a5)n
(b1)n(b2)n(b3)n(b4)nn!

zn.

In analogy with (2.24), it can be shown that this series converges absolutely for |z| = 1 if

Re (b1 + b2 + b3 + b4 − a1 − a2 − a3 − a4 − a5) > 0.

By using properties of Pochhammer symbols, we can re-write (6.30) as

⌊k/2⌋∑

n=0

(
−ν

2

)
k−2n(

d
2
− 1
)
k−2n

(
d− 2

)
k−2n

(k − 2n)!

(
k − 2n− ν

2

)
n(

k − 2n+ d
2

)
n

(
1 − ν+d

2

)
n

n!

=
(−ν

2
)k(d− 2)k(

1
2
− d

4
− k

2
)

(d
2
)kk!(1

2
− d

4
)

5F4

(
1 − d

2
− k, 3

2
− d

4
− k

2
, 1 − ν+d

2
,−k

2
, 1−k

2
1
2
− d

4
− k

2
, 1 + ν

2
− k, 2 − d+k

2
, 3

2
− d+k

2

; 1

)

. (6.32)

This series terminates because of the numerator parameters −k/2 (for k even) and (1− k)/2

(for k odd). Upon examination, it is seen that the parameters in this 5F4 have quite a lot of

structure. A series of this form is called a very-well poised terminating 5F4. Its sum has a

simple closed form which can be found in Theorem 3 of Cooper (2002) [29], namely

5F4

(
A, A

2
+ 1, B, C,−n

A
2
, A− B + 1, A− C + 1, A+ n + 1

; 1

)
=

(A−B − C + 1)n(A+ 1)n
(A−B + 1)n(A− C + 1)n

,

which when applied to (6.32) yields the desired result.

The final result for Rν,λ(r, r
′) matches Sack’s d = 3 case exactly and it is given by

Rν,λ(r, r
′) =

(−ν/2)λ
(d/2 − 1)λ

rλ<r
ν−λ
> 2F1

(
λ− ν

2
, 1 − ν + d

2
;λ+

d

2
;

(
r<
r>

)2)
. (6.33)

Sack noticed that his Gauss hypergeometric function satisfied a quadratic transformation for

hypergeometric functions. The same is true for our generalization. Hypergeometric functions

which satisfy quadratic transformations are related to associated Legendre functions (see



124 Addition theorems for pure hyperspherical coordinates in Rd

§2.4.3 of Magnus, Oberhettinger & Soni (1966) [67]). By using (2.34) we can show that

2F1

(
λ− ν

2
, 1 − ν + d

2
;λ+

d

2
;

(
r<
r>

)2)
=

(
r2
> + r2

<

r2
>

)ν/2−λ
2F1

(
λ

2
− ν

4
,
λ

2
− ν

4
+

1

2
;λ+

d

2
;

(
r2 + r′2

2rr′

)−2)
.

Now we apply (2.41), this obtains

2F1

(
λ

2
− ν

4
,
λ

2
− ν

4
+

1

2
;λ+

d

2
;

(
r2 + r′2

2rr′

)−2)
=

eiπ(ν+d−1)/22λ+(d−1)/2

√
π

Γ
(
λ+ d

2

)

Γ
(
λ− ν

2

)

×
(
r2 + r′2

)λ−ν/2

(r2
> − r2

<)(1−d−ν)/2 (2rr′)
−λ+(1−d)/2

Q
(1−ν−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
,

which results in

Rν,λ(r, r′) =
eiπ(ν+d−1)/2(λ+ d

2
− 1)Γ

(
d−2
2

)
√
πΓ
(
−ν

2

) (r2
> − r2

<)
(ν+d−1)/2

(rr′)(d−1)/2
Q

(1−ν−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
.

Inserting this expression into (6.17) and using (6.4) we have

‖x − x′‖ν =
eiπ(ν+d−1)/2Γ

(
d−2
2

)
√
πΓ
(
−ν

2

) (r2
> − r2

<)
(ν+d−1)/2

(rr′)(d−1)/2

×
∞∑

λ=0

(
λ+

d

2
− 1

)
Q

(1−ν−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
C
d/2−1
λ (cos γ). (6.34)

This is seen to be a generalization of Laplace’s expansion in R3

1

‖x − x′‖ =
∞∑

l=0

rl<
rl+1
>

Pl(cos γ),

which is demonstrated by simplifying the associated Legendre function of the second kind

through (2.59) and utilizing (2.97). The equation given by (6.34) is a further generalization,

to arbitrary dimensions (d ≥ 3), of the result presented in Sack (1964) [84].

Notice that (6.34) is ill-defined for d = 2. However, the angular harmonics in d = 2 are
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well-known, being

Tm(cos(φ− φ′)) = cos(m(φ− φ′)),

so we may directly derive the corresponding expansion formula in R2. In R2 let us write

‖x − x′‖ν =
∞∑

m=0

Rν,m(r, r′) cos(m(φ− φ′)).

Through standard Fourier theory, the Fourier coefficients are given as follows

Rν,m(r, r′) =
ǫm(2rr′)ν/2

π

∫ π

0

cos(nψ)dψ
(
r2 + r′2

2rr′
− cosψ

)−ν/2 .

This integral is just the definite integral given by (5.12), so the result is

Rν,m(r, r′) =
eiπ(ν+1)/2

Γ(−ν/2)

(r2
> − r2

<)(ν+1)/2

√
πrr′

Q
−(ν+1)/2
m−1/2

(
r2 + r′2

2rr′

)
,

and therefore the full expansion in d = 2 is given by

‖x − x′‖ν =
eiπ(ν+1)/2

Γ(−ν/2)

(r2
> − r2

<)(ν+1)/2

√
πrr′

∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2

(
r2 + r′2

2rr′

)
, (6.35)

where ν ∈ C \ {0, 2, 4, . . .}. However using (5.13), we find that for d = 2 we have

‖x − x′‖2p = i(−1)p+1 (r2
> − r2

<)p+1/2

√
πrr′

∞∑

m=0

ǫm cos[m(φ− φ′)]
(−p)m

(p+m)!
Q
p+1/2
m−1/2

(
r2 + r′2

2rr′

)
,

(6.36)

where p ∈ N0.

Now we use (6.34) to find the logarithmic expansion formula mentioned in (6.18). Notice

that

lim
ν→0

∂

∂ν
‖x − x′‖ν+2p = ‖x − x′‖2p log ‖x − x′‖, (6.37)

where p ∈ N0. Let’s apply this procedure to both sides of (6.34). Let’s consider the right-

hand side of (6.34). Collecting the terms which contain ν, we have

lim
ν→0

∂

∂ν

eiπν/2(r2
> − r2

<)ν/2

Γ
(
−ν

2
− p
) Q

(1−ν−2p−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
=

1

2
(−1)p+1p!Q

(1−2p−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
,
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since

lim
ν→0

1

Γ
(
−ν

2
− p
) = 0, (6.38)

and

lim
ν→0

∂

∂ν

[
Γ
(
−ν

2
− p
)]−1

=
1

2
lim
ν→0

ψ
(
−ν

2
− p
)

Γ
(
−ν

2
− p
) =

1

2
(−1)p+1p!, (6.39)

which can be established using the reflection formulae for gamma functions (2.5) and digamma

functions (2.17). The final resulting expression for d ∈ {3, 5, . . .} is

‖x − x′‖2p log ‖x − x′‖ =
(−1)p+1p!Γ

(
d−2
2

)
eiπ(d−1)/2

2
√
π

(r2
> − r2

<)
p+(d−1)/2

(rr′)(d−1)/2

×
∞∑

λ=0

(
λ+

d

2
− 1

)
Q

(1−2p−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
C
d/2−1
λ (cos γ). (6.40)

Unfortunately, this formula is not valid for d even because the corresponding associated

Legendre functions are not defined (see §2.6.3). In order to remedy this fact we return to the

d = 2 case.

First we show that these methods work for the p = 0 case. The main difference here is

that the associated Legendre function of the second kind for m = 0, Q
−1/2
−1/2(z) is not defined,

so we must treat the m = 0 case separately. We must compute the limit derivative

lim
ν→0

∂

∂ν

eiπν/2(r2
> − r2

<)ν/2

Γ(−ν/2)
Q

−(ν+1)/2
−1/2

(
r2 + r′2

2rr′

)
. (6.41)

This is facilitated by use of the Whipple formulae (2.57) which when applied to our specific

associated Legendre function yields

Q
−(ν+1)/2
−1/2

(
r2 + r′2

2rr′

)
=

√
π

2
Γ
(
−ν

2

)
e−iπ(ν+1)/2

√
2rr′

r2
> − r2

<

Pν/2

(
r2
> + r2

<

r2
> − r2

<

)
.

By taking advantage of the linearity of the derivative, (6.41) reduces to

− i

2

√
πrr′

r2
> − r2

<

lim
ν→0

∂

∂ν
(r2
> − r2

<)νPν

(
r2
> + r2

<

r2
> − r2

<

)
.

The limit for the derivative of the associated Legendre function of the first kind is given in
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(2.70), and therefore using (2.36) we obtain

[
∂

∂ν
Pν

(
r2
> + r2

<

r2
> − r2

<

)]

ν=0

= log

(
r2
>

r2
> − r2

<

)
.

We have

lim
ν→0

∂

∂ν

eiπν/2(r2
> − r2

<)ν/2

Γ(−ν/2)
Q

−(ν+1)/2
−1/2

(
r2 + r′2

2rr′

)
= −i

√
πrr′

r2
> − r2

<

log r>, (6.42)

and therefore [
log ‖x − x′‖

]

m=0
= log r>. (6.43)

The components of log ‖x − x′‖ for m ≥ 1 are straightforwardly computed using (6.38) and

(6.39) plus the definition of the −1
2

order associated Legendre functions of the second kind

(2.60) combined with (6.43), which yields

log ‖x − x′‖ = log r> −
∞∑

m=1

cos(m(φ− φ′))

m

(
r<
r>

)m
.

This formula exactly matches (5.25) with eη = r>/r<. Having demonstrated the viability of

our method, we now consider the general case for d = 2.

We compute the Chebyshev expansion for unnormalized fundamental solutions for general

powers k ∈ N (p ∈ N0) of the Laplacian in d = 2. First let us determine the contribution

for p ∈ N. We would like to match our results to the computations in §5.3, which clearly

demonstrate different behaviours for the two regimes, 0 ≤ m ≤ p and m ≥ p + 1. By

starting with (6.35) and applying (6.37), we find after using the negative-order condition for

associated Legendre functions of the second kind (2.54),

‖x − x′‖2p log ‖x − x′‖ =
i(−1)p+1(r2
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√
πrr′
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× lim
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∂
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(
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2
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) Q
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(
r2 + r′2

2rr′

)
(6.44)

The associated Legendre function of the second kind in the first term can be re-written as



128 Addition theorems for pure hyperspherical coordinates in Rd

an associated Legendre function of the first kind using the Whipple formulae (2.57) and the

negative-order condition for associated Legendre functions of the first kind (2.53)

Q
ν/2+p+1/2
m−1/2

(
r2 + r′2

2rr′

)
=

√
πrr′

r2
> − r2

<

i(−1)peiπν/2Γ
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)
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<

r2
> − r2

<

)
.

The limit derivative in the second term can be computed using (6.38) and (6.39) and the

negative-order condition for associated Legendre functions of the second kind (2.54). If we

perform this evaluation and use the Whipple formulae (2.57), this converts (6.44) to

‖x − x′‖2p log ‖x − x′‖ = (r2
> − r2

<)p
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)
.

Now we are in a position to perform the limit derivative in the above expression. The limit

derivative of the power-law results in a logarithm, the limit derivatives of the gamma functions

and Pochhammer symbols result in products of gamma functions and Pochhammer symbols

with digamma functions, and the limit derivative of the associated Legendre function of the

first kind is expressible using the results in §2.6.4. The result is
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, (6.45)
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for 0 ≤ m ≤ p. Therefore in d = 2 we have derived
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As a consequence of the function in the above formula, we now have a proof of the corre-

spondence (5.36) for the “ending” function ℜn,q−1 mentioned in §5.3. Not only that, we now

have closed-form expressions for the finite terms given by (5.38), (5.35) and (5.32) in terms

of associated Legendre functions of the first kind. These associated Legendre functions can

also be converted to associated Legendre functions of the second kind using the Whipple

formulae (2.57). The integer-order, integer-degree associated Legendre functions of the first

kind have well established closed-form expressions (see (2.97) in §2.7), so we could easily leave

these expressions as they are. However to be consistent, we will convert back to associated

Legendre functions of the second kind.

Now we compute the logarithmic Gegenbauer expansion of unnormalized fundamental

solutions for powers (k ≥ d/2) of the Laplacian in Rd for d ∈ {4, 6, . . .}. By starting with

(6.34) and applying (6.37), we find that
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. (6.47)
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Just like we did for the logarithmic contribution in d = 2, we break the sum into two pieces,

one for 0 ≤ λ ≤ p and for λ ≥ p + 1. For 0 ≤ λ ≤ p we use the Whipple formulae (2.57)

(to convert the associated Legendre function of the second kind to an associated Legendre

function of the first kind), followed by the negative-degree (2.51) and negative-order (2.53)

conditions for associated Legendre functions of the first kind. In the regime λ ≥ p + 1, the

associated Legendre functions of the second kind are well-defined, so all that is needed is to

use (6.38), (6.39), and the negative order condition for associated Legendre functions of the

second kind (2.54) for aesthetic purposes. This converts (6.47) to
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Now we are again in a position to perform the limit derivative in the above expression.

Again, the limit derivative of the power-law results in a logarithm, the limit derivatives of

the gamma functions and Pochhammer symbols result in products of gamma functions and

Pochhammer symbols with digamma functions, and the limit derivative of the associated

Legendre function of the first kind is expressible using the results in §2.6.4. Therefore (6.48)



6.3 Fundamental solution expansions in Gegenbauer polynomials 131

becomes

‖x − x′‖2p log ‖x − x′‖ =

(
d

2
− 2

)
!
(r2
> − r2

<)p+d/2−1

(rr′)d/2−1

p∑

λ=0

(
λ+

d

2
− 1

)
C
d/2−1
λ (cos γ)

×
{

(−p)λ(p− λ)!

(p+ λ+ d− 2)!

[
2 log r> + 2ψ(2p+ d− 1) + ψ(p+ 1) − ψ

(
p+

d

2

)

− ψ(p+ λ + d− 1) − ψ(p− λ+ 1)
]
P
λ+d/2−1
p+d/2−1

(
r2
> + r2

<

r2
> − r2

<

)

+
(−p)λ(p− λ)!

2(p+ λ+ d− 2)!
(−1)p+λ

p−λ−1∑

j=0

(−1)j(2j + 2λ+ d− 1)

(p− λ− j)(p+ λ+ j + d− 1)

×
[
1 +

j!(p+ λ+ d− 2)!

(j + 2λ+ d− 2)!(p− λ)!

]
P
λ+d/2−1
j+λ+d/2−1

(
r2
> + r2

<

r2
> − r2

<

)

+(−p)λ
(−1)p+d/2−1

2

λ+d/2−2∑

j=0

(−1)j(2j + 1)

(p− j + d
2
− 1)(p+ j + d

2
)
P

−λ−d/2+1
j

(
r2
> + r2

<

r2
> − r2

<

)}

+
eiπ(d−1)/2

(
d
2
− 2
)
!(r2

> − r2
<)p+(d−1)/2

2
√
π(rr′)(d−1)/2

×
∞∑

λ=p+1

(
λ+

d

2
− 1

)
C
d/2−1
λ (cos γ)

(λ− p− 1)!

(λ+ p + d− 2)!
Q
p+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
. (6.49)

Using the Whipple formulae (2.57), the negative-order (2.54) and negative-degree (2.52)

conditions for associated Legendre functions of the second kind, and the reflection formula
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for gamma functions (2.5) to (6.49) yields

‖x − x′‖2p log ‖x − x′‖ =
i(−1)p+d/2

(
d
2
− 2
)
!(r2

> − r2
<)p+(d−1)/2

√
π(rr′)(d−1)/2

×
p∑

λ=0

(
λ +

d

2
− 1

)
C
d/2−1
λ (cos γ)

×
{

(−p)λ
(p+ λ+ d− 2)!

[
2 log r> + 2ψ(2p+ d− 1) + ψ(p+ 1)

− ψ

(
p+

d

2

)
− ψ(p+ λ+ d− 1) − ψ(p− λ+ 1)

]
Q
p+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)

+
(−p)λ(p− λ)!

2(p+ λ+ d− 2)!

p−λ−1∑

j=0

2j + 2λ+ d− 1

j!(p− λ− j)(p+ λ+ j + d− 1)

×
[
1 +

j!(p+ λ+ d− 2)!

(j + 2λ+ d− 2)!(p− λ)!

]
Q
j+λ+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)

+
(−p)λ

2

λ+d/2−2∑

j=0

2j + 1

(p− j + d
2
− 1)(p+ j + d

2
)(λ+ d

2
+ j − 1)!

Q
j+1/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)}

+
eiπ(d−1)/2

(
d
2
− 2
)
!(r2

> − r2
<)p+(d−1)/2

2
√
π(rr′)(d−1)/2

×
∞∑

λ=p+1

(
λ+

d

2
− 1

)
C
d/2−1
λ (cos γ)

(λ− p− 1)!

(λ+ p+ d− 2)!
Q
p+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
. (6.50)
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In order to structure things nicely let us define the following functions

Mλ,d,p(r, r
′) =

(−p)λ
(p+ λ+ d− 2)!

[
2 log r> + 2ψ(2p+ d− 1) + ψ(p+ 1)

− ψ

(
p+

d

2

)
− ψ(p+ λ+ d− 1) − ψ(p− λ+ 1)

]
Q
p+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)

+
(−p)λ(p− λ)!

2(p+ λ+ d− 2)!

p−λ−1∑

j=0

2j + 2λ+ d− 1

j!(p− λ− j)(p+ λ+ j + d− 1)

×
[
1 +

j!(p + λ+ d− 2)!

(j + 2λ+ d− 2)!(p− λ)!

]
Q
j+λ+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)

+
(−p)λ

2

λ+d/2−2∑

j=0

(2j + 1)Q
j+1/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)

(p− j + d
2
− 1)(p+ j + d

2
)(λ+ d

2
+ j − 1)!

and

Nλ,d,p(r, r
′) =

(λ− p− 1)!

(λ+ p+ d− 2)!
Q
p+(d−1)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
.

If we define

Qλ,d,p(r, r
′) =





Mλ,d,p(r, r

′) if 0 ≤ λ ≤ p,

Nλ,d,p(r, r
′) if λ ≥ p+ 1,

then we can write

‖x − x′‖2p log ‖x − x′‖ =
i(−1)p+d/2

(
d
2
− 2
)
!(r2

> − r2
<)p+(d−1)/2

√
π(rr′)(d−1)/2

×
∞∑

λ=0

(
λ+

d

2
− 1

)
Qλ,d,p(r, r

′)C
d/2−1
λ (cos γ). (6.51)

6.4 Multi-summation addition theorems

By comparing the Fourier expansions for unnormalized fundamental solutions in arbitrary

dimension with the eigenfunction expansions of fundamental solutions in the appropriate

coordinate system, one can construct multi-summation and multi-integration addition the-

orems. We have already constructed some of these addition theorems in R3 (see Cohl et

al. (2000) [27] and Cohl et al. (2001) [25]). In Cohl et al. (2000) [27], a determination

addition theorems derived, in this fashion, for fundamental solutions for the Laplacian is pre-

sented in cylindrical, oblate spheroidal, prolate spheroidal, parabolic, bispherical and toroidal
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coordinates. In Cohl et al. (2001) [25] a determination of the addition theorems derived in

spherical coordinates is presented. In circular cylindrical and parabolic coordinates, the de-

rived addition theorems are given in terms of definite integrals. In oblate spheroidal, prolate

spheroidal, bispherical, toroidal, and spherical coordinates, the derived addition theorems are

given in terms of infinite sums. As is indicated by the above presentation, one may construct

addition theorems in this manner in any rotationally invariant coordinate system which yields

solutions through separation of variables for the Laplace equation. In a similar setting, addi-

tion theorems may be generated for other inhomogeneous linear partial differential equations,

such as for the Helmholtz, wave and heat equations in arbitrary dimensions. Furthermore an

extension of this concept is possible when working with linear partial differential operators on

smooth manifolds, such as for the Laplace-Beltrami operator. Once a Fourier expansion for

a fundamental solution is obtained, for that partial differential operator, on that particular

manifold, one must construct eigenfunction expansions in the solution space for a funda-

mental solution corresponding to that operator and identify those nested multi-summation

and multi-integration eigenfunction expansions which correspond to the Fourier coefficient

for that operator.

This problem must be attacked in two different ways. First one must construct Fourier

expansions of fundamental solutions for the operator and second, one must perform eigen-

function expansions for the operator in a particular rotationally invariant coordinate system

which yields solutions to the equation through separation of variables. As one might imagine,

the construction of the eigenfunction expansions in particular separable coordinate systems

is a tedious process in general, especially in higher dimensional spaces.

In this thesis, we have focused upon eigenfunction expansions for the Laplacian in hyper-

spherical coordinates, as these are perhaps the most studied rotationally invariant coordinate

systems in existence for this operator. We have succeeded in generating Fourier expansions of

fundamental solutions for this operator and in this chapter we have succeeded in a construc-

tion of the eigenfunction (hyperspherical harmonic) expansions for a fundamental solution of

the Laplacian.

In what follows in the rest of this chapter, we give a small number of examples of the types

of addition theorems that one is able to generate. We will give some examples of the addition

theorems in lower dimensions (i.e. d ∈ 3, 4) and we will attempt to give some examples of

addition theorems in arbitrary dimensions. There are an infinitude of possibilities, especially

as you increase dimensions. We have alluded to the large numbers of possibilities of hyper-

spherical coordinate systems in arbitrary dimensions in §4.1.2. Of course that large number

increases multi-fold when one allows the possibility of non-subgroup type coordinates (see

for instance Kalnins (1986) [62]). If we are able to give the reader just a small taste of the
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possibilities for choices of addition theorems which are derivable in the current manner, then

we feel that this thesis has accomplished its goal. To give a framework for future researchers

to further explore the possibilities in the field of special functions and fundamental solutions

for linear partial differential operators.

Suppose one adopts for the vector space Rd, a transformation using standard hyperspher-

ical coordinates (4.31). Then new addition theorems can be generated by re-arranging the

relevant sums over the hyperspherical harmonics. This works as follows

l1max∑

l1=0

∑

µ

=

l1max∑

m=−l1max

l1max∑

ld−2=|m|

l1max∑

ld−3=ld−2

· · ·
l1max∑

l2=l3

l1max∑

l1=l2

. (6.52)

In (6.52), one must sum over all allowed quantum numbers λ := {l1}∪µ. This is accomplished

by taking the limit on both sides of (6.52) as l1max → ∞. The forward sum (6.16) is now

to be interpreted in a reverse fashion as (6.52). Take for instance the limit in the final sum,

i.e. l2 ≤ l1 < ∞. This gives a new space of quantum numbers to be summed over, where

λ has now been eliminated and all other quantum numbers remain. Then for all possible

combinations of the quantum numbers, one sums over all remaining values of l3 ≤ l2 < ∞.

This eliminates l2 from the series. One continues this process until we have eliminated the

contribution from all quantum numbers except m and finally we are left with a series which

only depends on m. Then we sum over all contributions to m. Since we have already

identified the azimuthal Fourier coefficients in Chapter 5, i.e. the terms only corresponding

to m with the other quantum numbers completely summed over, then we can see that we

can construct a countable number of multi-index addition theorems in any particular general

hyperspherical coordinate system. Now we proceed to demonstrate a sampling of the variety

of addition theorems that one may compute using the methods of §6.3.

6.4.1 Power-law addition theorems in R3

In d = 3 there are two ways to construct pure hyperspherical coordinates, with trees of type

b′a and ba. This is the addition theorem derived for type ba hyperspherical coordinates

using the methods described above

Q
−(ν+1)/2
m−1/2 (χ) = i

√
π2−(ν+3)/2(sin θ sin θ′)−ν/2(χ2 − 1)−(ν+1)/4

(
r2
> − r2

<

rr′

)(ν+2)/2

×
∞∑

l=|m|
(2l + 1)

(l −m)!

(l +m)!
Q

−(ν+2)/2
l

(
r2 + r′2

2rr′

)
Pm
l (cos θ)Pm

l (cos θ′), (6.53)
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where

χ =
r2 + r′2 − 2rr′ cos θ cos θ′

2rr′ sin θ sin θ′
.

Equation (6.53) is a generalization of one of the main results of Cohl et al. (2001) [25], namely

that which you obtain if you substitute ν = −1 in (6.53)

Qm−1/2(χ) = π
√

sin θ sin θ′
∞∑

l=|m|

(l −m)!

(l +m)!

(
r<
r>

)l+1/2

Pm
l (cos θ)Pm

l (cos θ′).

The addition theorem derived for type b′a hyperspherical coordinates using the methods

described above is

Q
−(ν+1)/2
m−1/2 (χ) = i

√
π2−(ν+3)/2(cos θ cos θ′)−ν/2(χ2 − 1)−(ν+1)/4

(
r2
> − r2

<

rr′

)(ν+2)/2

×
∞∑

l=|m|
(2l + 1)

(l −m)!

(l +m)!
Q

−(ν+2)/2
l

(
r2 + r′2

2rr′

)
Pm
l (sin θ)Pm

l (sin θ′), (6.54)

where

χ =
r2 + r′2 − 2rr′ sin θ sin θ′

2rr′ cos θ cos θ′
.

Equation (6.54) is a generalization of one of the main results of Cohl et al. (2001) [25], namely

that which you obtain if you substitute ν = −1 in (6.54)

Qm−1/2(χ) = π
√

cos θ cos θ′
∞∑

l=|m|

(l −m)!

(l +m)!

(
r<
r>

)l+1/2

Pm
l (sin θ)Pm

l (sin θ′).

6.4.2 Power-law addition theorems in R4

In type b2a coordinates, this is the addition theorem derived using the methods described

above
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Q
−(ν+1)/2
m−1/2 (χ) = − 2−(ν+1)/2

(
r2
> − r2

<

rr′

)(ν+3)/2 (
χ2 − 1

)−(ν+1)/4
(sin θ1 sin θ′1 sin θ2 sin θ′2)−ν/2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)
2(l2 −m)!

(l2 +m)!
(sin θ1 sin θ′1)l2Pm

l2
(cos θ2)Pm

l2
(cos θ′2)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
Q

−(ν+3)/2
l1+1/2

(
r2 + r′2

2rr′

)
C l2+1
l1−l2(cos θ1)C

l2+1
l1−l2(cos θ′1), (6.55)

where

χ =
r2 + r′2 − 2rr′ cos θ1 cos θ′1 − 2rr′ sin θ1 sin θ′1 cos θ2 cos θ′2

2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2
. (6.56)

If you substitute ν = −2 (an unnormalized fundamental solution for the Laplacian in R4) in

(6.55) then you obtain the following

Q
1/2
m−1/2(χ) =

√
2πi

(
χ2 − 1

)1/4
sin θ1 sin θ′1 sin θ2 sin θ′2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)
2(l2 −m)!

(l2 +m)!
(sin θ1 sin θ′1)

l2Pm
l2

(cos θ2)Pm
l2

(cos θ′2)

×
∞∑

l1=l2

(l1 − l2)!

(l1 + l2 + 1)!

(
r<
r>

)l+1+1

C l2+1
l1−l2(cos θ1)C l2+1

l1−l2(cos θ′1).

In type b′2a coordinates, this is the addition theorem derived using the methods described

above

Q
−(ν+1)/2
m−1/2 (χ) = − 2−(ν+1)/2

(
r2
> − r2

<

rr′

)(ν+3)/2 (
χ2 − 1

)−(ν+1)/4
(cos θ1 cos θ′1 cos θ2 cos θ′2)−ν/2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)2(l2 −m)!

(l2 +m)!
(cos θ1 cos θ′1)l2Pm

l2
(sin θ2)Pm

l2
(sin θ′2)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
Q

−(ν+3)/2
l1+1/2

(
r2 + r′2

2rr′

)
C l2+1
l1−l2(sin θ1)C l2+1

l1−l2(sin θ′1), (6.57)
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where

χ =
r2 + r′2 − 2rr′ sin θ1 sin θ′1 − 2rr′ cos θ1 cos θ′1 sin θ2 sin θ′2

2rr′ cos θ1 cos θ′1 cos θ2 cos θ′2
.

If you substitute ν = −2 in (6.57) then you obtain the following

Q
1/2
m−1/2(χ) =

√
2πi

(
χ2 − 1

)1/4
cos θ1 cos θ′1 cos θ2 cos θ′2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)2(l2 −m)!

(l2 +m)!
(cos θ1 cos θ′1)l2Pm

l2
(sin θ2)Pm

l2
(sin θ′2)

×
∞∑

l1=l2

(l1 − l2)!

(l1 + l2 + 1)!

(
r<
r>

)l+1+1

C l2+1
l1−l2(sin θ1)C l2+1

l1−l2(sin θ′1).

In type bb′a coordinates, this is the addition theorem derived using the methods described

above

Q
−(ν+1)/2
m−1/2 (χ) = − 2−(ν+1)/2

(
r2
> − r2

<

rr′

)(ν+3)/2 (
χ2 − 1

)−(ν+1)/4
(sin θ1 sin θ′1 cos θ2 cos θ′2)−ν/2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)2(l2 −m)!

(l2 +m)!
(sin θ1 sin θ′1)l2Pm

l2
(sin θ2)Pm

l2
(sin θ′2)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
Q

−(ν+3)/2
l1+1/2

(
r2 + r′2

2rr′

)
C l2+1
l1−l2(cos θ1)C l2+1

l1−l2(cos θ′1), (6.58)

where

χ =
r2 + r′2 − 2rr′ cos θ1 cos θ′1 − 2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2

2rr′ sin θ1 sin θ′1 cos θ2 cos θ′2
.

If you substitute ν = −2 in (6.58) then you obtain the following

Q
1/2
m−1/2(χ) =

√
2πi

(
χ2 − 1

)1/4
sin θ1 sin θ′1 cos θ2 cos θ′2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)
2(l2 −m)!

(l2 +m)!
(sin θ1 sin θ′1)

l2Pm
l2

(sin θ2)P
m
l2

(sin θ′2)

×
∞∑

l1=l2

(l1 − l2)!

(l1 + l2 + 1)!

(
r<
r>

)l+1+1

C l2+1
l1−l2(cos θ1)C l2+1

l1−l2(cos θ′1).
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In type b′ba coordinates, this is the addition theorem derived using the methods described

above

Q
−(ν+1)/2
m−1/2 (χ) = − 2−(ν+1)/2

(
r2
> − r2

<

rr′

)(ν+3)/2 (
χ2 − 1

)−(ν+1)/4
(cos θ1 cos θ′1 sin θ2 sin θ′2)−ν/2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)
2(l2 −m)!

(l2 +m)!
(cos θ1 cos θ′1)l2Pm

l2
(cos θ2)Pm

l2
(cos θ′2)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
Q

−(ν+3)/2
l1+1/2

(
r2 + r′2

2rr′

)
C l2+1
l1−l2(sin θ1)C l2+1

l1−l2(sin θ′1), (6.59)

where

χ =
r2 + r′2 − 2rr′ sin θ1 sin θ′1 − 2rr′ cos θ1 cos θ′1 cos θ2 cos θ′2

2rr′ cos θ1 cos θ′1 sin θ2 sin θ′2
.

If you substitute ν = −2 in (6.59) then you obtain the following

Q
1/2
m−1/2(χ) =

√
2πi

(
χ2 − 1

)1/4
cos θ1 cos θ′1 sin θ2 sin θ′2

×
∞∑

l2=|m|

22l2(2l2 + 1)(l2!)2(l2 −m)!

(l2 +m)!
(cos θ1 cos θ′1)l2Pm

l2
(cos θ2)Pm

l2
(cos θ′2)

×
∞∑

l1=l2

(l1 − l2)!

(l1 + l2 + 1)!

(
r<
r>

)l+1+1

C l2+1
l1−l2(sin θ1)C l2+1

l1−l2(sin θ′1).

In type ca2 coordinates, this is the addition theorem derived using the methods described

above

Q
−(ν+1)/2
m1−1/2 (χ) = − 2−(ν−|m1|−2)/2π

(
r2
> − r2

<

rr′

)(ν+3)/2 (
χ2 − 1

)−(ν+1)/4
(cosϑ cos ϑ′)

|m1|−ν/2

×
∞∑

m2=−∞
eim2(φ2−φ′2)2|m2|/2(sinϑ sinϑ′)|m2|

∞∑

n=0

n!(|m1| + |m2| + 2n + 1)(|m1| + |m2| + n)!

(|m1| + n)!(|m2| + n)!

×Q
−(ν+3)/2
|m1|+|m2|+2n+1/2

(
r2 + r′2

2rr′

)
P (|m2|,|m1|)
n (cos 2ϑ)P (|m2|,|m1|)

n (cos 2ϑ′), (6.60)
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where

χ =
r2 + r′2 − 2rr′ sin ϑ sinϑ′ cos(φ2 − φ′

2)

2rr′ cosϑ1 cos ϑ′
.

If you substitute ν = −2 in (6.60) then you obtain the following

Q
1/2
m1−1/2(χ) = 2|m1|/2+2iπ3/2

(
χ2 − 1

)1/4
(cosϑ cosϑ′)

|m1|+1

×
∞∑

m2=−∞
eim2(φ2−φ′2)2|m2|/2(sinϑ sinϑ′)|m2|

∞∑

n=0

n!(|m1| + |m2| + n)!

(|m1| + n)!(|m2| + n)!

(
r<
r>

)|m1|+|m2|+2n+1

× P (|m2|,|m1|)
n (cos 2ϑ)P (|m2|,|m1|)

n (cos 2ϑ′). (6.61)

Note that in the addition theorems (6.60) and (6.61), that if you make the map ϑ 7→ ϑ− π
2
,

then this transformation preservers the addition theorem such that m1 ↔ m2, and it is

equivalent to swapping position of φ1 and φ2 for the tree in Figure 4.9.

6.4.3 Logarithmic addition theorem in R4 for type b2a coordinates

Now let’s give an example of how to construct addition theorems in the even dimensions using

the logarithmic Fourier expansion of a fundamental solution. We take d = 4 and expand an

unnormalized fundamental solution, ‖x − x′‖2k−4 log ‖x − x′‖ for k ≥ 2. We examine type

b2a hyperspherical coordinates. In these coordinates we have

‖x − x′‖2k−4 log ‖x − x′‖ =

1

2
log(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)k−2 [χ− cos(φ− φ′)]

k−2

+
1

2
(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)k−2 [χ− cos(φ− φ′)]

k−2
log [χ− cos(φ− φ′)] ,

where χ is given by (6.56). With the methods of Chapter 5 we are now in a position to

Fourier expand this fundamental solution. Using (5.15) we know that

[χ− cos(φ− φ′)]
k−2

= i

√
2

π
(−1)k+1(χ2 − 1)k/2−3/4

k−2∑

n=0

cos[n(φ− φ′)]
ǫn(2 − k)n

(k + n− 2)!
Q
k−3/2
n−1/2(χ),

and from
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(5.35) we know that

[χ− cos(φ− φ′)]
k−2

log(cosh η − cosψ) =

∞∑

m=0

cos[m(φ− φ′)]Qm,k−2(χ),

so therefore

‖x − x′‖2k−4 log ‖x − x′‖ =

∞∑

m=0

cos[m(φ− φ′)]

{
1

2
(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)k−2Qm,k−2(χ)

+
1

2
log(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)k−2

× i

√
2

π

ǫm(2 − k)m(−1)k+1

(k +m− 2)!
(χ2 − 1)k/2−3/4Q

k−3/2
m−1/2(χ)

}
. (6.62)

Now we utilize the Gegenbauer polynomial expansion for a logarithmic unnormalized funda-

mental solution in d = 4, namely (6.51). In d = 4, we use the appropriate p, i.e. p = k − 2,

which gives us

‖x − x′‖2k−4 log ‖x − x′‖ =
i(−1)k(r2

> − r2
<)k−1/2

√
π(rr′)3/2

×
∞∑

l1=0

(l1 + 1)Ql1,4,k−2(r, r
′)C1

l1(cos γ). (6.63)

Using the addition theorem for hyperspherical harmonics (6.2) we see that

C1
l1

(cos γ) =
2π2

l1 + 1

l1∑

l2=0

l2∑

m=−l2

Yl1,l2,m(θ1, θ2, φ)Y ∗
l1,l2,m

(θ′1, θ
′
2, φ

′), (6.64)

where Yl1,l2,m(θ1, θ2, φ) is the appropriate normalized hyperspherical harmonic, namely (6.11).

Substituting (6.11) in (6.64), inserting the result in (6.63), and reversing the order of the
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summations as in (6.52) gives us in type b2a pure hyperspherical coordinates

‖x − x′‖2k−4 log ‖x − x′‖ =

∞∑

m=0

cos[m(φ− φ′)]
ǫm

√
π

4
i(−1)k

(r2
> − r2

<)k−1/2

(rr′)3/2

×
∞∑

l2=m

[(2l2 + 1)!]2(2l2 + 1)(l2 −m)!

22l2
[
Γ
(
l2 + 3

2

)]2 (sin θ1 sin θ′1)
l2 Pm

l2
(cos θ1)Pm

l2
(cos θ′1)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
Ql1,4,k−2(r, r

′)C l2+1
l1−l2(cos θ1)C l2+1

l1−l2(cos θ′1) (6.65)

Now by equating the Fourier coefficients of (6.62) and (6.65) we obtain the following addition

theorem which is

Qm,k−2(χ) = −i
√

2

π

(2 − k)m(−1)k+1

(k +m+ 2)!

(
χ2 − 1

)k/2−3/4
Q
k−3/2
m−1/2(χ)

× log (2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)

+
iǫm(−1)k

√
π

2
(2rr′ sin θ1 sin θ′1 sin θ2 sin θ′2)2−k (r2

> − r2
<)k−1/2

(rr′)3/2

×
∞∑

l2=m

[(2l2 + 1)!]2(2l2 + 1)(l2 −m)!

22l2
[
Γ
(
l2 + 3

2

)]2 (sin θ1 sin θ′1)
l2 Pm

l2
(cos θ1)Pm

l2
(cos θ′1)

×
∞∑

l1=l2

(l1 + 1)(l1 − l2)!

(l1 + l2 + 1)!
C l2+1
l1−l2(cos θ1)C l2+1

l1−l2(cos θ′1)Ql1,4,k−2(r, r
′), (6.66)

for k ∈ N.

6.4.4 A power-law addition theorem in Rd for d ∈ {3, 4, . . .}

If we adopt standard hyperspherical coordinates (4.31), then we have derived the expression

for the harmonics, namely (6.12). We can use these harmonics in combination with the

addition theorem for hyperspherical harmonics (6.2), the Gegenbauer expansion for powers

of the distance (6.34), and the Fourier expansion for the powers of the distance (5.39) to

generate a multi-summation addition theorem in Euclidean space Rd valid for d ∈ {3, 4, . . .}.
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The Fourier expansion (5.39) gives us

‖x − x′‖ν =

√
π

2

eiπ(ν+1)/2

Γ (−ν/2)

(
2rr′

d−2∏

i=1

sin θisin θi
′

)ν/2
(
χ2 − 1

)(ν+1)/4

×
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χdd), (6.67)

where

χdd =

r2 + r′2 − 2rr′
d−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′

2rr′
d−2∏

i=1

sin θisin θi
′

. (6.68)

We can now use the Gegenbauer expansion for powers of the distance (6.34) and then in-

sert the appropriate Gegenbauer polynomial using the addition theorem for hyperspherical

harmonics (6.2). The result is

‖x − x′‖ν =
4eiπ(ν+d−1)/2π(d−1)/2

Γ
(
−ν

2

) (r2
> − r2

<)
(ν+d−1)/2

(rr′)(d−1)/2

×
∑

λ

Q
(1−ν−d)/2
l1+(d−3)/2

(
r2 + r′2

2rr′

)
Yl1,µ(x̂)Y ∗

l1,µ(x̂′). (6.69)

Now if we expand the product of hyperspherical harmonics in (6.69) with (6.12) (6.52), we
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obtain

‖x − x′‖ν =
∞∑

m=0

cos[m(φ− φ′)]
π(d−3)/2eiπ(ν+d−1)/2ǫm

Γ
(
−ν

2

) (r2
> − r2

<)
(ν+d−1)/2

(rr′)(d−1)/2

×
∞∑

ld−2=m

(2ld−2 + 1)(ld−2 −m)!

(ld−2 +m)!
Pm
ld−2

(cos θd−2)Pm
ld−2

(
cos θ′d−2

)

×
∞∑

ld−3=ld−2

Θ (ld−3, ld−2; θd−3) Θ
(
ld−3, ld−2; θ′d−3

)

...

×
∞∑

l2=l3

Θ (l2, l3; θ2) Θ (l2, l3; θ
′
2)

×
∞∑

l1=l2

Θ (l1, l2; θ1) Θ (l1, l2; θ
′
1)Q

(1−ν−d)/2
l1+(d−3)/2

(
r2 + r′2

2rr′

)
, (6.70)

where Θ(lj , lj+1; θ) is defined in (6.14). If we compare the Fourier coefficients for (6.70) and

(6.67), we derive the following addition theorem for associated Legendre functions of the

second kind

Q
−(ν+1)/2
m−1/2 (χdd) =

√
2eiπ(d−2)/2π(d−4)/2

(
2rr′

d−2∏

i=1

sin θisin θi
′

)−ν/2

×
(
χ2 − 1

)−(ν+1)/4 (r2
> − r2

<)
(ν+d−1)/2

(rr′)(d−1)/2

×
∞∑

ld−2=m

(2ld−2 + 1)(ld−2 −m)!

(ld−2 +m)!
Pm
ld−2

(cos θd−2)Pm
ld−2

(
cos θ′d−2

)

×
∞∑

ld−3=ld−2

Θ (ld−3, ld−2; θd−3) Θ
(
ld−3, ld−2; θ′d−3

)

...

×
∞∑

l2=l3

Θ (l2, l3; θ2) Θ (l2, l3; θ
′
2)

×
∞∑

l1=l2

Θ (l1, l2; θ1) Θ (l1, l2; θ
′
1)Q

(1−ν−d)/2
l1+(d−3)/2

(
r2 + r′2

2rr′

)
. (6.71)
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This is just one example of a derived multi-summation addition theorem for arbitrary dimen-

sion. There are an unlimited numbers of such straightforward examples to generate. One

must only take the time to construct them.
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7
Normalized fundamental solutions for

the Laplacian in Hd

In this chapter we start with a literature review, namely §7.1 on hyperbolic geometry which

concerns hyperbolic space and its models, §7.2 on the hyperboloid model of hyperbolic ge-

ometry and §7.3 on subgroup type coordinate systems which parametrize the points on the

hyperboloid. Additional background material can be found in Vilenkin (1968) [100], Thurston

(1997) [96], Lee (1997) [65] and Pogosyan & Winternitz (2002) [79].

This background material is used to develop results which, as far as the author is aware,

have not yet appeared in the literature. The material in §7.4, on radial harmonics for a

general hyperbolic hyperspherical coordinate system, is joint work with Ernie Kalnins. In §7.5

we compute an unnormalized fundamental solution for the Laplacian on the d-dimensional

hyperboloid, and in §7.6 we compute Fourier expansions for an unnormalized fundamental

solution of the Laplacian in d ∈ {2, 3}. The results of §7.5 and §7.6 are new.

147
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7.1 Hyperbolic space

The hyperbolic d-space, denoted by Hd, is a fundamental example of a space exhibiting hy-

perbolic geometry. It was developed independently by Lobachevsky and Bolyai around 1830

(see Trudeau (1987) [98]). It is a geometry analogous to Euclidean geometry, but such that

Euclid’s parallel postulate is no longer assumed to hold. It is a maximally symmetric, simply

connected, d-dimensional Riemannian manifold with negative-constant sectional curvature

(Vilenkin (1968) [100]), whereas Euclidean space Rd equipped with the Pythagorean norm,

is a space with zero sectional curvature. The unit hyper-sphere Sd, is an example of a space

(submanifold) with positive constant sectional curvature.

There are several models of d-dimensional hyperbolic space Hd, including the Klein (see

Figure 7.1)), Poincaré (see Figure 7.2), hyperboloid, upper-half space and hemisphere models

(see Thurston (1997) [96]).
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Figure 7.1: This figure depicts the stereographic projection from the hyperboloid model to the Klein model
of hyperbolic geometry.
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Figure 7.2: This figure depicts the stereographic projection from the hyperboloid model to the Poincaré
model of hyperbolic geometry.
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7.2 The hyperboloid model of Hd

The hyperboloid model for d-dimensional hyperbolic space is closely related to the Klein and

Poincaré models: each can be obtained projectively from the others. The upper-half space

and hemisphere models can be obtained from one another by inversions with the Poincaré

model (see §2.2 in Thurston (1997) [96]). The model we will be focusing on in this chapter

is the hyperboloid model.

The hyperboloid model, also known as the Minkowski or Lorentz models, are models

of d-dimensional hyperbolic geometry in which points are represented by the upper sheet

(submanifold) S+ of a two-sheeted hyperboloid embedded in the Minkowski space Rd,1. The

Minkowski space is a (d+ 1)-dimensional pseudo-Riemannian manifold which is a real finite-

dimensional vector space, with coordinates given by x = (x0, x1, . . . , xd). It is equipped with

a nondegenerate, symmetric bilinear form, the Minkowski inner product

[x,y] = x0y0 − x1y1 − . . .− xdyd.

The above bilinear form is symmetric, but not positive-definite, so it is not a true inner

product. It is defined analogously with the Euclidean inner product (cf. (4.15)) for Rd+1

(x,y) = x0y0 + x1y1 + . . .+ xdyd.

The variety [x,x] = R2 defines a pseudo-sphere with radius R. Points on the pseudo-

sphere with zero radius coincide with a cone. Points on the pseudo-sphere with radius greater

than zero lie within this cone, and points on the pseudo-sphere with purely imaginary radius

lie outside the cone. In this discussion of the hyperboloid model of Hd, we focus on the unit

pseudo-sphere, i.e. the corresponding submanifold with [x,x] = 1.

The isometry group of this space is the pseudo-orthogonal group SO(d, 1), the Lorentz

group in d + 1 dimensions. Hyperbolic space Hd, can be identified with the quotient space

SO(d, 1)/SO(d). The isometry group acts transitively on Hd. That is, any point on the

hyperboloid can be carried, with the help of a Euclidean rotation of SO(d− 1), to the point

(coshα, sinhα, 0, . . . , 0) (See Figure 7.3), and a hyperbolic rotation

x′0 = −x1 sinhα + x0 coshα

x′1 = −x1 coshα− x0 sinhα






maps that point to the origin (1, 0, . . . , 0) of the space. In order to study normalized funda-

mental solutions on the hyperboloid, we need to describe how one computes distances in this
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space.

Figure 7.3: This figure depicts the transitivity of the isometry group on H
d.

One can see how this works by analogy with the unit hyper-sphere. Distances on the

unit hyper-sphere are simply given by arc lengths, angles between two arbitrary vectors,

from the origin, in the ambient Euclidean space. We consider the unit d-dimensional hyper-

sphere embedded in Rd+1. Points on the unit hyper-sphere can be parametrized using a

general hyperspherical coordinate system (these are not the only valid parametrizations).
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Any parametrization of the unit hyper-sphere Sd, must have (x,x) = 1. The distance between

two points on the unit hyper-sphere is given by

d(x,x′) = γ = cos−1

(
(x,x′)

(x,x)(x′,x′)

)
= cos−1

(
(x,x′)

)
. (7.1)

This is evident from the fact that the geodesics on Sd are great circles (i.e. intersections

of Sd with planes through the origin) with constant speed parametrizations (see Lee (1997)

[65], p. 82). Therefore (7.1) actually represents the general formula for computing geodesic

distances on the unit hyper-sphere Sd.

Accordingly, we now look at the geodesic distance function on the unit d-dimensional

pseudo-sphere Hd. Distances between two points in the unit pseudo-sphere are given by the

hyperangle between two arbitrary vectors, from the origin, in the ambient Minkowski space.

The pseudo-sphere can be parametrized through standard hyperbolic hyperspherical coordi-

nates (7.12). Of course there are many coordinates upon which one may parametrize the unit

pseudo-sphere (see Olevskĭı (1950) [73]), but none equivalent to Cartesian coordinates. Any

parametrization of the unit hyperboloid Hd, must have [x,x] = 1. The distance between two

points in Hd is given by

d(x,x′) = cosh−1

(
[x,x′]

[x,x][x′,x′]

)
= cosh−1

(
[x,x′]

)
, (7.2)

where the inverse hyperbolic cosine with argument x ∈ (1,∞) is given by (2.4). The general

formula for computing geodesic distances on the unit pseudo-sphere Hd is given by (7.2).

This is clear from the fact that the geodesics on Hd are great hyperbolas (i.e. intersections

of Hd with planes through the origin) with constant speed parametrizations (see Lee (1997)

[65], p. 84).

7.3 Coordinate systems and the Laplacian on the hy-

perboloid

Parametrizations of a submanifold embedded in either a Euclidean or Minkowski space is

given in terms of coordinate systems whose coordinates are curvilinear. These are coordi-

nates based on some transformation that converts the standard Cartesian coordinates in the

ambient space to a coordinate system with the same number of coordinates as the submani-

fold in which the coordinate lines are curved.

The Laplace-Beltrami operator (Laplacian) in curvilinear coordinates ξ = (ξ1, . . . , ξd) on
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the Riemannian manifold Hd is given by

∆ = ∆LB =

d∑

i,j=1

1√
|g|

∂

∂ξi

(√
|g|gij ∂

∂ξj

)
, (7.3)

where the metric is

ds2 =

d∑

i,j=1

gijdξ
idξj, g = | det(gij)|,

d∑

i=1

gkig
ij = δjk. (7.4)

The relation between the metric tensor Gij = diag(1,−1, . . . ,−1) in the ambient space and

gij of (7.3) and (7.4) is

gij(ξ) =

d∑

k,l=0

Gkl
∂xk

∂ξi
∂xl

∂ξj
.

7.3.1 Subgroup type coordinates in Hd

The class of coordinate systems which allow separation of variables for Laplace’s equation on

the hyperboloid, just like in Euclidean space, can be broken up into two types, those which

are subgroup type coordinates and those which are not. Again, subgroup type coordinates

are coordinates which can be written in terms of (maximal) subgroup chains and the power-

ful “method of trees,” (a graphical method for constructing coordinate transformations for

subgroup type coordinates) can be adopted (see §4.1).

Take for instance the proper subgroups of O(2, 1)

O(2, 1) ⊃ O(2), (7.5)

O(2, 1) ⊃ O(1, 1), and,

O(2, 1) ⊃ E(1), (7.6)



7.3 Coordinate systems and the Laplacian on the hyperboloid 155

or for instance the proper subgroups of O(3, 1)

O(3, 1) ⊃ O(3) ⊃ O(2), (7.7)

O(3, 1) ⊃ O(2, 1) ⊃ O(2), (7.8)

O(3, 1) ⊃ O(2, 1) ⊃ O(1, 1),

O(3, 1) ⊃ O(2, 1) ⊃ E(1), (7.9)

O(3, 1) ⊃ E(2) ⊃ O(2), (7.10)

O(3, 1) ⊃ E(2) ⊃ E(1) ⊗E(1), and, (7.11)

O(3, 1) ⊃ O(2) ⊗ O(1, 1).

Corresponding to each of these subgroup chains is a particular tree and therefore coordi-

nate system. See Pogosyan & Winternitz (2002) [79] for explicit parametrizations for the

corresponding coordinate systems and trees. Examples of subgroup type coordinates on the

hyperboloid include hyperspherical coordinates in which the subgroup chain contains a copy

(or copies) of O(p) for p ∈ {2, . . . , d}, such as in (7.5), (7.7), (7.8), and (7.10). Other exam-

ples include cylindrical coordinates which contain p copies of the Euclidean group, such as

in (7.6), (7.9) and (7.11). Non-subgroup type coordinates include those which are analogous

to ellipsoidal coordinates, parabolic coordinates, etc.

At each link in the subgroup chain, each indicated subgroup on the right is maximal in

the group on the left. The possible subgroup chain links can be of the following types: (see

Pogosyan & Winternitz (2002) [79] and references therein for a detailed explanation of why

we restrict to these particular types of subgroups) (1) for the pseudo-orthogonal group

O(p, 1) ⊃ O(p),

O(p, 1) ⊃ O(p− 1, 1),

O(p, 1) ⊃ E(p− 1),

O(p, 1) ⊃ O(p1, 1) ⊗ O(p2), p1 + p2 = p, p1 ≥ 1, p2 ≥ 2,

(2) for the orthogonal group

O(p) ⊃ O(p− 1),

O(p) ⊃ O(p1) ⊗ O(p2), p1 + p2 = p, p1 ≥ p2 ≥ 1,
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and (3) for the Euclidean group

E(p) ⊃ O(p),

E(p) ⊃ E(p1) ⊗ E(p2), p1 + p2 = p, p1 ≥ p2 ≥ 1.

To simplify matters for our computation, we introduce standard hyperbolic hyperspherical

coordinates, similar to spherical coordinates in Euclidean space

x0 = cosh r

x1 = sinh r cos θ1

x2 = sinh r sin θ1 cos θ2
...

xd−2 = sinh r sin θ1 · · · cos θd−2

xd−1 = sinh r sin θ1 · · · sin θd−2 cos φ

xd = sinh r sin θ1 · · · sin θd−2 sin φ,






(7.12)

where r ∈ [0,∞), φ ∈ [0, 2π), and θi ∈ [0, π] for i ∈ {1, . . . , d − 2}. Standard hyperbolic

hyperspherical coordinates corresponds to the subgroup chain given by O(d, 1) ⊃ O(d) ⊃
O(d− 1) ⊃ · · · ⊃ O(2).

7.3.2 General hyperbolic hyperspherical coordinates in Hd

The set of all general hyperbolic hyperspherical coordinate systems corresponds to the many

ways one can put coordinates on a hyperbolic hyper-sphere, namely those which correspond to

subgroup chains starting with O(d, 1) ⊃ O(d) ⊃ · · · , with standard hyperbolic hyperspherical

coordinates given by (7.12) being only one of them. They all share the property that they are

described by d+ 1 variables: r ∈ [0,∞) plus d angles each being given by the values [0, 2π),

[0, π], [−π/2, π/2] or [0, π/2] (see Izmest’ev et al. (1999, 2001) [58, 59]). The possibilities for

subgroup chains for these coordinates are described in Chapter 4.

In any of the general hyperbolic hyperspherical coordinate systems, the geodesic distance

between two points on the submanifold is given by

d(x,x′) = cosh−1([x,x′]) = cosh−1
(
cosh r cosh r′ − sinh r sinh r′ cos γ

)
, (7.13)

where γ is the unique separation angle given in each hyperspherical coordinate system. For

instance, the separation angle in standard hyperbolic hyperspherical coordinates is given by
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the formula

cos γ = cos(φ− φ′)

d−2∏

i=1

sin θisin θi
′ +

d−2∑

i=1

cos θicos θi
′
i−1∏

j=1

sin θjsin θj
′. (7.14)

where these coordinates are defined in Transformation (7.12).

Corresponding formulae for any general hyperbolic hyperspherical coordinate system

can be computed using (7.1), (7.2), and the associated formulae for the appropriate inner-

products. The Riemannian metric in a general hyperbolic hyperspherical coordinate system

on this submanifold is

ds2 = dr2 + sinh2 r dγ2, (7.15)

where the appropriate expression for cos γ is chosen. If one combines (7.3), (7.12), (7.14) and

(7.15), then in a particular general hyperbolic hyperspherical coordinate system, Laplace’s

equation on Hd is

∆f =
∂2f

∂r2
+ (d− 1) coth r

∂f

∂r
+

1

sinh2 r
∆Sd−1f = 0, (7.16)

where ∆Sd−1 is the corresponding Laplace-Beltrami operator on Sd−1.

7.4 Harmonics in standard hyperbolic hyperspherical

coordinates

General hyperbolic hyperspherical coordinate systems partition Hd into a family of concen-

tric (d − 1)-dimensional hyper-spheres, each with a radius r ∈ (0,∞), on which all possible

hyperspherical coordinate systems for Sd−1 may be used (see for instance, in Vilenkin (1968)

[100]). One then must also consider the limiting case for r = 0 to fill out all of Hd. In stan-

dard hyperbolic hyperspherical coordinates one can compute the normalized hyperspherical

harmonics in this space by solving the Laplace equation using separation of variables which re-

sults in a general procedure which is given explicitly in Izmest’ev et al. (1999, 2001) [58, 59]).

These angular harmonics are given as general expressions involving complex exponentials,

Gegenbauer polynomials and Jacobi polynomials.

The harmonics in general hyperbolic hyperspherical coordinate systems are given in terms

of a radial solution multiplied by the angular harmonics. The angular harmonics are eigen-

functions of the Laplace-Beltrami operator on Sd−1 which satisfy the following eigenvalue

problem

∆Sd−1Yl,µ(x̂) = l(l + d− 2)Yl,µ(x̂),
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where Yl,µ(x̂) are the normalized hyperspherical harmonics given as a function of the angular

coordinates chosen to parametrize Sd−1, l ∈ N0 is the angular momentum quantum number,

and µ ∈ µ.

Since the angular solutions are well-known, we will now focus on the radial solutions,

which are therefore satisfied by the following ordinary differential equation

d2u

dr2
+ (d− 1) coth r

du

dr
− l(l + d− 2)

sinh2 r
u = 0.

Solutions to this ordinary differential equation are

ud,l1±(cosh r) =
1

(sinh r)d/2−1
P

±(d/2−1+l)
d/2−1 (cosh r),

and

ud,l2±(cosh r) =
1

(sinh r)d/2−1
Q

±(d/2−1+l)
d/2−1 (cosh r),

where P µ
ν and Qµ

ν are the associated Legendre functions of the first and second kind respec-

tively with degree ν, order µ, and argument z (see §2.6).

Due to the fact that the space Hd is homogeneous with respect to its isometry group

SO(d, 1), and therefore an isotropic manifold, we expect that there exists a normalized fun-

damental solution on this space with spherically symmetric dependence. We specifically

expect these solutions to be given in terms of associated Legendre functions of the second

kind with argument given by cosh r. This associated Legendre function naturally fits our

requirements because it is singular at r = 0 and vanishes at infinity, whereas the associated

Legendre functions of the first kind, with the same argument, are regular at r = 0 and

singular as infinity.

7.5 Normalized fundamental solution for the Laplacian

in Hd

In computing a normalized fundamental solution for the Laplacian in Hd, we know that

∆Hd(x,x′) = δ(x − x′).

In general since we can add any harmonic function to a fundamental solution for the Laplacian

and still have a fundamental solution, we will use this freedom to make our fundamental

solution as simple as possible.

It is reasonable to expect that there exists a particular normalized spherically symmetric
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fundamental solution Hd(x,x′) on the hyperboloid with pure radial r := d(x,x′) and constant

angular (invariant under rotations centered about the origin) dependence due to the influence

of the point-like nature of the Dirac delta function. For a spherically symmetric solution to the

Laplace equation, the corresponding ∆Sd−1 term vanishes since only the l = 0 term survives.

In other words we expect there to exist a fundamental solution such that Hd(x,x′) = f(r).

We have proven that on the hyperboloid Hd, a normalized Green’s function for the Laplace

operator (normalized fundamental solution for the Laplacian) can be given as follows.
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Theorem 7.5.1. Let d ∈ {2, 3, . . .}. Define

Id(r) :=
1

(d− 1)(cosh r)1−d 2F1

(
d

2
;
d− 1

2
;
d+ 1

2
;

1

cosh2 r

)
,

and

Hd(x,x′) :=
Γ
(
d
2

)

2πd/2
Id(r),

where r := cosh−1 ([x,x′]) is the geodesic distance between x and x′ on the hyperboloid Hd,

then Hd is a normalized fundamental solution for −∆, where ∆ is the Laplace-Beltrami

operator on Hd. Moreover,

Id(r) =






(−1)d/2
(d− 3)!!

(d− 2)!!

[
log tanh

r

2
+ cosh r

d/2−1∑

k=1

(−1)k+12k−1(k − 1)!

(2k − 1)!! sinh2k r

]
if d even,

(−1)(d−1)/2



(d− 3)!!

(d− 2)!!
+

(
d− 3

2

)
!

(d−1)/2∑

k=1

(−1)k coth2k−1 r

(2k − 1)(k − 1)!((d− 2k − 1)/2)!





if d odd.

= −ieidπ/2 (d− 3)!!

(d− 2)!!
ad − eidπ/2 cosh r 2F1

(
1

2
,
d

2
;

3

2
; cosh2 r

)

=
bd e

idπ/2

(d− 2)!!(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r),

where

ad =






π

2
if d even,

1 if d odd,

and

bd =






−1 if d even,
√

2

π
if d odd.

In the rest of this section, we develop the material in order to prove this theorem. Since a

spherically symmetric choice for a normalized fundamental solution satisfies Laplace’s equa-

tion everywhere except at the origin, we may first set g = f ′ in (7.16) and solve the first-order

equation

g′ + (d− 1) coth r g = 0,
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which is integrable and clearly has the general solution

g(r) =
df

dr
= c0(sinh r)1−d, (7.17)

where c0 ∈ R is a constant which depends on d. Now we integrate (7.17) to obtain a

normalized fundamental solution for the Laplacian in Hd

Hd(x,x′) = c0Id(r) + c1, (7.18)

where

Id(r) :=

∫ ∞

r

dx

sinhd−1 x
, (7.19)

and c0, c1 ∈ R are constants which depend on d. Notice that we can add any harmonic

function to (7.18) and still have a fundamental solution of the Laplacian since a fundamental

solution of the Laplacian must satisfy

∫
(−∆ϕ)(x′) Hd(x,x′)dx′ = ϕ(x),

for all ϕ ∈ D(Rd), where D is the space of test functions. In particular, we notice that from

our definition of Id (7.19) we can see that

lim
r→∞

Id(r) = 0, (7.20)

therefore it is convenient to set c1 = 0 leaving us with

Hd(x,x′) = c0Id(r). (7.21)

The hyperboloid, being a Riemannian manifold, must behave locally like Euclidean space,

Rd. Therefore for small r we have er ≃ 1 + r and e−r ≃ 1 − r and in that limiting regime

Id(r) ≈
∫ 1

r

dx

xd−1
≃






− log r if d = 2,

1

rd−2
if d ≥ 3,

which has exactly the same singularity as a normalized Euclidean fundamental solution (see

Theorem 3.1.1). Therefore the proportionality constant c0 is obtained by matching locally

to a normalized Euclidean fundamental solution

Hd = c0Id ≃ Gd, (7.22)
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at the singularity x = x′.

We have shown how to compute a normalized fundamental solution of the Laplace-

Beltrami operator on the hyperboloid in terms of an improper integral (7.19). We would

now like to express this integral in terms of well-known special functions.

An unnormalized fundamental solution Id can be computed using elementary methods

through its definition, (7.19). In d = 2 we have

I2(r) =

∫ ∞

r

dx

sinh x
= − log tanh

r

2
=

1

2
log

cosh r + 1

cosh r − 1
,

and in d = 3 we have

I3(r) =

∫ ∞

r

dx

sinh2 x
= coth r − 1 =

e−r

sinh r
,

which exactly matches up to that given by (3.27) in Hostler (1955) [53]. In d ∈ {4, 5, 6, 7}
we have

I4(r) =
cosh r

2 sinh2 r
+

1

2
log tanh

r

2
,

I5(r) =
1

3
(coth3 r − 1) − (coth r − 1),

I6(r) =
cosh r

4 sinh4 r
− 3 cosh r

8 sinh2 r
− 3

8
log tanh

r

2
, and

I7(r) =
1

5
(coth5 r − 1) − 2

3
(coth3 r − 1) + coth r − 1.

In fact, using Gradshteyn & Ryzhik (2007) ([48], (2.416.2–3)) we obtain the following finite

summation expressions for Id(r)

Id(r) =






(−1)d/2
(d− 3)!!

(d− 2)!!

[
log tanh

r

2
+ cosh r

d/2−1∑

k=1

(−1)k+12k−1(k − 1)!

(2k − 1)!! sinh2k r

]
if d even,

(−1)(d−1)/2



(d− 3)!!

(d− 2)!!
+

(
d− 3

2

)
!

(d−1)/2∑

k=1

(−1)k coth2k−1 r

(2k − 1)(k − 1)!((d− 2k − 1)/2)!





if d odd.

(7.23)

The antiderivative (indefinite integral) can be given in terms of the Gauss hypergeometric

function as ∫
dr

(sinh r)d−1
= eidπ/2 cosh r2F1

(
1

2
,
d

2
;

3

2
; cosh2 r

)
+ C,
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where C ∈ R.

This is verified as follows. By using (2.31) and the chain rule, we show

d

dr
eidπ/2 cosh r2F1

(
1

2
,
d

2
;

3

2
; cosh2 r

)
= eidπ/2 sinh r

×
[

2F1

(
1

2
,
d

2
;

3

2
; cosh2 r

)
+
d

3
cosh2 r2F1

(
3

2
,
d+ 2

2
;

5

2
; cosh2 r

)]
.

The second hypergeometric function can be simplified using Gauss’ relations for contiguous

hypergeometric functions, namely (2.32) and (2.33). By doing this, the term with the hyper-

geometric function cancels leaving only a term which is proportional to a binomial through

(2.35) which reduces to 1/(sinh r)d−1. Using this antiderivative, we can write an expres-

sion for Id(r). Applying Pfaff’s transformation (2.25) to the Gauss hypergeometric function

produces

cosh r 2F1

(
1

2
,
d

2
;
3

2
; cosh2 r

)
= −i coth r 2F1

(
1

2
,
3 − d

2
;

3

2
; coth2 r

)
. (7.24)

By using the appropriate integration interval in (7.19), the above transformation, and using

the Gauss summation formula (2.24) combined with (2.8) and (2.6) we obtain

Id(r) = −ieidπ/2 (d− 3)!!

(d− 2)!!
ad − eidπ/2 cosh r 2F1

(
1

2
,
d

2
;

3

2
; cosh2 r

)
, (7.25)

where ad ∈ R is given by

ad =






π

2
, if d even;

1, if d odd.

It is natural to ask how one might interpret the Gauss hypergeometric function

2F1

(
1

2
,
d

2
;
3

2
; cosh2 r

)
,

since its argument lies on the cut of the Gauss hypergeometric function. We have used

analytic continuation to extend the Gauss hypergeometric function for |z| > 1 and then

used the principal branch of the hypergeometric function. More specifically, for d even,

2F1

(
1
2
, d

2
; 3

2
; cosh2 r

)
is analytically continued directly through (2.29) with arg(−z) = π, since

(1 − d)/2 /∈ Z. For d odd 2F1

(
1
2
, d

2
; 3

2
; cosh2 r

)
is interpreted by first using Pfaff’s transfor-

mation (7.24) and then through (2.29) with arg(−z) = π, since (d− 2)/2 /∈ Z.

We can derive a simpler alternative expression for Id(r) in terms of the Gauss hypergeo-
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metric function as follows. Using (2.29) we can show that

2F1

(
1

2
,
d

2
;
3

2
, cosh2 r

)
= − i

π

2

(d− 3)!!

(d− 2)!!

1

cosh r

− e−iπd/2(cosh r)−d

d− 1
2F1

(
d

2
,
d− 1

2
;
d+ 1

2
,

1

cosh2 r

)
,

therefore our antiderivative is also given by

∫
dr

(sinh r)d−1
=

(cosh r)1−d

1 − d
2F1

(
d

2
;
d− 1

2
;
d+ 1

2
;

1

cosh2 r

)
+ C,

where C ∈ R. By taking the appropriate interval of integration in (7.19) we have

Id(r) =
1

(d− 1)(cosh r)1−d 2F1

(
d

2
;
d− 1

2
;
d+ 1

2
;

1

cosh2 r

)
.

Our derivation for an unnormalized fundamental solution in terms of associated Legendre

functions of the second kind is as follows. We will break the problem into two cases, first d

odd and then d even.

For d ∈ {3, 5, 7, . . .}, we start with (2.46) and take ν = d/2 − 1, µ = 1 − d/2 and use

(2.54) to obtain

1

(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r) = −i

√
π

2
(d− 3)!!

+

√
πi(d− 2)!

2(d−2)/2
(
d−3
2

)
!
coth r 2F1

(
1

2
,
3 − d

2
;
3

2
; coth2 r

)
. (7.26)

Notice that for our choice of ν and µ the ∓ signs for the complex exponentials in (2.46)

go away since exp(∓iπn) = (−1)n for n ∈ Z. After utilizing (2.19) and the properties of

factorials, double factorials, the material in §2.2.1, the material on Pochhammer symbols

from §2.2.2, and taking z = cosh r for r ∈ (0,∞), we obtain

1

(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r) = −i

√
π

2
(d− 2)!!

×



(d− 3)!!

(d− 2)!!
+

(
d− 3

2

)
!

(d−1)/2∑

k=1

(−1)k coth2k−1 r

(2k − 1)(k − 1)!((d− 2k − 1)/2)!



 .
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We have just shown via (7.23) that

Id(r) =

√
2

π

eiπd/2

(d− 2)!!

1

(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r),

for d odd. Using (7.24) we can see that we also have

Id(r) = −ieiπd/2 (d− 3)!!

(d− 2)!!
− eidπ/2 cosh r 2F1

(
1

2
,
d

2
;
3

2
; cosh2 r

)
,

for d odd.

Now we examine the case d ∈ {2, 4, 6, . . .}. For consistency, we demonstrate the finite

summation expression (7.23) is consistent with our Gauss hypergeometric representation

(7.25). We adopt the principal branch of the natural logarithm, perform a Taylor expansion,

and take z = cosh r for r ∈ (0,∞), which establishes

log tanh
r

2
= −1

2
log

cosh r + 1

cosh r − 1
= −iπ

2
− cosh r 2F1

(
1

2
, 1;

3

2
; cosh2 r

)
.

By using (2.30) we can establish

2F1

(
1

2
,
d

2
;

3

2
; z2

)
= − iπ

2z

(d− 3)!!

(d− 2)!!
− (1 − z2)−d/2

d− 1
2F1

(
1,
d

2
;
d+ 1

2
;

−1

z2 − 1

)

and

2F1

(
1,

1

2
;
3

2
; z2

)
= − iπ

2z
+ (z2 − 1)−1

2F1

(
1, 1;

3

2
;

−1

z2 − 1

)
,

which establishes the consistency, since

d/2−1∑

k=1

(−1)k2k(k − 1)!

(2k − 1)!!(sinh r)2k
= − −2

sinh2 r

d/2−2∑

k=0

(1)k(1)k(
3
2

)
k
k!

(−1)k

(sinh r)2k
,

and

d/2−2∑

k=0

(1)k(1)k(
3
2

)
k
k!

(−1)k

(sinh r)2k
= 2F1

(
1, 1;

3

2
;

−1

sinh2 r

)

+
(d− 2)!!(−1)d/2

(d− 1)!!(sinh r)d−2 2F1

(
1,
d

2
;
d+ 1

2
;

−1

sinh2 r

)
.
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By using (2.45) and taking ν = d/2 − 1 and µ = 1 − d/2, we use (2.54) to obtain

Q
d/2−1
d/2−1(z) = ∓iπ

2
(d− 3)!!(z2 − 1)d/4−1/2 +

(−1)d/2−1(d− 2)!!z

(z2 − 1)(d−2)/4 2F1

(
3 − d

2
, 1;

3

2
; z2

)
. (7.27)

We see that for our choice of ν and µ the ∓ signs for the complex exponentials in (2.45) do

not go away as exp(∓iπ/2) = ∓i. If we applying Pfaff’s transformation (2.25) twice to the

hypergeometric function in (7.27) we derive

2F1

(
3 − d

2
, 1;

3

2
; z2

)
= (1 − z2)(d−2)/2

2F1

(
1

2
, 1;

d

2
;

3

2
, z2

)
.

Inserting this identity into (7.27) results in

Q
d/2−1
d/2−1(z) = (z2 − 1)(d−2)/4

[
∓iπ

2
(d− 3)!! + (d− 2)!! z 2F1

(
1

2
,
d

2
;

3

2
; z2

)]
. (7.28)

As is stated in §2.6, the ∓ sign in the complex exponential is appropriate for Imz ≷ 0, and

since associated Legendre functions are continuous at z ∈ (1,∞), we would like to perform

the limit of the hypergeometric function in (7.28) as z approaches this real interval from

above and below. Applying (2.29), (2.27), (2.9) and (2.8) yields

2F1

(
1

2
,
d

2
;

3

2
; z2

)
=
π

2

(d− 3)!!

(d− 2)!!
(−z2)−1/2 − (−z2)−d/2

d− 1
2F1

(
d

2
,
d− 1

2
;
d+ 1

2
;

1

z2

)
. (7.29)

Now we insert z = x + iǫ for x ∈ (1,∞) and take the limit as ǫ approaches zero in (7.29).

Using the properties of the complex logarithm we see that

(−z2)−1/2 → ±i
x
,

and

(−z2)−d/2 → (−1)d/2

xd
,

and since the hypergeometric function is holomorphic on an open neighbourhood of x

2F1

(
d

2
,
d− 1

2
;
d+ 1

2
;

1

z2

)
→ 2F1

(
d

2
,
d− 1

2
;
d+ 1

2
;

1

x2

)
.

Applying this limit to both sides of (7.29) gives

2F1

(
1

2
,
d

2
;

3

2
; x2

)
= ±i π

2x

(d− 3)!!

(d− 2)!!
− (−1)d/2

xd(d− 1)
2F1

(
d

2
,
d− 1

2
;
d+ 1

2
;

1

x2

)
. (7.30)
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For d even (z2 − 1)(d−2)/4 → (x2 − 1)(d−2)/4, so if we substitute this limit in (7.28), the

imaginary parts cancel and we obtain

Q
d/2−1
d/2−1(x) =

(−1)d/2−1(d− 2)!!

d− 1

(x2 − 1)(d−2)/4

xd−1 2F1

(
d

2
,
d− 1

2
;
d+ 1

2
;

1

x2

)
, (7.31)

for d even. Solving (7.30) for 2F1(d/2, (d− 1)/2; (d+ 1)/2; 1/x2), substituting this in (7.31),

and replacing x = cosh r yields

1

(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r) = (d− 2)!! cosh r 2F1

(
1

2
,
d

2
;
3

2
; cosh2 r

)
+ i

π

2
(d− 3)!!.

Therefore using the results from §7.4 and §7.5, we can compute the integral in (7.19) to

obtain

Id(r) =
bd e

idπ/2

(d− 2)!!(sinh r)d/2−1
Q
d/2−1
d/2−1(cosh r),

where bd ∈ R is given by

bd =






−1 if d even,
√

2

π
if d odd.

Notice that our chosen fundamental solutions of the Laplacian on the hyperboloid have the

property that they tend towards zero at infinity (even for the d = 2 case, unlike Euclidean

fundamental solutions of the Laplacian).

The relevant associated Legendre functions for d ∈ {2, 3, 4, 5, 6, 7}, which can be obtained

using recurrence relation (2.47) with (2.67), (2.68) and (2.69) are given by

Q0
0(cosh r) = − log tanh

r

2
,

1

(sinh r)1/2
Q

1/2
1/2(cosh r) = i

√
π

2
(coth r − 1),

1

sinh r
Q1

1(cosh r) = − log tanh
r

2
− cosh r

sinh2 r
,

1

(sinh r)3/2
Q

3/2
3/2(cosh r) = 3i

√
π

2

(
−1

3
coth3 r + coth r − 2

3

)
,

1

(sinh r)2
Q2

2(cosh r) = −3 log tanh
r

2
− 2

cosh r

(sinh r)4
− 3

cosh r

(sinh r)2
, and

1

(sinh r)5/2
Q

5/2
5/2(cosh r) = 15i

√
π

2

(
1

15
coth5 r − 2

3
coth3 r + coth r − 8

15

)
.
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The constant c0 in a normalized fundamental solution for the Laplace operator on the

hyperboloid (7.21) is computed by locally matching up the singularity to a normalized funda-

mental solution for the Laplace operator in Euclidean space, Theorem 3.1.1. The coefficient

c0 depends on d. It is determined as follows. For d ≥ 3 we take the asymptotic expansion

for c0Id(r) as r approaches zero and match this to a normalized fundamental solution for

Euclidean space given in Theorem 3.1.1. This yields

c0 =
Γ
(
d
2

)

2πd/2
. (7.32)

For d = 2 we take the asymptotic expansion for

c0I2(r) = −c0 log tanh
r

2
≃ c0 log ‖x − x′‖−1

as r approaches zero, and match this to G2(x,x′) =
1

2π
log ‖x−x′‖−1, therefore c0 =

1

2π
. This

exactly matches (7.32) for d = 2. The derivation that Id(r) is an unnormalized fundamental

solution of the Laplace operator on the hyperboloid Hd and the functions for Id(r) are

computed above.

The proof of Theorem 7.5.1 is complete.

7.6 Fourier expansions for unnormalized fundamental

solutions in Hd

Now we compute Fourier expansions for unnormalized fundamental solutions hd in Hd, for

d ∈ {2, 3}.

7.6.1 Fourier expansion for a fundamental solution in H2

If we start with the generating function for Chebyshev polynomials of the first kind (2.96)

we have
sinh η

cosh η − cosψ
=

∞∑

n=0

ǫn cos(nψ)e−nη.

Integrating both sides with respect to η, we obtain the following formula (see for instance

Magnus, Oberhettinger & Soni (1966) [67], p. 259)

log
(
1 + z2 − 2z cosψ

)
= −2

∞∑

n=1

cos(nψ)

n
zn.
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Therefore if we take z =
r<
r>

, then we can derive

G2 ≃ log ‖x − x′‖ = log r> −
∞∑

n=1

cos(n(φ− φ′))

n

(
r<
r>

)n
, (7.33)

the Fourier expansion for an unnormalized fundamental solution in Euclidean space for d = 2.

On the hyperboloid for d = 2 we have

H2 ≃ h2 := log tanh
1

2
d(x,x′) =

1

2
log

cosh d(x,x′) + 1

cosh d(x,x′) − 1
.

In standard hyperbolic 1-spherical coordinates, cos γ = cos(φ− φ′), and (7.13) produces

cosh d(x,x′) = cosh r cosh r′ − sinh r sinh r′ cos(φ− φ′),

therefore

h2 =
1

2
log

cosh r cosh r′ + 1 − sinh r sinh r′ cos(φ− φ′)

cosh r cosh r′ − 1 − sinh r sinh r′ cos(φ− φ′)
.

Replacing ψ = φ− φ′ and rearranging the logarithms yield

h2 =
1

2
log

cosh r cosh r′ + 1

cosh r cosh r′ − 1
+

1

2
log (1 − z+ cosψ) − 1

2
log (1 − z− cosψ) ,

where

z± :=
sinh r sinh r′

cosh r cosh r′ ± 1
.

Note that z± ∈ (0, 1) for r, r′ ∈ (0,∞). We have the following MacLaurin series

log(1 − x) = −
∞∑

n=1

xn

n
,

where x ∈ [−1, 1). Therefore away from the singularity at x = x′ we have

λ± := log (1 − z± cosψ) = −
∞∑

k=1

zk±
k

cosk ψ. (7.34)

We can expand the powers of cosine using the following trigonometric identity

cosk ψ =
1

2k

k∑

n=0

(
k

n

)
cos[(2n− k)ψ],

which is the standard expansion for powers using Chebyshev polynomials (see for instance
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p. 52 in Fox & Parker (1968) [41]). Inserting this expression in (7.34), we obtain the following

double-summation expression

λ± = −
∞∑

k=1

k∑

n=0

zk±
2kk

(
k

n

)
cos[(2n− k)ψ]. (7.35)

Now we perform a double-index replacement in (7.35). We break this sum into two

separate sums, one for k ≤ 2n and another for k ≥ 2n. There is an overlap when both sums

satisfy the equality, and in that situation we must halve after we sum over both sums. If

k ≤ 2n, make the substitution k′ = k − n and n′ = 2n− k. It follows that k = 2k′ + n′ and

n = n′ + k′, therefore (
k

n

)
=

(
2k′ + n′

n′ + k′

)
=

(
2k′ + n′

k′

)
.

If k ≥ 2n make the substitution k′ = n and n′ = k − 2n. Then k = 2k′ + n′ and n = k′,

therefore (
k

n

)
=

(
2k′ + n′

k′

)
=

(
2k′ + n′

k′ + n′

)
,

where the equalities of the binomial coefficients are confirmed using (2.14). To take into

account the double-counting which occurs when k = 2n (which occurs when n′ = 0), we

introduce a factor of ǫn′/2 into the expression (and relabel k′ 7→ k and n′ 7→ n). We are left

with

λ± = −1

2

∞∑

k=1

z2k
±

2kk

(
2k

k

)
− 2

∞∑

n=1

cos(nψ)

∞∑

k=0

z2k+n
±

22k+n(2k + n)

(
2k + n

k

)
.

We can substitute (
2k

k

)
=

22k
(

1
2

)
k

k!

into the first term, which reduces to

I± := −1

2

∞∑

k=1

(
1
2

)
k
z2k
±

k!k
= −

∫ z±

0

dz′±
z′±

∞∑

k=1

(
1
2

)
k
z′±

2k

k!
= −

∫ z±

0

dz′±
z′±



 1√
1 − z′±

2
− 1



 .

We are left with

I± = − log 2 + log

(
1 +

√
1 − z2

±

)
= − log 2 + log

(
(cosh r> ± 1)(cosh r< + 1)

cosh r cosh r′ ± 1

)
.

If we substitute

(
2k + n

k

)
=

22k

(
n+ 1

2

)

k

(
n + 2

2

)

k

k!(n + 1)k
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into the second term, the Fourier coefficient reduces to

J± :=
1

2n−1

∞∑

k=0

(
n+ 1

2

)

k

(
n+ 2

2

)

k

k!(n+ 1)k

z2k+n
±

2k + n

=
1

2n−1

∫ z±

0

dz′±z
′
±
n−1

∞∑

k=0

(
n + 1

2

)

k

(
n + 2

2

)

k

k!(n + 1)k
z′±

2k
.

The series in the integrand is a Gauss hypergeometric function which can be given as

∞∑

k=0

(
n+ 1

2

)

k

(
n+ 2

2

)

k

k!(n+ 1)k
z2k =

2nn!

zn
√

1 − z2
P−n

0

(√
1 − z2

)
,

where P−n
0 is an associated Legendre function of the first kind with vanishing degree and order

given by −n. This is a consequence of the quadratic transformation of the hypergeometric

function satisfied by (2.44). Therefore the Fourier coefficient is then given through (2.43) by

J± = 2

∫ 1

√
1−z2

±

dz′±
1 − z′±

2

(
1 − z′±
1 + z′±

)n/2
=

2

n

[
1 −

√
1 − z2

±

1 +
√

1 − z2
±

]n/2
.

Finally we have

λ± = − log 2+log

(
(cosh r> ± 1)(cosh r< + 1)

cosh r cosh r′ ± 1

)
−2

∞∑

n=1

cos(nψ)

n

[
(cosh r> ∓ 1)(cosh r< − 1)

(cosh r> ± 1)(cosh r< + 1)

]n/2
.

Therefore the Fourier expansion for an unnormalized fundamental solution of Laplace’s equa-

tion on the d = 2 hyperboloid is given by

h2 =
1

2
log

cosh r> + 1

cosh r> − 1

+
∞∑

n=1

cos(n(φ− φ′))

n

[
cosh r< − 1

cosh r< + 1

]n/2{[
cosh r> + 1

cosh r> − 1

]n/2
−
[

cosh r> − 1

cosh r> + 1

]n/2}
,

which exactly matches up to the Euclidean Fourier expansion for d = 2 (7.33) as r, r′ → 0+.
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7.6.2 Fourier expansion for a fundamental solution in H3

The result for the Fourier expansion for the three-dimensional Euclidean space (here given

in standard spherical coordinates x = (r sin θ cosφ, r sin θ sin φ, r cos θ), is well-known Cohl

& Tohline (1999) [26]

g3 := g3
1 =

1

π
√
rr′ sin θ sin θ′

∞∑

m=−∞
eim(φ−φ′)Qm−1/2

(
r2 + r′2 − 2rr′ cos θ cos θ′

2rr′ sin θ sin θ′

)
, (7.36)

where Qm−1/2 is an associated Legendre function of the second kind with odd-half-integer

degree and vanishing order. These associated Legendre functions, toroidal harmonics, are

given in terms of complete elliptic integrals of the first and second kind. Since Q−1/2(z) is

given in (2.64), the m = 0 component of g3 is given by

g3
∣∣
m=0

=
2

π
√
r2 + r′2 − 2rr′ cos(θ + θ′)

K

(√
4rr′ sin θ sin θ′

r2 + r′2 − 2rr′ cos(θ + θ′)

)
, (7.37)

where K is Legendre’s complete elliptic integral of the first kind.

An unnormalized fundamental solution for the 3-hyperboloid in a general hyperbolic 2-

spherical coordinate system is given by

H3 ≃ h3 = coth d(x,x′) =
cosh d(x,x′)√

cosh2 d(x,x′) − 1
=

cosh r cosh r′ − sinh r sinh r′ cos γ√
(cosh r cosh r′ − sinh r sinh r′ cos γ)2 − 1

.

In standard hyperbolic 2-spherical coordinates

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

Replacing ψ = φ− φ′ and defining

A := cosh r cosh r′ − sinh r sinh r′ cos θ cos θ′,

and

B := sinh r sinh r′ sin θ sin θ′,

we have in the standard manner, the Fourier coefficients of the expansion

Am(r, r′, θ, θ′) =
ǫm
π

∫ π

0

(A/B − cosψ) cos(mψ)dψ√(
cosψ − A+1

B

) (
cosψ − A−1

B

) ,



7.6 Fourier expansions for unnormalized fundamental solutions in Hd 173

so that

h3 =
∞∑

m=−∞
eim(φ−φ′)Am(r, r′, θ, θ′).

If we make the substitution x = cosψ, this integral can be converted to

Am(r, r′, θ, θ′) =
ǫm
π

∫ 1

−1

(A/B − x)Tm(x)dx√
(1 − x)(1 + x)

(
x− A+1

B

) (
x− A−1

B

) , (7.38)

where Tm is the Chebyshev polynomial of the first kind. Since Tm(x) is expressible as a finite

sum over powers of x, (7.38) involves the square root of a quartic multiplied by a rational

function of x. Therefore by definition, this integral is an elliptic integral (see §2.5) and we

can directly compute it using Byrd & Friedman (1954) ([19], (253.11)).

We have

d = −1, y = −1, c = 1, b =
A− 1

B
, a =

A+ 1

B
, (7.39)

and clearly d ≤ y < c < b < a. We have thus converted the Fourier coefficient (7.38), as a

sum of two integrals, each of the form (see Byrd & Friedman (1954) [19], (253.11))

∫ c

y

xmdx√
(a− x)(b− x)(c− x)(x− d)

= cmg

∫ u1

0

[
1 − α2

1sn2u

1 − α2sn2u

]m
du. (7.40)

In this expression sn is a Jacobi elliptic function (see §2.5),

α2 =
c− d

b− d
< 1,

α2
1 =

b(c− d)

c(b− d)
,

g =
2√

(a− c)(b− d)
,

u1 = F (ϕ, k),

ϕ = sin−1

√
(b− d)(c− y)

(c− d)(b− y)
,

k2 =
(a− b)(c− d)

(a− c)(b− d)
,

with k2 < α2, and F (ϕ, k) is Legendre’s incomplete elliptic integral of the first kind (see
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§2.5). For our specific choices in (7.39), we have

α2 =
2B

A+B − 1
,

α2
1 =

2(A− 1)

A+B − 1
,

g =
2B√

(A+B − 1)(A−B + 1)
,

k2 =
4B

(A +B − 1)(A− B + 1)
,

ϕ =
π

2
,

u1 = F
(π

2
, k
)

=: K(k),

and

Π
(π

2
, α, k

)
=: Π(α, k),

where Π(ϕ, α, k) is Legendre’s incomplete elliptic integral of the third kind, K(k) and Π(α, k)

are Legendre’s complete elliptic integrals of the first and third kind respectively (see §2.5).

Specific cases include

∫ c

y

dx√
(a− x)(b− x)(c− x)(x− d)

= gK(k)

(Byrd & Friedman (1954) [19], (340.00)) and

∫ c

y

xdx√
(a− x)(b− x)(c− x)(x− d)

=
cg

α2

[
α2

1K(k) + (α2 − α2
1)Π(α, k)

]

(Bryd & Friedman (1954) [19], (340.01)).

Byrd & Friedman (1954) [19] give a procedure for computing all values of (7.40), and they

are all given in terms of complete elliptic integrals of the first three kinds (see the discussion

in Byrd & Friedman (1954) [19], p. 201, 204, and p. 205). In general we have

∫ c

y

xmdx√
(a− x)(b− x)(c− x)(x− d)

=
cmgα2m

1 m!

α2m

m∑

j=0

(α2 − α2
1)j

α2j
1 j!(m− j)!

Vj

(Byrd & Friedman (1954) [19], (340.04)), where

V0 = K(k),
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V1 = Π(α, k),

V2 =
1

2(α2 − 1)(k2 − α2)

[
α2E(k) + (k2 − α2)K(k) + (2α2k2 + 2α2 − α4 − 3k2)Π(α, k)

]
,

E(k) := E
(
π
2
, k
)
, where E(ϕ, k) is Legendre’s incomplete elliptic integral of the first kind,

E(k) is Legendre’s complete elliptic integral of the second kind, and larger values of Vj can

be computed using the following recurrence relation

Vm+3 =
1

2(m+ 2)(1 − α2)(k2 − α2)

×
[
(2m+ 1)k2Vm + 2(m+ 1)(α2k2 + α2 − 3k2)Vm+1

+ (2m + 3)(α4 − 2α2k2 − 2α2 + 3k2)Vm+2

]

(see Byrd & Friedman (1954) [19], (336.00–03)). For instance,

∫ c

y

x2dx√
(a− x)(b− x)(c− x)(x− d)

=
c2g

α4

[
α4

1K(k) + 2α2
1(α2 − α2

1)V1 + (α2 − α2
1)2V2

]

(see Byrd & Friedman (1954) [19], (340.02)).

To demonstrate the behaviour of the Fourier coefficients, let’s directly compute the m = 0

component of h3. For m = 0, (7.38) reduces to

A0(r, r′, θ, θ′) =
1

π

∫ 1

−1

(A/B − x) dx√
(1 − x)(1 + x)

(
x− A+1

B

) (
x− A−1

B

) .

Therefore using the above formulae, we have

h3|m=0 = A0(r, r
′, θ, θ′) =

=
2K(k)

π
√

(A− B + 1)(A+B − 1)
+

2(A−B − 1)Π(α, k)

π
√

(A−B + 1)(A+B − 1)

=
2 [K(k) + (cosh r cosh r′ − sinh r sinh r′ cos(θ − θ′) − 1) Π(α, k)]

π
√

(cosh r cosh r′ − sinh r sinh r′ cos(θ − θ′) + 1) (cosh r cosh r′ − sinh r sinh r′ cos(θ + θ′) − 1)
.

(7.41)

Note that the Fourier coefficients

h3|m=0 → g3|m=0,
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in the limit as r, r′ → 0+, where g3|m=0 is given in (7.37). This is expected since H3 is a

Riemannian manifold.
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recurrence formula, 14, 39

Dirac delta function, 50, 159

double factorial, 7, 11, 12, 51, 94

elliptic integral, 18

recurrence formula, 175

Euler’s integral, 15

factorial, 7, 11, 51

Fourier expansion, 3, 4, 46, 64, 85, 88, 90,

100, 110, 168, 169, 171, 172

Fourier series, 4, 88, 89, 116

fundamental solution

Laplacian, 51, 158, 160, 161, 168, 169,

171, 172

hyperboloid, 151, 159

powers of the Laplacian, 98, 109, 116

unnormalized, 50, 52, 88

gamma function, 1, 11–13, 39, 45, 58, 126

recurrence formula, 11

Gauss hypergeometric function, 5, 7, 8, 14,

16, 17, 20, 45, 46, 90, 92, 95, 117,

120, 123, 164, 171

contiguous, 17, 163

Gauss summation formula, 163

ordinary differential equation, 16

Pfaff’s transformation, 15, 97, 163, 166

Gegenbauer expansion, 109, 117

logarithmic, 129
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upper-half space model, 148, 151

incomplete elliptic integral, 18

first kind, 173

second kind, 175

third kind, 174

inner product

Euclidean, 69, 151

Minkowski, 151
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Laplace operator, 49, 50

fundamental solution, 50, 52
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Laplace-Beltrami operator, 111, 147, 153, 157
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corresponding tree diagram, 64
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subgroup representation, 111, 115
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equivalent, 66, 67
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