
ON THE NUMERICAL SOLUTION OF THE CYLINDRICAL POISSON
EQUATION FOR ISOLATED SELF-GRAVITATING SYSTEMS

A Dissertation
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

The Department of Physics and Astronomy

by
Howard S. Cohl

B.S., Indiana University, Bloomington, 1990
M.S., Louisiana State University and A&M College, Baton Rouge, 1994

August, 1999

Acknowledgments

Thanks to Joel for his generosity, his concern, his wisdom, his writing

skills, and his direction. Thanks to Dick Durisen for sharing his vision with

me. Overwhelming thanks to Mom and Dad, for without their generosity

and love, last second efforts would have been impossible or at minimum, a

potsticker. In the words of Charles Bukowski, ” Another drink! For all my

friends!...” and then again and then again and then again and thanks to my

roommate Nova for being so great. Thanks to Ali and Steve and Donnie

and Ronnie and Mike and John and Dagger and Jody. Thanks to Naomi,

Cindy, Ralph and Grover. Thanks to the Thirsty Tiger Tavern, the capi

tol grocery crew and all my Spanish Town, downtown, and garden district

friends. Thanks to Steve and Don and Eddie and Bala and Kevin and Gi-

anna and Bob and Bill and Jim. Thanks to Linda and Lillian. Thanks

to USENET. Thanks to Tony. Thanks for sunshine, Bessel functions, Unix

and IDL. I am grateful to Dana Browne, Ganesh Chanmugam, A.R.P. Rau,

Juhan Frank, and to the entire Louisiana State University department of

Physics and Astronomy. Thanks to the Indiana University Astronomy De

partment. Thanks to my office mate John Cazes and thanks to Eric Barnes

and Patrick Moth Thanks to John Woodward, Paul Fisher, Kim Barker,

Dimitris Christodoulou and Saied Andalib. I would like to thank Sandeep

Dani for his invaluable assistance in the development of the MasPar MPF

swap_pm jacket. I acknowledge the Scalable Computing Lab at Iowa State

University for the use of their MasPar MP-2 and support that has been

11

received from the Louisiana State Board of Regents through the Louisiana

Education Quality Support Fund for the establishment of the Concurrent

Computing Laboratory on whose facilities this research was partially con

ducted. I acknowledge support from the U.S. National Science Foundation

through grants AST-9528424 and DGE-9355007, the latter of which has been

issued through the NSF’s Graduate Traineeships Program. This work also

has been supported, in part, by grants of high-performance-computing time

on NPACI facilities at SDSC and UT, Austin, and through the PET program

of NAVOCEANO DoD Major Shared Resource Center in Stennis, MS.

m

Table of Contents

Acknowledgments.. ii

List of T a b le s ... vi

List of Figures... vii

A b s tr a c t ... viii

1. Introduction ... 1

2. A Compact Cylindrical Green’s Function Expansion . . . 7
2.1 A Comparison of Potential Evaluating Techniques................ 7

2.1.1 The Multipole M eth od ... 8
2.2 Substantiations.. 15

2.2.1 Analytical Verifications and Propositions................... 16
2.2.2 Numerical Evaluations... 26
2.2.3 Computational Dem ands.. 52

3. A Compact Green’s Function Expansion for
Axisymmetric Coordinate System s.. 59
3.1 A Compact Spherical Green’s Function Expansion................ 63
3.2 A Compact Toroidal Green’s Function E xpansion 66

4. Parallel Implementation of a Data-Transpose
Technique for the Solution of Poisson’s Equation in
Cylindrical C oord in ates.. 68
4.1 Sequential Algorithms .. 70

4.1.1 Finite-Difference Derivation of the Equation of
Generalized Axisymmetric Potential T h e o r y 72

4.1.2 Solution Methods for the Equation
of Generalized Axisymmetric Potential Theory 74

4.2 Parallel Data-Transpose T ech n iqu e... 77
4.3 A nalysis... 79

4.3.1 Theoretical Timing Analysis... 79

5. C on clu sion ... 82

R eferences... 87

Appendix A: A Useful Modal Expansion..................................... 90

Appendix B: Selected Analytical Potential-Density Pairs . . 91

IV

Appendix C: HPF C o d e .. 94

Appendix D: F77 Code .. 108

Appendix E: G R I D .H .. 119

Appendix F: M a k e file .. 120

V i t a ... 121

v

List of Tables

2.1 M odels.. 28

2.2 T ests .. 31

3.1 Axisymmetric Coordinate Systems 60

vi

List of Figures

2.1 Wireframe Diagrams of the M o d e ls ... 29

2.2 The 5:1 oblate spheroid... 35

2.3 The 20:1 oblate spheroid ... 38

2.4 The 20:1 prolate spheroid .. 41

2.5 The 20:1 circular t o r u s ... 43

2.6 Resolution Test for the 5:1 oblate spheroid 44

2.7 The 20:10:1 triaxial ellipsoid .. 50

vii

Abstract

This dissertation addresses the need for an accurate and efficient tech

nique which solves the Poisson equation for arbitrarily complex, isolated,

self-gravitating fluid systems. Generally speaking, a potential solver is com

posed of two distinct pieces: a boundary solver and an interior solver. The

boundary solver computes the potential, $ (x b) on a surface which bounds

some finite volume of space, V, and contains an isolated mass-density dis

tribution, p(x). Given p(x) and $ (x b), the interior solver computes the po

tential $(x) everywhere within V . Herein, we describe the development of a

numerical technique which efficiently solves Poisson’s equation in cylindrical

coordinates on massively parallel computing architectures.

First, we report the discovery of a compact cylindrical Green’s function

(CCGF) expansion and show how the CCGF can be used to efficiently com

pute the exact numerical representation of $ (x b). A s an analytical represen

tation, the CCGF should prove to be extremely useful wherever one requires

the isolated azimuthal modes of a self-gravitating system.

We then discuss some mathematical consequences of the CCGF expan

sion, such as it’s applicability to all nine axisymmetric coordinate systems

which are ^-separable for Laplace’s equation. The CCGF expansion, as ap

plied to the spherical coordinate system, leads to a second addition theorem

for spherical harmonics.

Finally, we present a massively parallel implementation of an interior

solver which is based on a data-transpose technique applied to a Fourier-

viii

ADI (Alternating Direction Implicit) scheme. The data-transpose technique

is a parallelization strategy in which all communication is restricted to global

3D data-transposition operations and all computations are subsequently per

formed with perfect load balance and zero communication.

The potential solver, as implemented here in conjunction with the CCGF

expansion, should prove to be an extremely useful tool in a wide variety of

astrophysical studies, particularly those requiring an accurate determination

of the gravitational held due to extremely battened or highly elongated mass

distributions.

IX

1. Introduction

A great many astrophysical problems require the determination of a grav

itational field. The held, for the most part, can be adequately described by

Newtonian gravity and often can be derived from a potential function. From

a mathematical viewpoint there are two methods for obtaining the poten

tial: by solving a partial differential equation, i.e. Poisson’s equation; or

by solving an integral equation, i.e. employing the Green’s function method

(Jackson 1975). As Arfken (1985) has explained, boundary conditions are

directly built into the integral equation rather than being imposed at the

final stage of the solution of a partial differential equation. Also, mathemat

ical problems such as existence and uniqueness can be easier to handle when

cast in integral form. On the other hand, solving differential equations is of

ten more tractable than solving integral equations, particularly when dealing

with multidimensional problems.

In building realistic models of steady-state galaxies, a considerable amount

of effort has been devoted in recent years toward identifying analytically pre

scribable potential-density pairs. In some cases a reasonable three dimen

sional density distribution can be represented by a sum over a finite set of

“basis density functions” in which case Poisson’s equation can be solved using

the corresponding basis sets of the potential-density pairs (Earn 1996; Ro-

bijn & Earn 1996). Some useful steady-state models also can be constructed

by superposing other special density (or surface-density) distributions with

1

2

known potentials, such as those derivable from Stackel potentials (de Zeeuw

1985; Evans & de Zeeuw 1992).

When following the time-evolutionary behavior of models whose struc

tures are changing on a dynamical timescale, however, one must develop

an efficient technique for solving Poisson’s equation that works for arbitrary

mass distributions. Furthermore, simulations of time-evolving systems often

are carried out on grids that cover a finite (rather than an infinite) region of

space, in which case one must also determine the potential on the boundary

of that region. In practice, then, in many astrophysical studies a Green’s

function method is used to fold the potential only on a boundary outside of

a mass distribution, then a technique is developed to solve Poisson’s equa

tion to obtain the interior solution. A standard technique for calculating

the boundary potential has been to expand the Green’s function in spherical

coordinates, resulting in what is often referred to as a “multipole method”

(Black & Bodenheimer 1975; Norman & Wilson 1978; Barnes & Hut 1986;

see also §2.1.1, below) in which the potential is grouped into an infinite sum

over a basis set of spherical harmonics described by two quantum numbers

— one meridional, /, and the other azimuthal, to.

Because very flattened mass distributions are poorly described in a spher

ical coordinate system, we have examined whether it might be advantageous

in numerical simulations to cast the Green’s function in a cylindrical coordi

nate system. The “familiar” expression for the cylindrical Green’s function

expansion can be found in variety of references (cf., Morse & Feshbach 1953;

Jackson 1975; Arfken 1985). It is expressible in terms of an infinite sum over

3

the azimuthal quantum number m and an infinite integral over products of

Bessel functions of various orders multiplied by an exponential function (see

eq. [2.13], below). We note a previous attempt by Villumsen (1985) to solve

the potential problem in this manner; he presents a technique where each

infinite integral over products of Bessel functions is evaluated numerically

using a Gauss-Legendre integrator. In that paper Villumsen states, “Cylin

drical coordinates are a more natural coordinate system for disk systems.”

He then emphasizes the obvious problem that, due to the infinite integrals

involved, a calculation of the potential via this straightforward application

of the familiar cylindrical Green’s function expansion is numerically much

more difficult than a calculation of the potential using a spherical Green’s

function expansion.

In chapter 2 of this dissertation, we derive an extraordinarily compact

expression for the Green’s function in cylindrical coordinates. Our expres

sion (see eq. [2.15], below) completely removes the need for a numerical

evaluation of the infinite integrals involved since we have found an analytical

expression for the integral in terms of half-integer degree Legendre functions

of the second kind. As we discuss in subsequent sections of chapter 2, our

technique should prove to be a particularly powerful tool for studying self-

gravitating systems that conform well to a cylindrical coordinate mesh, such

as highly flattened (disk systems) or highly elongated (jet or bipolar flow)

mass distributions. As far as we have been able to ascertain, this result

has not been previously derived. At the very least, based on published re

4

search over the past thirty years, the result appears to be unfamiliar to the

astrophysics community.

In chapter 3 of this dissertation, we demonstrate how the CCGF can be

extended to all nine axisymmetric coordinate systems which are 1Z— sep

arable for Laplace’s equation. The first coordinate system we address in

chapter 3 is the spherical coordinate system, where the result is particularly

interesting and ends up leading to a second addition theorem for spherical

harmonics. The standard addition theorem for spherical harmonics demon

strates how one might collapse the summation over all m terms into a single

special function expression, whereas the second addition theorem shows how

one may now collapse the summation over all l terms in the Green’s function.

In this representation, one is capable of isolating each and every azimuthal

mode in the spherical Green’s function. We prove the new addition theorem’s

exactness in one limiting case. Furthermore, we show how this result can be

extended to the rest of the axisymmetric Green’s functions and how in future

investigations this result is likely to lead to a better general understanding

of how gravity represents itself in axisymmetric coordinate systems.

In chapter 4 we describe our numerical implementation of an efficient

scheme to solve Poisson’s equation numerically on massively parallel architec

tures. The groundwork on serial algorithms for solving Poisson’s equation is

extensive. In particular, for some time, extremely efficient methods have been

known for solving the set of sparse matrices that result from a second-order

accurate Unite-differencing of the Poisson equation in cylindrical coordinates

given the boundary solution. In Cartesian coordinates there has been a large

5

successful effort in order to find accurate and highly parallel methods for solv

ing Poisson’s equation (i.e. Fast Poisson solver using Fourier methods). The

situation is not so simple in cylindrical coordinates. Due to the non-constant

variation of the matrix elements that result from the finite-discretization of

the cylindrical Poisson equation, direct Fourier methods are not possible.

It is only in the naturally periodic azimuthal coordinate direction, where

one can take advantage of this technique which reduces the complexity of

the problem, in terms of coupled dimensions, from three-dimensions to two-

dimensions. Techniques like Buneman cyclic reduction can obtain the direct

solution of the resulting two-dimensional problems in an extremely accurate

fashion, other direct techniques aren’t even so efficient when implemented in

serial. When one asks the question of how to solve these problems in par

allel one quickly sees that the global nature of the two-dimensional solution

methods are very difficult to implement in parallel and do not result in a

load-balanced solution of the matrix problem. It is here that we present the

Fourier-ADI method, which is iterative, although very accurate, and takes

advantage of the highly parallel data-transpose technique. In this computa

tional strategy all computations are performed without communication, and

all communications are restricted to highly parallel, global three-dimensional

data-transpositions. We describe in detail how this algorithm is implemented

and give a theoretical operation count which demonstrates the highly paral

lel nature of this algorithm. It is the Fourier-ADI technique, combined with

the CCGF technique for evaluating the boundary potential that yields an

extremely efficient and accurate potential solver.

6

It is important to recognize that the focus of this dissertation is not

on obtaining a detailed solution to one particular astrophysical problem.

Instead, by developing an accurate and efficient technique for solving the

Poisson equation for arbitrarily complex mass distributions, we are laying

the groundwork necessary to support future advances in a large number of

subfields of astrophysics. Examples of studies that are certain to benefit from

the developments presented here are: the fragmentation of molecular cloud

cores in order to study star formation processes (Boss 1993; Boss 1998a;

Truelove et al. 1997); the formation of giant gaseous protoplanets (Boss

1998b); the dynamical bar-mode instability that arises in rapidly rotating

gas clouds (Cazes 1999; Toman et. al. 1998, Pickett, Durisen & Davis 1996);

protostellar disks (Pickett et. al. 1998); nonexplosive contraction of the

cores of massive stars (Hayashi, Eriguchi, & Hashimoto 1998) and estimates

of the gravitational radiation that should be emitted from such configurations

(Yoshida & Eriguchi 1995); steady-state structures of triaxial galaxies (Earn

1996; Robijn & Earn 1996); self-consistent held techniques (Hachisu 1986);

mass transfer in close binary systems (Motl, Frank, and Tohline 1999) and

the ultimate merger of such systems (New and Tohline 1997); and binary

star formation (Cazes 1999).

2. A Compact Cylindrical Green’s Function Expansion

2.1 A Comparison of Potential Evaluating Techniques

In general, the integral solution to the potential problem may be written

in terms of the Green’s function C?(x, x') as follows (cf., eq. [1.42] of Jackson

1975):

$ (x) = —G j p(x.r)Q(x,x.r)d3x'

G
+ “-- r47T Js dn'

da', (2 . 1)

where $ is the potential, G is the gravitational constant, p is the mass density,

x denotes the position vector from the origin to the point at which the

potential is being evaluated, x' denotes the position vector over which the

mass integration is performed, V is the volume over which x' is integrated,

and S is the bounding surface of V . For the case of no bounding surfaces —

as in most astrophysical systems — the surface integral in eq. (2.1) vanishes

due to the requirement that both $ and the derivative of $ normal to the

surface d<&/dn' vanish at infinity. In this case the Green’s function reduces

to

g (x ,x O = ^ ■ (2.2)
X X

These requirements therefore reduce eq. (2.1) to the more often quoted

integral expression for the gravitational potential, namely

7

8

$(x) = —G f p(x.')Q(x,x.')d3x' = —G f —̂———̂d3x'. (2-3)
J V JV X X

2.1.1 The Multipole Method

In spherical coordinates, the expansion of the Green’s function is (cf., eq.

[3.70] of Jackson 1975)

1 OO l

x — Xf = 4^ E E
i

E l , 2/ + 1 r'+1 Yrm(e'^ ')Y lm(0A), (2.4)
/=o m=—i ^ 1 x ' y

where r represents the radial distance from the origin, 9 is the polar angle,

</> is the azimuthal angle, and is the spherical harmonic function. (For a

complete specification of the spherical harmonic function, see eq. [3.13] and

the discussion associated with it.) If we insert eq. (2.4) into eq. (2.3), we

obtain an expression for the potential at an exterior point (r > r'),

OO l
$ e^(x) = E E

/=0 m = — l

4tt Yim{6,(t>) <
21 + 1 r'+! qirnl

where the coefficients

(2.5)

4 „ = / Y ; j e ' . tp')r',pix')d3x . (2.6)
J v

are called multipole moments. In the case of an axisymmetric configuration,

only the m = 0 terms in expression (2.4) survive, reducing it to

1 00 rl
I _ /1 = E “ ?+rpf(cos0 ')^(cos0). (2.7)
|x x | m=o /=0 r>

The corresponding expression for the axisymmetric potential is therefore

given by,

9

$ e x t (r , 0)
m—0

G j2 P i(co s 9)r - {l+1)Mh
1=0

where now the axisymmetric multipole moments,

(2 .8)

M, = [p(r',ff)r''Pi(msff)dsx . (2.9)
J v

Expressions (2.5) or (2.8) for the gravitational potential have been adopted by

many groups when developing numerical techniques to follow self-gravitating

fluid flows on spherical or cylindrical coordinate meshes (Black & Boden-

heimer 1975; Norman & Wilson 1978; Boss 1980; Tohline 1980; Stone &

Norman 1992; Boss & Myhill 1995; Muller & Steinmetz 1995; Yorke & Kaisig

1995).

As mentioned earlier, usually this multipole technique has been used to

determine the potential everywhere along the bounding surface of the com

putational grid, then a separate technique has been developed to solve the

Poisson equation (see chapter 4, eq. [4.1] and the relevant discussion given

therein) in order to obtain the gravitational potential throughout the volume

of the grid. But when utilizing this multipole method an exact determination

of $ for a discrete mass distribution is not possible because of the required

infinite sum over the quantum number l. Instead, a decision must be made

regarding when the series should be truncated in order to achieve a desired

degree of accuracy for a given p(x.!) distribution. For example, referring to an

expression for the axisymmetric potential analogous to our eq. (2.8), Stone

& Norman (1992) state that, “As implemented in ZEUS-2D, we continue

10

to add higher moments until has converged to one part in 103, up to a

maximum of 100 terms.”

One must also be sure that every location on the boundary of the com

putational grid Xb at which the exterior potential is being evaluated is at

a radial location re that is greater than all interior grid locations at which

matter resides. Otherwise $(x^) must be evaluated in two parts, namely,

$(xB) = $Krt(xs) + (2.10)

where ^ ^ (x b) must be determined through a separate integration over the

mass that lies at radial locations greater than re. Specifically, the potential

at an interior point (r < r'),

47r

/=0 m = — l 21 + 1
(2 . 11)

where the coefficients

<L = X (2-i2)

As we illustrate more fully in §2.2.2, below, unless the boundary of a cylindri

cal grid is carefully designed so that it lies entirely outside the interior mass

distribution (usually this means placing the grid boundary far away from

the surface of the mass distribution), it will become necessary to calculate

a separate set of “interior” and “exterior” moments of the mass distribu

tion for the majority of boundary locations. This requirement will make the

multipole method very computationally demanding, unless accuracy is sac

11

rificed through a reduction in the number of terms that are included in the

l summation.

2.1.1.1 General Expressions

In terms of the cylindrical coordinates (i?, </>, z) the Green’s function may

be written as (cf., problem [3.14] of Jackson 1975),

x — x
^ r oo

7|= £ Jo dk Jm(kR)Jm(kR’) e'r\ p-k(z>~z<) (2,13)
m — — oo

where Jm is an order to Bessel function of the first kind. Especially when

faced with the problem of determining the gravitational potential on a cylin

drical coordinate mesh, it would seem that this is a more appropriate expres

sion to use for the Green’s function than eq. (2.4). As we discussed in the

introduction, however, devising an efficient numerical technique by which to

accurately evaluate the infinite integral over products of Bessel functions has

proven to be a difficult task.

Using eq. (13.22.2) in Watson (1944) we recently have realized that,

/*°° 1 i cR A- b ̂ -1- c ̂\
e~atJm(bt)Jm(ct)dt = — = Qm_i (, (2.14)

Jo 'Ey be 2 V Zbc J

where Qm_ i is the half-integer degree Legendre function of the second kind.

Hence, it becomes possible to rewrite eq. (2.13) as,

1
x — x'

1
7Ta/ RR1 E Qm- l(v), (2.15)

with

12

R2 + R'2 + (z - zr)2
2 RR'

(2.16)

We note that this same result for the Green’s function can be obtained by

combining eq. (3.148) in Jackson (1975) with eq. (6.672.4) in Gradshteyn &

Ryzhik (1994). Although relationship (2.14) and, hence, the ability to derive

(2.15) from (2.13), has been known for some time, apparently the astrophysics

community has not been aware that the cylindrical Green’s function can be

expressed in this extraordinarily compact form. As we shall demonstrate,

highly accurate and efficient means of evaluating $ (x) can be developed

from expression (2.15).

Realizing that Q _ i+m(x) = Q - i_ m(x) (cf., ecf [8.736.7] in Gradshteyn

& Ryzhik 1994), and that etB + e~lB = 2cos0, we can express eq. (2.15) in

terms of all m > 0 as

1 1 °°
A— Zn = fjyjfi H emcos[m(</>- <//)] Qm_i(x) , (2-17)
lx - x | 7tX R R ' m=0

where em is the Neumann factor (Morse & Feshbach 1953), that is e0 = 1

and em = 2 for m > 1. Now we substitute eq. (2.17) into eq. (2.3) obtaining

*(x) = - A L / A ,p (-')
7TV /? JV \/ #1 n/1 V j. c V ±L m — Q

emcos[m(</)- </>')] Qm_ i(x) , (2.18)

which may also be rewritten as,

$ (x) d3. /K x')
V Q-±(x)

13

2 G (‘ q {]
: J2 cos(m<f>) J d V - ^ = cos(m<£') Qm_k{x) (2.19)
m=1 ^ y R7n

2G
£ sin(m</>) / 0?3® '^ 5 =f sin(m</)/) <2m_ i(x).
 ̂—1 77 V II' 27n m = l

Finally, an azimuthal discrete Fourier transform of this last expression

yields the following elegant representation of the gravitational potential in

Fourier space:

FV r
♦ !? (« .*) = - y f p ^ { R , z ') Q m_i (v) , (2.20)

where E refers to the area over which the meridional integration is to be

carried, da' = dR'dz', and the Fourier components of $ and p are defined

such that,

j ^ i (x) = £ cos(m<f>) j V } (R,z) + £ sin(m<f>) j % \ (R, z).
I ̂ J m=0 {Pm) m=0 {Pm)

(2.21)

(Note that $0 = Po = 0-)

2 .1.1.2 Functional Forms of O _iw m 2

Useful expressions for Q_\(x) and Q±(x) may be obtained from eqs.

(8.13.3) and (8.13.7), respectively, of Abramowitz & Stegun (1965), namely,

Q - l {x) = p K { p) , (2 .2 2)

and

Qi{x) = XpK{p) - (1 + x)pE(p) , (2.23)

14

where K represents the Complete Elliptic Integral of the First Kind, E is

the Complete Elliptic Integral of the Second Kind, and

_ / 2 _ / 4 RR'
^ = v T T ^ “ v (R + R')2 + (z - z 'y • (2'24)

One can then obtain the higher degree half-integer Legendre functions of the

second kind using the recurrence relation (cf., eq. [8.5.3] in Abramowitz &

Stegun 1965)

ryj! 1 / Til
O - i W = - S 7 3 I O - i W - <2-25>

For example, substituting eqs. (2.22) and (2.23) into eq. (2.25) gives the

following useful expression for Q i(x):

<2 §(x) = - ^x{l + x)^E(y). (2.26)

According to Table XIII in Tables of Associated Legendre Functions

(United States. National Bureau of Standards. Computation Laboratory

1945), we may also express Qm_i(x) in terms of Gauss’s Hypergeometric

function as follows:

Q m - i(x) =
/T r(m + |)

2m+2 r(m + 1) Xm+2 iFr
2m + 3 2m + 1

;ra + l ; X) . (2.27)
X

where the specific Hypergeometric function

He)
r(o)r(6)A „

F(a + n) T(6 + n) yn
2F1(a,b; c ;y)

T(c + n) n\
(2.28)

15

and T is the Gamma function (see eq. [6.1.1] of Abramowitz & Stegun 1965).

Inserting eq. (2.28) into eq. (2.27), we derive the following expression:

Q m- i { x) =
T(m + |)

i E
r(2m +4n +3 ̂

4 ; r(2 m + 4 n + l
4

r (^ t 3) r (^ i) (2x)m+2 fr'o r(m + 1 + n) r (l + n) x 2n'
(2.29)

It is well known (see Abramowitz & Stegun 1965), that Legendre functions

of the second kind are singular when their arguments are unity. Evaluating

the limit of Qm_ i(x) in eq. (2.29) for large values of x gives the asymptotic

behavior of Qm_ i(x) (with only the n = 0 term in the sum surviving),

lim Q
X -» o o (x)

r(m + I) v 'tt
r(m + 1) (2x)m+̂ ’

(2.30)

which decays as l / x m+2-

2.2 Substantiations

In this section, we verify the correctness and highlight the utility of the

compact cylindrical Green’s function (hereafter, CCGF) representation by

comparing expressions for the Newtonian potential derived from it with pre

viously known results. We show that the familiar expression for the poten

tial of an infinitesimally thin, axisymmetric disk in terms of complete elliptic

integrals can be readily derived from eq. (2.19). We also show how this

expression can be generalized to axisymmetric systems of arbitrary vertical

thickness and how an analogous expression for any other isolated azimuthal

Fourier mode can now be readily derived. In the context of nonaxisymmetric

fields, we show how Kalnajs’ reduced potential for an infinitesimally thin,

nonaxisymmetric disk can be readily derived via our CCGF expression, and

16

we draw on one more specific problem from magnetostatics to demonstrate

how the CCGF reproduces the exact analytical expression for a potential

problem where the solution can be expressed entirely in terms of the m = 1

(Q i) nonaxisymmetric term.

Finally, for several “geometrically thick” configurations of uniform den

sity, we provide numerical comparisons between $ (x b) as derived from the

CCGF method and as determined from (a) the traditional multipole method

and (b) analytical prescriptions, where available. In §2.2.3 we comment on

the computational advantages and disadvantages of the CCGF method when

the objective is to determine values of the gravitational potential outside, but

in close proximity to, flattened or elongated mass distributions. Generally

speaking, for a given computational grid resolution we find that the CCGF

method provides more accurate values of $ (x b) in equal or less computa

tional time than can be derived using the multipole method, but in certain

situations the CCGF method can be quite demanding in terms of memory

storage requirements.

2.2.1 Analytical Verifications and Propositions

2.2.1.1 Axisymmetric Systems with Vertical Extent

For an axisymmetric mass distribution, eq. (2.19) reduces to the form,

with

M R, Z) (2.31)

= dcr'\fR' p(R',z ') Q_ i(x)
JYj 2<?o (2.32a)

17

= J da'y/R' p(R!,z') pK(p), (2.32b)

where x and h have been dehned by eqs. (2.16) and (2.24) respectively. As we

shall illustrate in §2.2.2, this expression can be used effectively to compute

the potentials outside of oblate spheroids, prolate spheroids, tori, or thick

disks with arbitrarily complex p(R, z) distributions.

It is important to note that eq. (2.31) provides an expression for the

gravitational potential of an axisymmetric mass distribution that contains

a single term and a single moment of the mass distribution q0. In contrast

to this, the corresponding expression for the potential in spherical coordi

nates [eq. (2.8)] requires a summation over an infinite number of terms, each

containing a different moment of the mass distribution. Hence, eq. (2.31)

provides an expression for the potential that is easier to evaluate and guar

anteed to be more accurate (for a given computational grid resolution) than

eq. (2.8). We strongly recommend its adoption in numerical algorithms that

are designed to study self-gravitating, axisymmetric fluid flows.

2.2.1.2 Behavior on the Axis

In cylindrical coordinates,

= [R2 + R'2 — 2RR1 cos(</> — (j)') -\- {z — z')2]~^. (2.33)

Inserting eq. (2.33) into eq. (2.3) and taking the limit as R approaches zero,

we see that the integral solution to the potential along the z-axis due to a

mass distribution p{x!) is

x — x'

18

lim $ (x) = —G f d3x' .— ^ ̂ . (2.34)
v ; Jv ĴR,2 + _ z,y v ;

Here we demonstrate that this familiar, general solution to the potential along

the z-axis can be derived from our compact expression for the cylindrical

Green’s function.

First we examine the axisymmetric component of the potential which,

according to eqs. (2.22), (2.32b) and (2.24) is,

$o(x) = - — [d3x' p(x/)
^ Jv J (R + R')2 + (z - z ') 2

K
4RR'

(R + R')2 + (z - z')2
(2.35)

On the z-axis, eq. (2.35) becomes

lim 4>0(x)
R -+ o v 7

— f <iV
7r Jv

P(X'} lim K
R'2 + (z - z')2 R^°

4 RR!
R'2 + (z - z ') 2 J

(2.36)

According to Abramowitz & Stegun (1965; eq. [17.3.11]), /F(0) = 7t/ 2 , so

from expression (2.36) we obtain

lim $ 0(x) = — G /R—±0 Jv d3 x d(x')
R'2 + (z - z')2

(2.37)

which exactly matches the familiar result for the axis potential given above.

We now demonstrate that all vanish on the axis for rri > 1. According

to eq. (2.18), the nonaxisymmetric components of the potential are,

4>r x = - 1 4 / lPx
7r IV

= cos [mV - <j>')] ~^= Qm_ i(x). (2.38)

19

If we insert eq. (2.29) into eq. (2.38), we obtain

= -
2 G r(m + |)
/y]- 2rm-\-l ̂ 2m_̂ 2 Jv d3x '^ y = cos [m(fi> — <//)]

£
r(2m + 4n +3 N r(2m +4rt+l '

4 -
-1

(2.39)
“ r (to + 1 + n) r (l + n)

From this expression we can see that, on the axis, the radial contribution to

the nonaxisymmetric components of the potential is governed by the behavior

of

lim(_R-»o
/ 2n+m + l / 2 \ - l _
" ’ R̂ O

2 R' 2 ra+m+f
R2 n +m (2.40)

.R,2 + (z - z ')2-

which vanishes for all 2n + m > 0. But, by definition in expression (2.39),

n > 0 and to > 0. Hence, all of the nonaxisymmetric components of the

potential vanish on the axis, thus providing a critical check on the validity

of our cylindrical Green’s function expansion.

2.2.1.3 Infinitesimally Thin Axisymmetric Systems

In the case of an infinitesimally thin axisymmetric disk located in the

plane z' = 0, the density distribution can be written as

p(R\z') = Z (R)8(z ')} (2.41)

where H(i?') is the surface density of the disk and S(z!) is a Dirac delta func

tion. Inserting this expression for p (R , zr) into eq. (2.32b) and integrating

over z' we obtain the following exact expression for the gravitational potential

of any infinitesimally thin, axisymmetric disk:

20

$ 0 , di sk (R,z) = -
2 G

dRl'/Rl T,(R') HdK(nd), (2.42)

where

4 RR!
Vd = (2.43)

(R + Rr)2 + z2'

This equation exactly matches the expression for the potential of an infinites

imally thin, axisymmetric galaxy disk given, for example, by eq. (2-142a) of

Binney & Tremaine (1987). It is now clear through eqs. (2.31) and (2.32)

that this familiar expression can be generalized to axisymmetric configura

tions with arbitrary vertical extent.

2.2.1.4 Nonaxisymmetric Systems and Kalnajs Logarithmic Spirals

Here we demonstrate that the expression for the reduced potential of

an infinitesimally thin, nonaxisymmetric disk that has been developed by

Kalnajs (1971; see also, for example, §2.4b of Binney & Tremaine 1987) can

be readily derived from our CCGF. Guided by a key functional relationship

found in Morse & Feshbach (1953), we show through a brief derivation in

Appendix A (see specifically eq. [A.5]) that,

Y emcos (to</>) <5m_i(cosh /i) =
7r 1

m=0 - \/2 \Jcosh fi — cos 4>

Hence, expression (2.17) for the Green’s function can be rewritten as,

(2.44)

x — x' \f2RR' cosh £ — cos(</> — <//)
(2.45)

where,

21

£ = cosh *(x) = hi(x + \Jx2 - !)• (2.46)

Combining this expression with eq. (2.3), we may therefore also conclude

that the “reduced potential,”

V (x) = I>(x) = — G d(x')
v \/~RJ ^2[cosh £ — cos(cf) — </>')]

cPx', (2.47)

or,

v (x) = _ G r ™ r \ i4! r dA ,
Jo R' Jo J - co l y 2 [cosh £ — cos((/> — (//)]

>. (2.48)

Now, if we consider an infinitesimally thin disk located in the plane z' = 0,

the density distribution can be written as,

P ^) = 8(z') C iR '.c/i. (2.49)

where S r e p r e s e n t s an arbitrary nonaxisymmetric surface density

distribution, and the integral over z' in eq. (2.48) can be completed giving,

poo /j p2tt 3

V (R , 4) = - G j o — j o

1

/2[cosh[ln(i?/i?')] — cos (</> — <//)]

If, finally, we dehne a reduced surface density,

(2.50)

S{R,<j>) = R*X(R,</)), (2 .5 1)

22

and adopt in place of R the independent variable,

we obtain,

u = In R} (2.52)

/ OO /*27T
du' d<f)'S(u\ 4>)K,2d {u ~ u', <f> — <//), (2.53)

-oo JO

where

K.2d (u — u', 4> — (f>r) = ----- . (2.54)
A/2[cosh(u — u') — cos (cf) — (/>')]

Eq. (2.53) is the expression Kalnajs (1971) has provided for the reduced

potential of an infinitesimally thin, nonaxisymmetric disk. It is via this

expression that Kalnajs has realized the utility of viewing nonaxisymmetric

surface density distributions in terms of their various “logarithmic spiral”

components.

Our expression (2.48) may now be viewed as a generalization of Kalnajs’

reduced potential that applies to nonaxisymmetric structures of arbitrary

vertical thickness, the key difference being that, in our more generalized

expression for the reduced potential, the function K,2d (u — u',(f) — <//) must

be replaced by the function,

^3d {x , 4>- 4>r) = (2.55)
2[x - cos(4> - (f>')\

where, as defined in eq. (2.16), x itself is a function that involves a non

trivial coupling between the coordinate variables R, R', z and z', which we

23

will further describe below. Although, as indicated by expression (2.46), it

is possible to rewrite cosh_1(y) in terms of a logarithmic function and, in so

doing, transform eq. (2.55) into a form that more closely resembles Kalnajs’

function AAzy the nontrivial coupling between coordinate variables within x

makes such a formulation less compelling in the full three-dimensional prob

lem.

2.2.1.5 The m = 1 mode and the Magnetic Field of a Current Loop

A derivation of the magnetic held of a time-independent circular current

loop of radius a, and current / has been provided in a multitude of classical

electromagnetism textbooks (e.g., Landau & Lifshitz 1960; Jackson 1975).

Here we demonstrate that this classic problem can be readily solved via the

CCGF. In a magnetostatics problem we may calculate the magnetic held

from a vector potential, A (x) as follows,

B (x) = V x A (x) . (2.56)

Then in the Coulomb gauge, the vector potential satishes the following vector

Poisson equation,

V 2A (x) = ------J (x), (2.57)
c

where J(x) is the current density and c is the speed of light. The integral

solution of this vector Poisson equation produces the magnetic analogue of

eq. (2.3), namely,

(2.58)

24

In the case of a circular current loop located in the equatorial plane,

z' = 0, the current density has only a </> component which is

J (x) = cj)Jif,, (2.59)

where

= / cos ((f>r)5(zr)5(R' — a). (2.60)

Since the final solution must be invariant under rotation, we choose our

observing point to be at </> = 0. Substituting eqs. (2.59) and (2.17) into eq.

(2.58), we obtain the following expression for the </> component of the vector

potential:

/ /yy /*2tt
A* = — \ s d(f>' cos(<f>') e m cos(m,(f)r)Q m_ i (x i) ,

kc V R Jo m=0 2

where

(2 .6 1)

_ R2 + a2 + z2
Xl = 2Ra '

The only term in the summation that contributes is the m

(2.61) becomes,

(2.62)

1 term, so eq.

A* = - J ^ Q i (x i) f *cos2(<t>W = - J i Q M ’i r c v n 2 Jo c V ri 2

which via eq. (2.23), can be rewritten as,

(2.63)

A a —
Ala

CyJ (R + a)2 + z2
(2 - r f) K(m) - 2E(m) (2.64)

25

This identically reproduces the previously known result for the vector poten

tial of a current loop (cf., eq. [5.37] in Jackson 1975).

2.2.1.6 The m = 2 and Other Isolated Fourier Modes

In §2.2.1.1, we used the CCGF method to derive a general expression

that describes the m = 0 (axisymmetric) Fourier mode contribution to the

gravitational potential for any mass distribution. Here we illustrate how

similarly simple expressions for any other isolated azimuthal mode of a self-

gravitating system can be derived via eq. (2.20). For an m = 2 distortion,

for example, the two relevant Fourier components of the potential are,

q r< ,■
$ 2’2{R,z) = ----- j= da'y/R p\2(R!,z') Qz{x)- (2 -65)

Utilizing eq. (2.26), which was derived in §2.1.2.2 via the recurrence

relation for half-integer degree Legendre functions of the second kind, we are

able to rewrite this expression for <&\’2(R, z) in terms of more familiar elliptic

integrals as follows:

q r< ,■
$ l ’2(R,z) = - ^ = J^da'y/R! pl’2(R',z') /i[(4y2 - l) /T (/ i) - 4 y (l+ x)U(/i)].

(2 .66)

Furthermore, in the case of an infinitesimally thin disk the Fourier com

ponents of the density can be written as,

p 12’2(r ’ , z’) = j; 12’2(r ’) s (z’),1 ,2 , (2.67)

and we obtain the following exact expression for the m = 2 Fourier compo

nents of the potential of any infinitesimally thin, self-gravitating disk:

26

®2%s k(R,z)

(4%d

Ofl roo __yo d&VR?Xl’2(R!) [id

l)K(fid) - 4xd(l + Xd)E(fid) , (2 .68)

where Xd = 2//i| — 1. This compact analytical expression should prove useful

in, for example, studies of m = 2 spiral-arm instabilities in self-gravitating

galaxy or protostellar disks.

2.2.2 Numerical Evaluations

Here we perform a variety of numerical tests in which we have discretized

selected mass-density distributions on a uniformly-zoned cylindrical coordi

nate mesh. We have selected these models in order to elucidate the power

that the CCGF method offers as a numerical technique for evaluating exte

rior potentials surrounding self-gravitating objects. Our comparison incorpo

rates three methods for potential evaluation: (1) analytical potential-density

expressions, as drawn from the works of other authors and detailed here

in Appendix B; (2) the multipole method described in §2.1.1; and (3) our

CCGF method, as outlined in §2.1.2. Where available, analytical solutions

provide extremely useful verification of numerical methods for potential eval

uation since any valid method should yield asymptotic convergence towards

the analytical solution with increased grid resolution. Most of the models we

have selected have known analytical solutions. In cases where the analytical

solution does not exist, we simply compare the potentials obtained through

the CCGF and multipole methods.

27

Table 2.1 lists the five models we have selected and Table 2.2 summarizes

the seven tests that we have conducted using these models. Each of the five

selected models has a uniform density distribution that is enclosed within

a surface of a well-defined geometry as described by the “Type of Object”

column in Table 2.1. Fig. 2.1 portrays the above described models through

a three-dimensional isosurface visualization of each homogeneous object’s

boundary.

The oblate, prolate and toroidal objects are all axisymmetric. For the

two oblate spheroids (Models I and II), the aspect ratios listed in Table 2.1

define the size of the equatorial axis relative to the polar axis. For the prolate

spheroid (Model III), the 20:1 aspect ratio describes the size of the polar axis

relative to the equatorial axis. For the torus (Model IV), the aspect ratio

describes the size of the major radius of the torus relative to its minor, cross

sectional radius. Finally, we also have chosen one nonaxisymmetric model

(Model V) which is a 20:10:1 triaxial homogeneous ellipsoid.

The column labeled “Grid Resolution” in Table 2.2 specifies the size of the

computational grid or grids that was used in each test. For each axisymmetric

model (Tests 1 -6) , the stated resolution J X K refers to the number of radial

(J) and vertical (K) zones used; for Model V (Test 7), the stated resolution

J X K X L includes the number of azimuthal (L) zones that were used as

well. For each of the tests identified in Table 2.2, we have determined the

fractional error of a given numerical solution for the potential $ by measuring

at every location along the top and side boundaries of our cylindrical grid,

the quantity,

28

Table 2.1: Models

Model Type of Object Aspect Ratio Equation Number
I oblate spheroid 5:1 B.2
II oblate spheroid 20:1 B.2
III prolate spheroid 20:1 B.2
IV torus 20:1 —
V triaxial ellipsoid 20:10:1 B.7

29

Figure 2.1: Three-dimensional wireframe diagrams illustrating the geometry
of the five uniform-density models for which the external gravitational poten
tial has been calculated herein using the CCGF technique ($^) and compared
with approximate solutions obtained via a standard multipole technique ($ y)
and (where available) exact analytical expressions ($^). See Table 2.1 for
details regarding each test model’s selected aspect ratio.

30

31

Table 2.2: Tests

Test Model Grid Resolution
1 I 128 x 128
2 I 128 x 32
3 II 1024 x 64
4 III 32 x 512
5 IV 512 x 32
6“ I J x K
7 V 512 x 32 x 256

“ J = 32i, K = 8i, with (1 < i < 25)

e = — t-----$* (2.69)

where is the “known” solution. Figures 2.2 - 2.7 present subsets of these

error measurements in various ways.

In presenting the results of these tests, the numerically derived potential

$ is either the Newtonian potential generated via the multipole method,

or via the CCGF method, Where available, the “known” solution is

given by the analytical solution, as drawn from the relevant Appendix

B expression and identified by the entry in the “Equation Number” column

of Table 2.1. Otherwise we take to be since we recognize it as the

more correct numerical solution for the discretized model. Note that in Test

6, Model I has been re-examined using 25 different grid resolutions. This has

been done in order to ascertain how the determination of relative to

improves with grid resolution.

32

2.2.2.1 Axisymmetric Models

For the four axisymmetric models listed in Table 2.1, has been deter

mined via eq. (2.31) and its associated moment of the mass distribution as

defined by eq. (2.32b). The thick-dashed curves in Figs. 2.2, 2.3, and 2.4

represent the fractional error obtained by comparing with (k"4 for Mod

els I, II, and III, respectively. Since, as emphasized in §2.2.1.1, eq. (2.31)

provides an expression for the gravitational potential that contains only one

term, any error that arises in the determination of relative to (k"4 must be

entirely attributed to the fact that, at any finite grid resolution, a numerical

integration of eq. (2.32b) cannot possibly give the precise analytical answer.

It is important to appreciate that this “failing” has nothing to do with our

ability to evaluate the special function K(n) accurately. Instead, it stems

from the fact that the models for which we have analytically known poten

tials have spheroidal surfaces, and it is impossible to represent such surfaces

precisely within a cylindrical coordinate mesh. Indeed, even a straightfor

ward volume integration over the density distribution will give a total mass

that is different from the analytically “known” mass because a spheroidal

object cannot be perfectly represented in a cylindrical mesh. We shall return

to this issue when discussing Test 6, below.

In contrast to this, errors in the determination of are dominated

by the fact that, in any practical implementation of the multipole method,

the summation over multipole moments must be truncated at some finite

number of terms, lmax. Only in the limit lmax —> oo will the value of

given by eq. (2.8) for an axisymmetric mass distribution converge to the

33

value of given by eq. (2.31), for example. Because the contribution

that each multipole moment makes to the potential drops off as r~(l+1\ a

reasonably small error can be realized with a reasonably small value of lmax

if the boundary cells at which is to be evaluated are placed at locations

r that are fairly far from the mass distribution. For each of the seven tests

listed in Table 2.2, has been determined for six different even values of

lmax in the range 0 < lmax if 10 in an effort to illustrate how rapidly the

determination of converges toward (k"4 and as more and more terms

are included in the l summation. We illustrate results only for even values of

lmax because all five models listed in Table 2.1 exhibit reflection symmetry

through the equatorial plane and, by design, this symmetry forces all odd

multipole moments to be identically zero. In each of the Figs. 2.2 - 2.5

and 2.7, dotted curves illustrate errors in the determinations of when

lmax = 0; thin-dashed curves represent errors resulting from setting lmax = 2;

and the dash-dot curves show errors in resulting from the inclusion of

even multipole moments through lmax = 10. The three solid curves generally

lying between the thin-dashed curve and the dash-dot curve in each figure

represent, in sequence, errors in that result from setting lmax = 4, 6, and 8.

Figure 2.2 illustrates results from Tests 1 and 2 on Model I (the 5:1 oblate

spheroid). In both of these tests, our computational mesh had 128 radial grid

zones of uniform radial (A R) and vertical (Az = A R) thickness, and the

oblate spheroid was positioned such that its equatorial radius extended out

to grid location 123. Tests 1 and 2 differed in only one respect, as indicated

in Table 2.2: With a cylindrical computational mesh that had four times as

34

many vertical zones, Test 1 was designed to place the top boundary of the

computational grid much farther from the surface of the oblate spheroid than

in Test 2. Because every point along the boundary of the grid in Test 1 was at

a radial location re greater than the equatorial radius of the Model I spheroid,

was evaluated using eqs. (2.5) and (2.6), with m set equal to zero, as in

eqs. (2.8) and (2.9). However, in Test 2 it was also necessary to include an

evaluation of (eq. [2.11]) and, hence, a separate evaluation of qfm and

qfml for each zone along the top of the grid boundary. As a result (see the

related discussion in §2.2.3, below), the evaluation of in Test 2 was much

more computationally demanding than in Test 1. Errors in the determination

of the potential along the top boundary of these two different cylindrical

computational domains are shown in Figs. 2.2a and 2.2c; corresponding

errors along the side boundary are displayed in Figs. 2.2b and 2.2d.

The results presented in Fig. 2.2 highlight three key points that have

been discussed in a more general context, above. First, in both tests very

nearly follows the analytically derived potential (k"4 at all locations on the

grid boundary. It is, however, everywhere offset from (k"4 by a small amount.

This small offset is due almost entirely to the effect mentioned above of being

unable to properly represent a perfect spheroidal surface within a cylindrical

coordinate grid. Second, as lmax is increased, the multipole method yields

better and better results which converge toward the solution but in no

case is the typical error in smaller than the typical error in Third,

for a given choice of lmax, the typical error in measured along the top of

the cylindrical grid is smaller in Test 1 (Fig. 2.2a) than it is in Test 2

35

Figure 2.2: Model I (5:1 oblate spheroid). The fractional error in the numeri
cally determined gravitational potential (calculated via two different Green’s
function techniques) relative to the analytically known potential is shown
here as a function of position R along the top and Z along the side bound
aries of the selected cylindrical computational mesh, as defined in Table 2.2.
Frames (a) and (b) illustrate results from Test 1 in which the top boundary
of a 128 X 128 computational mesh has been positioned at the same distance
from the center of the grid as the side boundary. A thin, solid horizontal
line has been drawn at zero for reference purposes. The thick dashed line
running approximately horizontally across both frames shows the errors in
the potential as determined via the CCGF technique, he., ($^ — <1)A)/^A.
(See the discussion associated with Test 6 for an explanation of why these
curves are slightly offset from zero.) All other curves illustrate the errors
in the potential as determined via the standard multipole technique he.,
($ y — $ A) /$ A, as the limiting number of terms in the multipole expansion is
increased successively by 2 from 1 = 0 (dotted curve) to l = 2 (dashed curve),
etc., through Z = 10 (dot-dashed curve). Frames (c) and (d) illustrate the
same type of information as displayed in frames (a) and (b), respectively, but
for Test 2 in which the top boundary of a 128 X 32 computational mesh has
been placed a factor of 4 closer to the center of the grid, in a position that
lies very close to the surface of the Model I spheroid. Results from this Test
2 also appear as the example marked “A” in Fig. 2.6.

v<E>/(y<E>-<E>)
v<E>/(y<E>-<E>)

36

R R
0.020

^ 0.010<
Ô

 0.000
<O| -0.010
O
w -0.020

-0.030
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Z Z

37

(Fig. 2.2c). This is because the top of the grid is farther from the surface of

the mass distribution in Test f than in Test 2.

Figure 2.3 illustrates the results from Test 3 on Model II (the 20:1 oblate

spheroid). This test is similar to Test 2 in that the top boundary of the

computational grid has been placed very close to the surface of the spheroid.

In one quadrant of a meridional plane cutting through Model II, Fig. 2.3a

illustrates precisely where the top and side cylindrical boundaries have been

placed with respect to the surface of the spheroid. Test 3 differs from Test 2,

however, in that the spheroidal model for which the gravitational potential is

being determined has a relatively extreme (20:1) axis ratio. In order to main

tain a uniformly zoned computational grid, a correspondingly extreme radial

to vertical (1024 X 64) grid resolution was adopted for Test 3. In addition to

displaying in Fig. 2.3c the fractional errors that resulted from our determi

nations of and along the top boundary of the computational grid, we

have shown in Fig. 2.3b the functional variation of the boundary potentials

from which the errors displayed in Fig. 2.3c have been derived. This is a

particularly severe test of the multipole moment method because the poten

tial of extremely flattened mass distributions is not well-represented by an

expansion in terms of spherical harmonics. Notice, however, that the CCGF

method has no difficulty evaluating the potential for this extremely flattened

spheroid; in both Figs. 2.3b and 3c the thick-dashed curve representing

is nearly indistinguishable from the thin solid line representing

38

Figure 2.3: Model II (20:1 oblate spheroid); results from Test 3, as defined
in Table 2.2. (a) A meridional cross-section through Model II is shown in
which the equatorial radius of the object extends to R = 1.0 and the polar
radius extends to Z = 0.05. The top and right-hand edges of this figure
frame illustrate precisely the positioning of the top and side boundaries of
the 1024 X 64 cylindrical computational mesh have been positioned, relative
to the highly flattened spheroidal surface, (b) The gravitational potential $
is plotted as a function of R along the top boundary of the computational
mesh, as determined analytically (thin solid curve), via the CCGF technique
(thick dashed curve), and via the standard multipole technique as the limiting
number of terms in the multipole expansion is increased successively by 2
from 1 = 0 (dotted curve) to l = 2 (dashed curve), etc., through l = 10 (dot-
dashed curve), (c) Similar to frames a and c of Fig. 2.2, the fractional error in
the numerically determined gravitational potential relative to the analytically
known potential is shown as a function of position R along the top of the
selected cylindrical computational mesh. These fractional errors have been
derived directly from the values of $ displayed in (b), and the meaning of
the various curves is the same as in (b). Note, in particular, that at all radii
the error in (bold dashed curve) is almost indistinguishable from zero.

39

0.4 0.60.0 0.2
R

0.8 1.0

40

In Fig. 2.4 we show results from Test 4 on Model III, the 20:1 pro

late spheroid. For this test, the model has been discretized on a 32 X 512

cylindrical grid. In this case, the primary challenge for both the multipole

moment and CCGF methods is to accurately evaluate the potential along

the side, rather than the top, of the computational grid. Figure 2.4a shows

the fractional error as a function of x along the side of this highly elongated

coordinate mesh while Fig. 2.4b shows the fractional error as a function of

R along the top of the grid. Once again appears to be tracking the an

alytical solution extremely well and is seen to be converging toward

(and <JG) as the maximum number of terms in the multipole expansion is

increased. However, for a given value of lmax, the typical error in appears

to be larger for the prolate model (Fig. 2.4) than for the oblate model with

the same aspect ratio (Fig. 2.3).

Figure 2.5 shows results for Test 5 on Model IV, an axisymmetric torus

with a 20:1 aspect ratio. The information that has been displayed in the

three frames of Fig. 2.5 is analogous to the information that was displayed in

Fig. 2.3 for Model II. Specifically, Fig. 2.5a shows a meridional cross-section

through the torus, with the symmetry axis of the torus (and the cylindrical

computational grid) at the left, while the top and right-hand edges of the

frame identify precisely where the top and side cylindrical boundaries were

placed with respect to the surface of the torus. In this case we do not have

an analytical solution for the potential against which to compare or

but in Fig. 2.5b it is clear that as lmax is increased is converging toward

41

0.000 0.010 0.020 0.030 0.040 0.050 0.060
R

Figure 2.4: Model III (20:1 prolate spheroid); results from Test 4, as defined
in Table 2.2. (a) Analogous to frames b and d of Fig. 2.2, the fractional
error in the numerically determined gravitational potential relative to the
analytically known potential (k"4 is shown as a function of position Z along
the side boundary of the selected cylindrical computational mesh, (b) Anal
ogous to frames a and c of Fig. 2.2 and frame c of Fig. 2.3, the fractional
error in the numerically determined gravitational potential relative to the
analytically known potential (k"4 is shown as a function of position R along
the top boundary of the selected cylindrical computational mesh.

42

(thick-dashed curve), so in Fig. 2.5c the error in has been measured

relative to

For Test 6 we have returned to Model I to illustrate how the calculated

error in improves with increasing computational grid resolution. As indi

cated in Table 2.2, for this test we have computed the value of the potential

on the boundary of 25 different sized grid meshes, all of which are integer

multiples of a 32 X 8 cylindrical (R,z) grid. As is explained in detail in the

figure caption, Fig. 2.6a illustrates how the maximum, minimum, and mean

fractional error in vary along the top boundary of the cylindrical grid

as the radial grid resolution is increased from J = 32 to J = 608, and Fig.

2.6c illustrates how the maximum, minimum, and mean fractional error in

vary along the side boundary of the cylindrical grid as the vertical reso

lution is increased from K = 32 to K = 200. Along both the top and side

boundaries we have been able to achieve mean fractional errors ~ 10-5 . For

five selected grid resolutions (labeled B, C, D, E, and F in each frame of Fig.

2.6), we also have shown in detail how the fractional error in varies across

the top (Fig. 2.6b) and along the side (Fig. 2.6d) boundaries of the grid.

The curves in Fig. 2.6b (or Fig. 2.6d) should each be compared directly with

the thick-dashed curve plotted in Fig. 2.2b (or Fig. 2.2d), which presents the

equivalent information from Test 2 - a relatively low resolution (128 X 32),

but otherwise identical calculation that also shows up and is labeled “A” in

the results of Test 6.

43

Figure 2.5: Model IV (20:1 torus); results from Test 5. (a) Analogous to Fig.
2.3a, a meridional cross-section through Model IV in which the major and
minor radii of the torus are 1.0 and 0.05, respectively. The top and right-
hand edges of this figure frame illustrate precisely the positioning of the top
and side boundaries of the 512 X 32 cylindrical computational mesh have been
positioned, relative to the surface of the slender torus, (b) Analogous to Fig.
2.3b, the gravitational potential $ is plotted as a function of R along the top
boundary of the computational mesh, as determined via the GGGF technique
(thick dashed curve), and via the standard multipole technique as the limiting
number of terms in the multipole expansion is increased successively by 2
from / = 0 (dotted curve) to / = 2 (dashed curve), etc., through / = 10 (dot-
dashed curve), (c) Analogous to Fig. 2.3c, but because the potential exterior
to a torus is not known analytically, the fractional error in the numerically
determined gravitational potential is shown here relative to the potential
as determined from the GGGF technique. The meaning of the various curves
is the same as in (b).

44

Figure 2.6: Model I (5:1 oblate spheroid); results from Test 6. Fractional
errors in the gravitational potential derived via the CCGF technique using
25 different cylindrical grid resolutions (see Table 2.2) to resolve the oblate
spheroidal mass distribution, (a) For a specified radial grid resolution J,
the vertical column of dots identifies on a logarithmic scale the full range
of fractional errors that have been derived along the top boundary of the
computational mesh. Each dot identifies the fractional error at a specific
radial grid location so, for example, for the column of dots (labeled A) that
is drawn from a calculation using a grid resolution J = 128 (as in Test 2; see
also Fig. 2.3), 128 different dots have been plotted showing errors that range
from 1.5 X 10-6 to 2 X 10-3 . At each grid resolution J, an open circle has
been drawn to identify the largest, smallest, and median error; a solid line
connecting the circles helps the eye recognize an overall trend in computed
errors as the resolution of the model is improved, (b) Analogous to the thick
dashed curve shown in Fig. 2.2c, the fractional error in the gravitational
potential determined via the CCGF technique relative to the analytically
known potential is shown as a function of position R along the top of
the selected cylindrical computational mesh, but for several different grid
resolutions. The curves labeled B through F are drawn from models having
the grid resolutions J as indicated by the corresponding column labels in
frame a of this figure, (c) and (d) Same as frames a and b of this figure,
respectively, but showing fractional errors that have been derived along the
side boundary of the computational mesh from calculations using various
vertical grid resolutions K (see Table 2.2).

Ofr'O 0£0 03'0 oro ooo
17-SS'I-
17-30'I-

17-SS'0- OlO
O'O I

17-SS'O

17-30'I O>
17-3$'I

SI 01 SO 00

17-31-

0 0

17-31

17-33
l7-3£

|ŷ
|/|

ŷ

V<X
>/(y

<I>

46

We should point out that the fractional errors presented in Fig. 2.6

for Test 6 have all been calculated in a slightly different manner from the

fractional errors that have been presented for Tests 1 - 5 . Before comparing

$<9 to in Test 6, we have renormalized the total mass that has been used

in the determination of to correspond with the total mass that results

from a discretization of Model I inside our cylindrical computational grid of

the specified (J X K) resolution. As explained earlier in the context of Tests

1 and 2, the thick-dashed curves in Fig. 2.2 are slightly offset from zero

primarily because of a slight discrepancy in mass that arises from trying to

map a perfect spheroid onto a cylindrical coordinate mesh. By adjusting the

mass that is being used in the analytical determination of the gravitational

potential for Model I to account for this discrepancy, we are able to present

the fractional errors in such a way that they asymptotically approach zero

at the largest illustrated values of R (Fig. 2.6b) and x (Fig. 2.6d). We also

suspect that geometric imperfections arising from the discretization of the

flattened spheroid are also responsible for the fact that the typical fractional

errors shown in Figs. 2.6a and 2.6c level out around 10-5 and do not continue

to decrease with increasing grid resolution.

2.2.2.2 A Nonaxisymmetric Model

In an effort to illustrate how well the CCGF method works for nonaxisym

metric mass distributions, we have developed a test based on the analytically

known potential exterior to a triaxial homogeneous ellipsoid, as given in Ap

pendix B by eq. (B.7). Specifically, as detailed in Tables 2.1 and 2.2 for

Test 7, we have embedded an homogeneous triaxial ellipsoid with a 20:10:1

47

axis ratio in a uniformly zoned cylindrical mesh with 512 X 32 X 256 zones

in the R} z, and </> directions, respectively. Test 7 is similar to Test 3 in the

sense that the top and side boundaries of the computational grid were posi

tioned just outside the surface of the ellipsoid in such a way that a vertical

cross-section through the configuration that contains the major and minor

axes of the ellipsoid looks identical to Fig. 2.3a. As a result, a vertical cross

section containing the minor and intermediate axes of the ellipsoid would

show that, in the equatorial plane of the grid, the ellipsoidal surface extends

only half-way out to the side boundary of the computational grid. Hence,

we should expect any numerical evaluation of the potential on the top and

side boundaries of our cylindrical grid to produce better results at azimuthal

angles near the intermediate axis of the ellipsoid (he., near </> = tt/ 2 and

3tt/ 2) than at azimuthal angles near the ellipsoid’s major axis (</> = 0 and 7r;

see Fig. 2.7b, below).

The analytical potential outside of an homogeneous, triaxial ellipsoid con

tains an infinite number of azimuthal Fourier components. When the ellipsoid

is discretized and placed inside of a grid with a finite number of azimuthal

zones, L (in our case, L = 256), we know by Fourier’s Theorem that the “ex

act” potential corresponding to this discretized object will exhibit, at most,

Fourier components extending up to mode m = L/2 (in our case, m = 128).

As we have shown in §2.1.2.1 (specifically, eq. [2.20]), via the CCGF method

the amplitude and phase of each one of these Fourier modes can be deter

mined precisely by performing a single integral over the mass distribution,

weighted by the appropriate special function, Qm_i(x) - In contrast to this

48

(see §2.1.1), when the method of multipole moments is employed, each of the

azimuthal Fourier modes can only be determined exactly via a summation

over an infinite number of terms (/ = 0 to oo), each one of which requires

a separate integral over the mass distribution. Hence, by analogy with our

determination of the axisymmetric potential, the multipole method can be

implemented in the context of nonaxisymmetric mass distributions only if

the l summation is truncated to a finite number of terms for each separate

azimuthal Fourier mode. In a practical implementation of either method,

it is computationally prudent to limit the calculation of Fourier mode am

plitudes to a number substantially smaller than to = L/2, in which case

one must admit that even the CCGF method can at best produce only an

approximation to the “exact” discretized potential. But at least the CCGF

method provides an accurate determination of the amplitude and phase of

each of the included azimuthal Fourier modes whereas, by truncating the l

summation, the multipole method cannot.

In conducting Test 7, we have included in the evaluation of even

terms through lmax = 10 and, for each value of /, even azimuthal modes

through to = ± /. (All odd azimuthal moments of the mass distribution are

guaranteed to be zero because Model V exhibits a periodic symmetry about

the azimuthal angle </> = tt as well as about </> = 0 or 2tt.) Therefore, in our

evaluation of the double summation in eq. (2.5) to calculate in Test 7,

36 separate terms have been included. In addition, we have had to evaluate

an entirely independent set of 36 terms associated with the summation in

eq. (2.11) because, as in Tests 2, 3, and 5, most of the zones along the top

49

boundary of our computational grid had radial locations re < oq, that is to

say, at least some of the material enclosed by Model V ’s ellipsoidal surface

fell outside a sphere of radius rs- In contrast to this, when evaluating at

each grid boundary location via eq. (2.19), we included only 16 terms. But

these 16 terms permitted us to include azimuthal Fourier mode contributions

to the potential up through mode m = 30 because the odd azimuthal modes

were guaranteed to be zero.

Figures 2.7a and 2.7b show how closely our determination of and

in Test 7 come to matching the analytical potential for Model V.

Rather than trying to display the errors in and at all grid boundary

locations, Fig. 2.7a displays azimuthally averaged errors as a function of

R along the top of the computational grid and Fig. 2.7b displays radially

averaged errors as a function of </> over the same region. Being azimuthally

averaged, the error measurements presented in Fig. 2.7a do not tell us much

that was not already apparent in our examination of the corresponding ax-

isymmetric spheroid (see Test 3 and, specifically, Fig. 2.3c). However, Fig.

2.7b is clearly illustrating something new. It illustrates that the potential

determined through the CCGF method (represented by the thick-dashed

line) represents the azimuthal variation of the potential outside of triaxial

ellipsoid very accurately. We also see in Fig. 2.7b that, as lmax is increased,

approaches

50

Figure 2.7: Model V (20:10:1 triaxial ellipsoid); results from Test 7. (a)
Analogous to Fig. 2.3c, except that, at each radius, the fractional error
has been derived from an azimuthal average because Model V is not an
axisymmetric configuration, (b) In an effort to display information that is
complementary to the results shown in frame a for this nonaxisymmetric
configuration, the fractional error in the derived potential is shown as a
function of azimuthal angle </>. The displayed error has been derived from a
radial average at each angular position, (c) The error in the m = 2 Fourier
component of the potential is displayed as a function of R along the top
boundary of the computational mesh. In all three frames, by analogy with
Fig. 2.3c, fractional errors have been determined via the CCGF technique
(thick dashed curve), and via the standard multipole technique as the limiting
number of terms in the multipole expansion is increased successively by 2
from 1 = 0 (dotted curve) to l = 2 (dashed curve), etc., through l = 10
(dot-dashed curve).

51

0.2 0.4 R 0.6 0.8 1.0

f

R

52

Finally, via a Fourier analysis of we have determined the correct

amplitude as a function of radius of a single, isolated azimuthal mode,

for Model V, and in Fig. 2.7c we have compared this function with the

corresponding m = 2 Fourier mode amplitudes of and As a point

of reference, the m = 2 Fourier amplitude has been derived via the

integral expression (2.66) given in §2.2.1.6. Fig. 2.7c shows in a somewhat

cleaner manner than does Fig. 2.7b that the CCGF method works as well

for the determination of the gravitational potential of nonaxisymmetric mass

distributions as it does for axisymmetric systems. At most radii, is almost

indistinguishable from Note, however, that near the z-axis of the grid

(he., near the polar axis of the ellipsoid), does differ from by a few

percent. This deviation almost certainly occurs because we have used only 32

vertical zones to resolve Model V ’s highly flattened mass distribution. Hence,

the upper surface of our discretized mass model does not reproduce well

the smooth quadratic surface of the analytically defined ellipsoid. Similar,

although lower amplitude, deviations can be found near the z-axis in Fig.

2.2c (Test 2), Fig. 2.4a (Test 4), and Fig. 2.7a. Once again, it is fair to say

that <&2 provides a more correct description of the gravitational potential for

the discretized mass model than does This statement is supported by

the fact that, as lmax is increased, is converging toward in Figs 2.7a

and 2.7c, rather than toward

2.2.3 Computational Demands

Here we compare the computational demands of the multipole moment

and CCGF methods. We do so not from the standpoint of a static problem

53

whose solution need only be determined once, but from the standpoint of a

dynamical problem in which the system’s two- or three-dimensional density

distribution is changing with time, in which case a solution to the gravita

tional potential must be frequently redetermined in order to ensure that the

potential is at all times consistent with the density distribution.

We will assume that, during such an evolutionary simulation, the cylindri

cal computational grid and the positions along the grid boundaries at which

the potential $ (x^) is to be determined do not change with time. Under

this assumption, it is clear that, whichever Green’s function method is be

ing used, the terms included in the Green’s function itself do not vary with

time because these terms are only functions of the coordinates. Hence, the

functions Yim(6,(f)) (for the multipole moment method) or Qm_i(x) (for the

CCGF method) need only be calculated once, as appropriate, for each grid

cell location and stored in memory for reuse throughout a time-evolutionary

calculation. The primary calculational cost associated with either Green’s

function method therefore has very little to do with the cost of evaluating

various Yim or the Qm_i expressions. Instead, the cost is directly related

to the number of integrals N over (moments of) the mass distribution that

must be reevaluated each time the mass-density distribution of the evolving

system is updated.

For a (two-dimensional) mass distribution that is axisymmetric, but that

otherwise exhibits no special geometric symmetries, the multipole moment

method includes lmax + 1 terms in the Green’s function expansion whereas

the CCGF method contains only one. However, because the argument x °f

54

the special function Qm_i(x) is, itself, a function of the boundary coordi

nates (R}z) } a separate moment of the mass distribution must be calculated

for each grid boundary location. Hence, for the CCGF method, the num

ber of moments N® that must be reevaluated each time the mass-density

distribution changes is,

N Q = 2 J + K, (2.70)

where, as in Table 2.2, J and K specify the radial and vertical grid resolu

tions, respectively, and the factor of 2 indicates that in general “«/” boundary

values must be determined along the bottom as well as along the top of the

cylindrical grid. In contrast to this, the terms in the multipole moment (he.,

spherical coordinate Green’s function) expansion are not explicitly functions

of the boundary coordinates, so

N Y = l m ax + 1 - (2 -7 1)

Now, as discussed earlier, in order to achieve the same level of accuracy with

the multipole moment method as can be achieved with the CCGF method,

lmax must be set to oo. But if, in practice, one is satisfied with the level

of accuracy achieved by setting lmax to a value lmax < (2 J + K — 1), then

N Y /N® < 1, and one may conclude that the multipole method is computa

tionally less expensive than the CCGF method.

However, this is not the full story. Even though the terms in the multipole

moment expansion are not explicitly functions of the boundary coordinates,

the limits on the volume integration for each moment of the mass distribution

55

will be a function of the boundary coordinates unless every point x# along

the boundary of the computational grid is at a radial location re that is

greater than all interior grid locations at which matter resides. (See the

related discussion associated with eq. [2.10] in §2.1.1.) Test 1 (see Figs. 2.2a

and 2.2b) is the only test presented above for which this special condition was

true. By setting J = K, every point along the top boundary of our cylindrical

grid was at a radial location re greater than the equatorial radius of the 5:1

oblate spheroid, so the number of separate moments of the mass distribution

that had to be evaluated in Test 1 was, indeed, N Y = lmax + 1. However,

as explained in §2.1.1, for situations in which the boundary of the grid is

positioned close to the surface of a flattened or elongated mass distribution,

it is necessary to calculate a separate set of “interior” and “exterior” mass

moments for the majority of boundary locations.

For example, for mass distributions that are flattened along the symmetry

axis, as in our Tests 2, 3, 5, and 6, boundary locations along the side of

the grid do not require separate sets of mass moments but most boundary

locations along the top and bottom of the grid do. Hence,

N Y ~ 4J(lmax + 1), (2.72)

where the extra factor of 2 comes from having to determine both interior

and exterior moments for each value of /, as shown in eq. (2.10). Therefore,

N y /Nq lmax, and the (less accurate) multipole moment method proves to

be more expensive to implement computationally than the CCGF method.

56

For a nonaxisymmetric (three-dimensional) mass distribution, the CCGF

method will require the same number of moments as in the axisymmetric

case for each separate azimuthal Fourier mode. Hence, if the discrete Fourier

series is truncated at mode number mmax, the number of moments N® that

must be reevaluated each time the mass-density distribution changes is,

N q = 2mmax x (2J + K), (2.73)

where the leading factor of 2 comes from the fact that each Fourier mode

requires the determination of both an amplitude and a phase. In the optimum

situation where the boundary of the computational grid is everywhere outside

the mass distribution, in three dimensions the multipole moment method will

require the evaluation of

N Y ~ [21 + 1] = {lmax + l) 2 (2.74)
1=0

separate moments (unless the strategic decision is made to set mmax ^ l max)-

In most situations, then, N Y/N® will be less than unity, as in the corre

sponding optimum axisymmetric case, but the ratio will be somewhat larger

here.

Again, though, for situations in which the boundary of the grid is posi

tioned close to the surface of a flattened or elongated mass distribution, the

number of moments required for the multipole moment method climbs sub

stantially. For example, for a flattened nonaxisymmetric mass distribution

like the one examined above in connection with Test 7,

57

N y ~ 4J x [2/ + 1] — 4J(lmax + l) 2, (2.75)
1=0

and the ratio N Y/N® becomes even larger than it was for the corresponding

axisymmetric case. Hence, in connection with a broad range of astrophys-

ically interesting, two- and three-dimensional fluid flow problems, we have

found the CCGF method to be not only much more accurate but also less

expensive to implement than the traditional multipole method.

One note of caution is in order. Because the argument x ° f the spe

cial function Qm_i(x) is a function of both coordinates of the interior mass

(R',z'), at the beginning of any time-evolutionary simulation a 2D array of

“Qv values must be calculated at each location along the boundary of the

grid and for each discrete Fourier mode to. Hence, although the expense

associated with the calculation of this global “Qv array can be confined to

initialization routines, it must generally be a four-dimensional array having

dimensions ~ [J X K X mmax X (2 J-\-K)\. As a result, the CCGF method can

be quite demanding in terms of storage space. Because, for a given azimuthal

mode number to, the function Qm_i(x) is very smooth over the entire range

of y, it may prove to be more practical to store only mmax one-dimensional

arrays that could be referenced by all boundary grid cells in which the par

ticular Qm_ i function has been evaluated at a reasonably large number and

sufficiently wide range of discrete values of y. Then, when performing its

own evaluation of the moments of the mass distribution, each boundary cell

could evaluate Qm_i(x) as needed via an interpolation within the discretized

array. We have not yet implemented such a scheme, although as we begin

58

to investigate problems having sizes larger than the one illustrated in Test 7,

above, we will probably need to do so.

3. A Compact Green’s Function Expansion for Axisymmetric
Coordinate Systems

One primary contribution from chapter 2 was the discovery that the

Green’s function in cylindrical coordinates can be written in an extraor

dinarily compact form, namely, eq. (2.15). In order to better understand

what it is that we have uncovered, we investigate in this chapter the nature

or, specifically, the geometry of our solution. The first time we brought up

an image of the meridional variations in <3_i (y), if appeared to us that the

contours of constant y were circles. In particular, when we first mathemati

cally examined the structure of y, sure enough, contours of constant y were

circles emanating from the x = x' point with ever increasing radius such that

the left side of the circle mapped towards the z-axis. In fact, starting with

the definition of y in eq. (2.16), one may derive that

(R - R ' x f + (z - z' f = R'2(x ^ - l) ^ (3.1)

which is the equation for a circle in the meridional plane! These circles are

centered at the point (R'y, zr) with radius R'\/y 2 — 1. When these circles

are revolved around the z-axis, they describe circular tori.1 Upon further

verification (Morse & Feshbach 1953; Abramowitz & Stegun 1965), we found

that the half-integer degree associated Legendre functions are called toroidal

harmonics and they provide the principal set of basis functions in toroidal

coordinates.
1We are grateful to Eric Barnes and Dana Browne for independently bringing to our

attention the similarity between our plots of constant y and the toroidal coordinate system.

59

60

Table 3.1: Axisymmeric Coordinate Systems

Coordinate System Miller
1 Cylindrical 2
2 Spherical 5
3 Prolate Spheroidal 6
4 Oblate Spheroidal 7
5 Parabolic 8
6 Lame I (unnamed) 14
7 Lame II (unnamed) 15
8 Lame III (unnamed) 16
9 Toroidal 17

So, if the half-integer degree Legendre functions of the second kind are

toroidal harmonics, we can ask ourselves, “What is the Green’s function in

toroidal coordinates and how does it compare to the compact cylindrical

Green’s function expansion?” Furthermore, the J2) that appears
m — — oo

in our compact cylindrical Green’s function expansion appears as well in

the Green’s function for every other coordinate system that is axisymmetric

and 7 ,̂-separable for Laplace’s equation. (For a list of most of the Green’s

functions involved, see chapter 10 of Morse & Feshbach 1953.) The nine

coordinate systems that are both axisymmetric and are 1Z—separable for

Laplace’s equation are listed here in Table 3.1. Table 3.1 has three columns:

in the first column, we number the nine coordinate systems; in the second

column, we attempt to provide a familiar name for each coordinate system;

and in the third column, we cross reference our coordinate system numbers

with those listed in Miller (1977).

61

These nine axisymmetric coordinate systems are a subset of the total

seventeen curvilinear orthogonal coordinate systems which are ^-separable

for Laplace’s equation. Bocher (1894) provides the first complete description

of all these coordinate systems. In a more recent discussion, Miller (1977)

gives a complete geometrical description of these systems and shows that they

can be classified in a number of ways. For instance, in the situation where

the modulation factor, is unity, there are eleven orthogonal curvilinear

coordinate systems. These coordinate systems are all represented as confocal

families of quadrics:

x2 y2 z2
----------- 1----- --------1-----------
CL\ T A (L2 T A (23 T A

All of these coordinate surfaces are limiting cases of the confocal ellipsoidal

coordinate surfaces, and the corresponding surfaces are ellipsoids, hyper

boloids, and their various limits, such as paraboloids, spheres and planes.

More generally, all seventeen coordinate systems may be described as orthog

onal families of confocal cyelides, where a cyelide is a surface that satisfies

the following equation:

ci(x2 + y2 + z2)2 + P (x } y, z) = 0, (3-3)

where a is a constant and P is any polynomial of order two. If a = 0, the

cy elide reduces to the already discussed eleven coordinate systems which have

quadric coordinate surfaces. The remaining nonquadric coordinate systems

are of the more general cyclidic form with a ^ 0. (For a detailed listing of

these coordinate systems see Tables 14 & 17 in Miller 1977).

1. 3.2

62

Now let us return to the nine axisymmetric coordinate systems in Table

3.1 for which Laplace’s equation is 7\l-separable. Given in terms of a solution

of Laplace’s equation, T, Miller (1977) shows that they correspond to the

diagonalization of the operator

d d
J 3 — ^ 2 “ --------- X \ -:dXl ~Ldx2' 3̂'4)

These special systems have the property that their eigenfunctions take the

form,

T(x) = <Le™̂ , (3.5)

and,

= rat, (3-6)

where $ is a function of the remaining two variables. If we substitute this T

into Laplace’s equation and factor out em^, we obtain a differential equation

for $(i?, z), which in cylindrical coordinates is

<92$ 1 <9$ m2 <92$--------1------------------- $ H-------- = 0.
dR2 R dR R2 dz2

(3.7)

This expression for to > 0 is often referred to as the equation of general

ized axisymmetric potential theory. It is clear that the compact cylindrical

Green’s function expansion we derived in chapter 2 must apply to all nine

of these axisymmetric coordinate systems for which Laplace’s equation is

7 ,̂-separable through eq. (3.7).

In order to demonstrate this, we need to obtain the standard Green’s

function expansion for all of these coordinate systems. In our compact rep-

63

resentation, we express the cylindrical Green’s function in terms of a single

sum over the azimuthal quantum number, to. Having already described how

this occurs in cylindrical coordinates we now show how this result applies to

spherical coordinates.

3.1 A Compact Spherical Green’s Function Expansion

Here we describe how the toroidal representation of the cylindrical Green’s

function may be extended to spherical coordinates. The transformation from

Cartesian coordinates to spherical coordinates is given by

x = r sin 9 cos </>,

y = rsin0sin</>, (3-8)

z = r cos 6.

The Green’s function in spherical coordinates can be written as (cf., eq. [3.38]

in Jackson 1975),

where

1
x — x'

OO

£/=o
-jJj-P,(cos7),
r ■->

(3.9)

r<
r' if r' < r
r if r < r' and r> r' if r' > r

r if r > r' (3.10)

and r< = r> if r = r', Pi is the degree l Legendre function of the first kind

(Legendre polynomial) with

cos 7 = cos 6 cos 9' + sin 9 sin 9' cos(</> — <//). (3 . 1 1)

64

The addition theorem for spherical harmonics states (cf., Jackson 1975)

A '7r ^
« (« • ' ») = 2 j T I E C P ' . W . P , *) . (3.12)

Now if we insert eq. (3.12) into (3.9) we obtain the familiar expression for the

spherical Green’s function given earlier by eq. (2.4). The spherical harmonics

can be written in terms of the associated Legendre functions of the first kind

as follows:

Ylm(6,<f>) =
21 + 1 T(/ — m + 1)

P/” (cos 6)e imcf) (3.13) ̂ 47t T(/ + m + 1)

Furthermore, if we insert eq. (3.13) into eq. (2.4) and interchange the l and

m sums,2 we can rewrite eq. (2.4) as follows,

x — x'

OO

£
m — — oo

%(4>-4>r)
CO

£
l—m

r< T(l — m + 1)
r ly l r(/ + m + 1)P'r(cos e)P'r(cos0'), (3.14)

which can be rewritten as

1
x — x77= E

oo r l+m

m = — co ^ r i + m + i r(/ + 2m + i)M+m

Now, from eq. (2.15) we are equally certain that

(3.15)

1 1
x — x' 7rv rrJ sin 6 sin O' _

£ Qm_ l{xh
i n H' ^ (3,16)

7TI — — CO

where now in spherical coordinates,

2We are indebted to Prof. A. R. P. Rau for suggesting that we investigate what happens
when the l and m sums are interchanged.

65

r2 + r/2 — 2rr' cos 9 cos O'
^ 2rr, sm9sm9l

Hence, by comparing eq. (3.15) and (3.16), we deduce that

(3.17)

f . C C i r ,,r) f2+ (1 . (3.1s)“ r(+ + 1 (1 + 2ra + 1) T T 7rv rr' sm 9 sm 9'

We offer this as a valid second addition theorem for spherical harmonics.

This addition theorem, which using eq. (2.46) may also be written as,

<3m_i(cosh£) = 47r2VrrJ sin 9 sin 9'e rrn̂ ^
°° rl 1

x E T a T Y YUOAW,HO', •!>'), (3.0)

complements the familiar one given above as eq. (3.12) in that it provides a

mechanism for collapsing the summation over l instead of to.

As a demonstration of the validity of this formula we now show that it is

indeed correct in a certain limit. For to = 0 eq. (3.18) becomes,

°° ri
~l+ipi(cos 8)Pi(cos 9') =

Q-k(x) (3.20)
_ 7r v rr' sin 9 sin 9'

Now if we further assume that both the primed and unprimed coordinates

are located in the equatorial plane z = z' = 0, then cos 9 = cos 9' = 0,

sin# = sin#' = 1, and x and h become, respectively,

.̂2 _|_ ,̂/2

2 rr' ’
(3.21)

and

6 6

It can easily be shown that,

(3.22)

[^(0)]2 =
cos2[f] r 2(|/ + 1)

7T r 2(|/ + 1)'
(3.23)

Combining eqs. (3.20) through (3.23) with (2.22) and further assuming r' <

r. we obtaiam

K j /
+ r/ g r,2l r 2(2i±l)

(3.24)
2 r2l+l T2(/ + 1)'

Now if we make the substitution x = r '/r , the argument of the complete

elliptic integral of the first kind becomes 2 y fr /(l+ x), and eq. (3.24) becomes

K 1 + x
1 + x o o p 2 / 21+1 '

,21 1 t 2 .
;=o r2(/ +1)' (3.25)

When compared to eqs. (8.113.1) and (8.126.3) in Gradshteyn & Ryzhik

(1994), namely,

7T(/ 1 \ 2 / 1 - 3 \ 2
n l - m ' 2 ■ (l k4 + --- +

a w = 2 I 1 + u; *■, + v 2 -4

and

(2n - 1)!
2 nn\

k2n+ ■■■}, (3.26)

K .1 + x.
= (1 + x)K(x) , (3.27)

the equality is demonstrated and therefore the validity of eq. (3.18) has been

demonstrated, at least in one limit.

67

3.2 A Compact Toroidal Green’s Function Expansion

Thus far we have demonstrated via eq. (2.14) that there is an integral

expression relating the principal basis functions in cylindrical coordinates

(Bessel functions) to the special functions Qm_ i (x) and via eq. (3.18) a sum

mation formula relating the principal basis functions in spherical coordinates

(associated Legendre functions of the first kind) to the function Qm_i(x)- It

is now clear to us that similar integral or summation formula expressions can

be obtained for all nine axisymmetric coordinate systems which are in Table

3.1. In order to complete such an analysis, one must have in hand the general

Green’s function expansion for each system. In Morse & Feshbach (1953),

one may find the Green’s function expansions for oblate spheroidal coordi

nates (eq. [10.3.63]), prolate spheroidal coordinates (eq. [10.3.53]) as well as

for parabolic coordinates (eq. [10.3.68]). They also give an expression for the

Green’s function in toroidal coordinates (eq. [10.3.81]), but there appears to

be a typo in this expression and, as yet, we have been unable to ascertain

the true form of the Green’s function in this crucial coordinate system for

our study. Furthermore, we have not yet been able to find any reference

which gives the Green’s function expansion in the three axisymmetric Lame

coordinate systems, referred to in Table 3.1, in order to compare with the

CCGF. In future investigations we plan to derive from first principles, all

of the relevant Green’s function expansions and thereby obtain what should

prove to be new mathematical expressions relating all the basis functions

involved to the half-integer degree Legendre function of the second kind.

4. Parallel Implementation of a Data-Transpose Technique for the
Solution of Poisson’s Equation in Cylindrical Coordinates

Here we describe our numerical implementation of an efficient scheme to

solve Poisson’s equation numerically on massively parallel architectures. The

groundwork on serial algorithms for solving Poisson’s equation is extensive.

In particular, for some time, extremely efficient methods have been known

for solving the set of sparse matrices that result from a second-order accurate

finite-differencing of the Poisson equation in cylindrical coordinates given the

boundary solution. In Cartesian coordinates there has been a large successful

effort in order to find accurate and highly parallel methods for solving Pois

son’s equation (i.e. Fast Poisson solver using Fourier methods). The situation

is not so simple in cylindrical coordinates, however. Due to the non-constant

variation of the matrix elements that result from the Unite-discretization

of the cylindrical Poisson equation, direct Fourier methods are not possi

ble. It is only in the naturally periodic azimuthal coordinate direction that

one can take advantage of this technique which reduces the complexity of

the problem, in terms of coupled dimensions, from three-dimensions to two-

dimensions. Techniques like Buneman cyclic reduction (Swarztrauber 1977)

provide the direct solution of the resulting set of two-dimensional problems

in an extremely accurate fashion; other direct techniques aren’t even so ef

ficient when implemented in serial. When one asks the question of how to

solve these problems in parallel one quickly sees that the global nature of the

two-dimensional solution methods are very difficult to implement in parallel

and do not result in a load-balanced solution of the matrix problem. It is here

6 8

69

that we present the Fourier-ADI method, which is iterative, although very ac

curate, and takes advantage of the highly parallel data-transpose technique.

In this computational strategy all computations are performed without com

munication, and all communications are restricted to highly parallel, global

three-dimensional data-transpositions. We describe in detail how this algo

rithm is implemented and give a theoretical operation count which demon

strates the highly parallel nature of this algorithm. It is the Fourier-ADI

technique, combined with the CCGF technique for evaluating the boundary

potential that yields an extremely efficient and accurate potential solver.

We have adopted a Unite-difference method for the solution of the cylin

drical Poisson equation. In iterative schemes, the solution of a partial dif

ferential equation (PDE) is obtained by starting with an initial guess and

then proceeding iteratively until the solution is obtained to within desired

accuracy. In direct schemes, the solution of the PDE is obtained by direct

numerical solution of the Unite-difference equations. Direct methods are usu

ally preferred over iterative methods since they are guaranteed to generate

an exact solution.

Here we utilize both a fast direct method and an iterative method to

solve the problem at hand. Both methods are implemented in parallel using

a data-transpose technique. The data-transpose technique is a paralleliza

tion strategy in which all communication is restricted to global 3D data-

transposition operations and all computations are subsequently performed

with perfect load balance and zero communication.

70

In the remainder of this chapter, we present a detailed description of our

parallel algorithm. In §4.1, we describe the sequential algorithms that we

use in conjunction with the data-transpose technique in order to solve the

cylindrical Poisson equation. In §4.2, we describe the parallel data-transpose

technique, how it applies to the two sequential algorithms we presented in

section §4.1, and a theoretical description of how the technique can be applied

to a 2D mesh topology.

4.1 Sequential Algorithms

We present a parallel method to solve Poisson’s equation

V 2$ = 4 nGp, (4.1)

where V 2 denotes the Laplacian operator in three dimensions, $ is the scalar

Newtonian potential, G is the gravitational constant, and p is the mass-

density scalar distribution function.

In a cylindrical geometry, the Cartesian vertical coordinate, z, remains

unchanged, but the Cartesian x and y coordinates are replaced by the polar

coordinates R (radial) and </> (azimuthal) via the transformation

x = R cos </>,

y = R sin <f). (4-2)

Our domain boundaries are specified by the conditions

0 < R < R b ,

71

0 < </> < 27t, (4.3)

M < zb ■>

where Rb is the radius of the cylindrical domain, 2zb is the height of the

cylinder, and the angle </> is measured in radians

We perform a spatial discretization of our domain using the indices (j, k, l)

to refer to the (Rj, Zk,<f>i) positions of each cell center with A R 1} Azk} and

A<f>i being the radial, vertical and azimuthal grid spacing of each cell. Both

the potential and the source function are evaluated at the center of each grid

cell. As in chapter 2, the 3D discretization is performed using J radial zones,

K vertical zones, and L azimuthal zones, but here we are concerned about

the solution of eq. (4.1) throughout the interior volume of the grid rather

than just on its boundary surface.

In our applications, mixed Dirichlet, Neumann, and periodic boundary

conditions are usually assumed for the potential $, viz.

<f>(RB,(f>,z) = g(cj), z),

$(R, <t>, + ZB) = h+(R, </>), (4.4)

- zb) = h_(R,(f)),

$ (R ,2 tt, zb) = $ (R,0 ,z) ,

where the functions g, h+ , and are the boundary potentials computed

using the CCGF technique described in chapter 2. The interior of our domain

is mapped onto a rectangular computational grid which extends between

2 < j < J, 2 < k < K, and 1 < l < L. Since the azimuthal coordinate

72

direction is periodic in nature, the index l runs modulo L, i.e. I + L = l. We

also require continuity of the solution across the z axis, this is evaluated at

j = 1 by setting $(1, k, l) = $(2, k, l + L/2). The boundary values g, h_ and

h.|_ are evaluated a t j = J + l,£; = l and k = K + 1, respectively.

4.1.1 Finite-Difference Derivation of the Equation of Generalized
Axisymmetric Potential Theory

Written in cylindrical coordinates Poisson’s equation reads

i l / A ,
R d R [d R } R2 d<p*

1 <92<h <92<h
+ = 4nGp(R,<t>,z).

dz2
(4.5)

The hnite-difference representation of eq. (4.5) is

RjA R j
Ri+i/2

A? + i/ 2$
Ai?

- — R;
A j_1/2$ x 1 A ?$ A

i+i/2
i—1/2" Rj (A</>/)2 (A ^)

AttG ^

(4.6)

where, for every index i, the symbols A; and A2 indicate the sense that the

first and second differences are taken and their proper centering. For exam

ple, A j+1/2 denotes that the first difference is taken in the radial coordinate

direction and is centered at the (j + 1/2, k,l) location, while A 2 denotes

that the second difference is taken in the azimuthal coordinate direction

and is centered at the (j, k,l) location. Similarly ARj = RJ+1/2 — R j -1/2,

ARj+ 1 / 2 = Rj+1 — Rj-, Afy = (f>i+1 / 2 — 4>i-1/2, and Azk = z^+1/2 — £jt_i/2.

Expanding the differences A and A2 up to second order in the grid spacings

ARj, Azk} and A</>/, one obtains

A(j) $ (j + l ,k , l) + B(j) $ (j - l , M)

73

+ C(j,l) [i(j ,k ,l + 1) + t U M - 1)] (4.7)

+D(k) [®(j, fc + 1,/) + * 0 , fc - 1,/)]

-{A(j) + B(j) + 2[C(j,l) + B(fc)]} m M) = 4*GpU, M).

The coefficients in eq. (4.7) are defined by the expressions

M j) — ^j+i/2(-RjAi?j+i /2Ai?j)

B(j) = Rj-i/2(Rj^Rj~i/2^Rj) S (4-8)

C{j, l) = (RjA(f)i)~2,

D(k) = (A zk)~\

The 3D problem represented by eq. (4.7) can be decoupled into a set

of independent 2D problems, in a nalogy to eq. (2.21) from chapter 2, by

performing a discrete Fourier transform in the azimuthal coordinate direction

of the general form

L / 2

Q(j, M) = k) cos(m<f>i) + Q2m(j, k) sin(m</>,)}, (4.9)
m—0

where Q denotes either $ or p, and Qlm, with i = 1 and i = 2, are the

Fourier coefficients of the cosine and the sine terms, respectively. Substitut

ing eq. (4.9) into eq. (4.7), assuming a constant value of A</>; = A</> = 27r/T,

and accounting for the continuity boundary condition across the z-axis, one

obtains

M j) 4>m{j + k) + B(j) \ 1 + ĵ 2 [(1)m - 1] (^ (j - 1 + Sj2, k)

74

+ D (k) k + 1) + k — l)j (4-10)

+ {2(Am - l)C (j) - [A(j) + B(j) + 2D(k)]} = 4nGp*m(j, k),

where 8 is the Kronecker symbol,

m = 0 , 1,2, . . . , L/2 (for 7 = 1) , (4.11)

to = 1, 2, 3 , . . . , L/2 — 1 (for 7 = 2) ,

and Am = cos(toA</>). The equations for i = 1 are derived by equating co

efficients of the cosine terms in the Fourier expansion and the equations for

i = 2 are derived by equating coefficients of the sine terms. Eq. (4.10) is the

finite-difference representation of the equation of generalized axisymmetric

potential theory (eq. [3.7]).

4.1.2 Solution Methods for the Equation of Generalized Axisym
metric Potential Theory

4.1.2.1 The ADI Method

The alternating direction implicit (ADI) (Peaceman & Rachford 1955;

Strikwerda 1989) method is a widely used iterative method for solving multi

dimensional boundary value problems. It is an operator-splitting scheme

which solves implicitly, and in an alternating fashion, each of the dimensions

of a multi-dimensional elliptic problem. It combines two ideas, described

below, and results in a rapidly convergent and numerically stable algorithm.

(See Press et al. 1992, Black & Bodenheimer 1975 and references given

therein for implementations of the same technique to the solution of various

PDEs.)

75

The first idea of ADI is to write the original operator equation in the

form of a diffusion equation, viz.

^ = V 2$ - AirGp. (4.12)

The diffusion equation uses a false dimensionless time which helps the algo

rithm settle into a final steady-state solution of eq. (4.1). We have adopted

the prescription proposed by Black and Bodenheimer (1975) to compute the

“time steps” for a variable number of iterations. The second idea incorpo

rated in the ADI technique is to implement a partially implicit solution of the

2D finite-difference equations. This is performed by splitting the terms of the

2D equations in such a way that, at each step, the finite-difference terms in

two given directions are treated as known and unknown, respectively. When

this is done, each 2D equation transforms into a set of tridiagonal equations.

We then use the optimal sequential tridiagonal solver, LU (Lower-Upper)

decomposition with forward- and back-substitution (hereafter referred to as

just LU decomposition) to solve each tridiagonal matrix (Press et al. 1992).

In our specific implementation, the spatial operator in the generalized

axisymmetric potential theory (eq. [4.10]) along with the diffusion term in

eq. (4.12) is split as follows. For each choice of the Fourier mode elements i

and to, during the 77-sweep we use

A(j) r +1/2(j + 1 ,k) + B (j) { 1 + Sj2[(- l) m - 1] } r +1/2(j - 1 + sj2,k)

— [A{j) + B(J) - 2(A - l)C(j) + ^ } r +1/2(j,k) =

4ttGpn(j , k) - D(k) [cbn(j , k + 1) + </>n(j, k - 1)] (4.13)

76

+ (2D (k) - i - t) o

and during the z-sweep we use

D(k) [r + lu , k + 1) + r +Iu ,k - 1)] - (2B(fc) + i t) r +Iu ,k) =

4:TrGpn+1/2(j,k) — A(j) <f>n+1/2(j + 1,&)

-BU) { l + <S.,2[(-1)’" - 1] } r +I,2U - 1 + <5,2, k) (4.14)

-[2(A - l)C'(i) - (,4(j) + BU) - £)] r +ll2U,k).

In both cases, as indicated by the “time step” superscripts n, n + 1/2, or

n + 1, terms on the right-hand side of the expressions are considered known

quantities, and terms on the left are considered unknown.

4.1.2.2 Fourier Analysis

One popular method for the solution of Poisson’s equation is to use

Fourier Analysis (Hockney 1965) in order to convert the 3D problem into

a set of completely decoupled ID problems. This method is highly efficient

and takes advantage of the fast Fourier transform (FFT) algorithm. The

resulting tridiagonal system can then be solved directly using LU decompo

sition.

We usually assume Dirichlet-Dirichlet (DD) boundary conditions in the

vertical coordinate direction. This boundary condition can be accommo

dated by applying a sine transform in the vertical coordinate direction.

In fact, any combination of Neumann and Dirichlet boundary conditions

can be dealt with by using the appropriate discrete transform. (Cooley et

al. 1970; Swarztrauber 1974; Swarztrauber 1977) For instance, in the case

77

of Neumann-Dirichlet (ND) boundary conditions, a discrete quarter cosine

transform would accomplish the decoupling. As described by Cooley et al.

(1970), ah of the possible combinations can be obtained using certain appro

priate pre- and post-conditioning operations on the input and output of a

standard FFT routine.

When the appropriate transform is substituted into eq. (4.10) and uniform

zoning is utilized (i.e. A zj~ = Az = constant), one obtains

m s) <Ku A 3 + 1) + b (j) { i + <5)2[(- i r - i i j c m - 1+ w

+{2(A„. - l)C(j) + 2(At. — 1)D — \Mj) + *>(;)]} c y i) = 4*G,t^U),

where \y depends on the specific Fourier basis transform. Once the solution

to this tridiagonal system is obtained via LU decomposition, the appropriate

inverse transform is then applied in the vertical coordinate direction followed

by an inverse Fourier transform in the azimuthal coordinate direction in order

to bring the solution back into coordinate space.

4.2 Parallel Data-Transpose Technique

A large effort has gone into the development of fast sequential algorithms

for the solution of Poisson’s equation (see Press et al. 1992 for many ex

amples). On shared-memory parallel computing architectures, the sequen

tial algorithms with the lowest operation count are optimal, given a way to

distribute the computations uniformly among the processors (Briggs 1990).

Similarly, a large effort has gone into the development of fast parallel al

gorithms for the solution of the Cartesian Poisson equation on distributed-

memory architectures (cf., Kumar et al. 1994; Schwardmann 1993). We

78

adopt a strategy for the parallel solution of the cylindrical Poisson equation

on a distributed-memory architecture that has perfect computational load

balance.

If a sequential algorithm requires a recursive sweep in one coordinate

direction, then this sweep can be performed at each of the other coordinate

locations independently. If we distribute our data in such a way that the

coordinate direction in which the sweep needs to be performed is stored in

the internal memory of each processor (node), then the computation can be

performed in parallel on each of the nodes. Since each recursive sweep is

performed completely in memory, no communication is required in the part

of the calculation. The next sweep that needs to be performed is distributed

across a set of processors. If we perform this recursive sweep with no change

in the data distribution, then inter-processor communication will be required

in order to perform the sweep, with the recursive nature of the sweep leading

to poor load balance. Another choice that we have is to perform a global

data-transposition operation on the storage array so that the second sweep

direction is redistributed into the internal memory of each node. The question

of which choice is optimal is architecture dependent.

On a 2D mesh of processors, the most natural way to map a 3D array

is to spread two of the array directions out across the processors (X and Y

processor grid directions) and to store the third array direction in the internal

memory of each node (M). If we perform the data-transposition operation

between the X processor grid direction and M, then the global data-transpose

can be performed in parallel for each Y processor grid location. Similarly, if

79

we perform the data-transposition operation between the Y processor grid

direction and M, then the global data-transpose operation can be performed

in parallel for each X processor grid location (Choi & Walker 1995). We

have performed a data-transposition operation between each computational

sweep for the preceding two algorithms.

4.3 Analysis

4.3.1 Theoretical Timing Analysis

Since the data-transpose technique allows both sequential algorithms to

be implemented, in parallel, with no change in the computational strategy,

the sequential operation count gives us a partial measure of the parallel ex

ecution time. A more accurate model for the total parallel execution time

must include the data-transpose operations in the analysis. In both algo

rithms, a forward and inverse FFT is applied in the azimuthal coordinate

direction. Including the highest order terms, the sequential operation count

for a length p real FFT is |(5plog2(p) + 13p) (Swarztrauber 1977). Similarly,

the operation count for a length p tridiagonal solution using LU decompo

sition is 5p (Press et al. 1992). The sequential operation count for the real

fast sine transform is |(5plog2(p) + 22p) (Cooley et al. 1970). In order to

simplify the calculation, we assume equal number of grid points in all three

coordinate directions, i.e. N = J = K = L. Therefore, the total sequential

operation count for ADI is A 2[5Alog2(A) + 13A + 10A /] , where I is the

total number of iterations needed to converge to a solution. As an exam

ple, the total sequential operation count for Fourier Analysis applied to the

80

fast sine transform method for the Dirichlet-Dirichlet boundary condition is

iV2[10iVlog2(iV) + 40iV].

Given these sequential operation counts we can then estimate the parallel

execution time. In the ADI algorithm, the data-transpose function is called

3 + 2 / times and in the Fourier analysis algorithm it is called 4 times. In the

case where each data-element is mapped to a single processor, the parallel

operation count will be equal to the sequential operation count, reduced by

a factor of N 2. Including this fact and including the amount of time spent in

the data-transpose function, we estimate the parallel execution time for the

ADI algorithm to be

t a d i = [5tVlog2(iV) + 13A" + 10 N I]C + (3 + 2 I)txRAN, (4.16)

and we estimate the parallel execution time for the Fourier analysis algorithm

to be

tFA = [10iVlog2(iV) + 40 N]C + 4 tTRAN, (4-17)

where C is a constant that determines how much time is spent on average per

operation count and tj^RAN is the amount of time that is takes to complete

a single data-transpose operation.

We have thus demonstrated that the parallel efficiency of the Fourier-ADI

technique is on the same order as the Fourier analysis technique, which is

the technique that has been broadly adopted for Cartesian problems. The

Fourier-ADI technique has a remarkably short execution time, and the data-

transpositions that are required to make it function efficiently on distributed

81

memory, parallel computers prove not to be the main bottleneck in this

solution methodology. This has become our computational strategy of choice

for solving the Poisson equation on massively parallel computers.

5. Conclusion

In trying to build a mathematical model that accurately describes the

observed appearance or behavior of a complex physical system, what often

distinguishes the task of an astronomer from that of a physicist is the need to

accurately determine in a self-consistent way the time-varying gravitational

held that is associated with the system. The long-range influence of the grav

itational held makes this a nontrivial task in virtually all situations; and for

all but the simplest systems, a determination of the gravitational potential

that is consistent with a given mass distribution can only be achieved with

numerical rather than analytical tools. Rather than studying in depth the

behavior of one particular type of astrophysical system, the objective of this

dissertation has been to identify and implement techniques that can be used

to accurately and efficiently determine the gravitational potential of arbitrar

ily complex systems. In this way we hope to facilitate and indeed accelerate

modeling efforts in a variety of important areas. Our focus has been on the

numerical solution of the Poisson equation in cylindrical coordinates because

a very large number of interesting astrophysical mass distributions are partic

ularly well suited to such a coordinate description. But the techniques that

we have developed are fairly readily adaptable to other orthogonal curvilinear

coordinate systems and, particularly in connection with our study of Green’s

function expansions, will almost certainly be useful in analytical studies of

related, but less complex systems.

82

83

The numerical simulations that we perform are guided by previous at

tempts at these problems (see for example, Black & Bodenheimer 1975; Miller

& Smith 1979). These efforts were performed on the most powerful comput

ers of their day. Even then the need for efficiency was paramount; only the

most efficient algorithms could tackle the largest of the small-scale problems

computable at that time. We recognize the limitation that a single pro

cessor imposes for computing time-dependent, large-scale, three-dimensional

astrophysically interesting problems. This limitation has forced us to start

developing and implementing our algorithms on massively parallel comput

ing architectures. Only through the usage of a large number of processors,

each with its own local memory, may these types of large-scale problems

presently be solved. The theorist, while always searching for analytically

soluble solutions, is now driven towards computationalist strategies. In the

parallel programming paradigm, computation (cpu time) and communica

tion (I/O time) combine to further complicate the already difficult task of

implementing an efficient algorithm.

Local problems, such as the numerical solution of the Navier-Stokes equa

tions, prove to be extremely efficient when implemented in parallel. Global

problems, however, such as the parallel solution of Poisson’s equation, have

proven to be more difficult to implement efficiently in parallel. Global prob

lems require more sophisticated communication strategies. For global prob

lems, we must match the most stream-lined computation algorithm with the

most effective communication strategy in order to minimize the compute

time.

84

The traditional serial algorithms that have frequently been used in the

past to numerically obtain the Newtonian potential are not easily paral-

lelizable. We came to the conclusion that a more beneficial parallelization

technique for the Poisson solver was to use the Fourier-ADI technique, de

scribed here in detail in chapter 4. This powerful parallel technique relies

on fast networks that can perform global 3D data-transpositions quite effi

ciently. Once we were satisfied with the performance of our parallel Poisson

solver, which was first implemented on LSU’s 8192 node MasPar MP-1, we

then set out to parallelize our boundary solver.

It also has been clear for some time that the traditional multipole method

does not conform well to a cylindrical coordinate grid. Its implementation re

quires that all the mass be contained within a spherical radius vector extend

ing from the origin to each boundary location. Hence, in order to accurately

and efficiently compute the boundary potential, we were forced to place the

boundary far from the mass distribution. This was particularly problematic

when encountering highly flattened mass distributions, since we then had to

compute the gravitational potential throughout a grid that contained great

amounts of empty space. We then set out to find a more accurate algo

rithm for the boundary solver which would hopefully conform better to our

cylindrical mesh. We examined the possibility of computing the Newtonian

potential using a cylindrical Green’s function. The cylindrical Green’s func

tion, which is discussed in a variety of textbooks (e.g., Jackson 1975; Morse

& Feshbach 1953) was expressible in terms of certain special functions, i.e.

Bessel functions and exponential functions pieced together with an infinite

85

integral over a continuous wave number and an infinite summation over the

azimuthal quantum number, to. The infinite integral posed a serious imped

iment to the numerical implementation of the cylindrical Green’s function

technique. Initially, our attempt to use the cylindrical Green’s function to

determine the Newtonian potential was hindered by our inability to find an

efficient numerical method to compute the infinite integrals involved. We

were able to obviate this problem through the propitious discovery of an

analytical solution to the integral, which led us to the compact cylindrical

Green’s function (CCGF) expansion presented in detail here in chapter 2.

The CCGF is expressible as a single sum over the azimuthal quantum

number, to and is written in terms of half-integer degree Legendre functions

of the second kind. These functions, which are also commonly referred to as

toroidal harmonics, are known to be the set of basis functions which sepa

rate Laplace’s equation in toroidal coordinates. In chapter 3 we have outlined

how the toroidal harmonics may be used to secure similarly compact Green’s

function expansions in other coordinate systems. This has led, in particu

lar, to the indentihcation of a second useful addition theorem in spherical

coordinates.

The successful numerical implementation of the CCGF algorithm in paral

lel, combined with the massively parallel data-transpose Fourier-ADI method

for solving Poisson’s equation in cylindrical coordinates, has proven to be an

effective tool for computing the Newtonian potential for arbitrarily complex,

isolated mass distributions. In connection with a broad range of astrophys-

ically interesting, two- and three-dimensional fluid flow problems, we have

86

found this general tool to be not only more accurate but also less expensive

to implement than more traditional methods. We strongly encourage the

adoption of these techniques by other groups who are attempting to study

large, complex, time-evolving astrophysical systems. In an effort to hasten

the adoption of these techniques, we have included in appendices C, D, E,

& F, the potential solver code, or respectively, the HPF code, the f77 code,

grid.h, and the Makefile we use to compile the code on the MIMD Cray T3E.

References

Abramowitz, M. & Stegun, I.A. 1965, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables (New York: Dover)

Arfken, G. 1985, Mathematical Methods for Physicists (New York: Academic
Press)

Barnes, J., & Hut, P. 1986, Nature, 324, 446

Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton
University Press)

Black, D. & Bodenheimer, P. 1975, ApJ, 199, 619

Bocher, M. 1894, Die Reihenentwickelungen der Potentialtheorie (Leigzig)

Boss, A. P. 1980, ApJ, 242, 699

----------- . 1993, ApJ, 410, 157

----------- . 1998a, ApJL, 501, L77

----------- . 1998b, ApJ, 503, 923

Boss, A. P. & Myhill, E.A. 1995, ApJ, 451, 218

Briggs, F. H. 1990, ApJ, 352, 15

Cazes, J. E. 1999, Ph.D. thesis, Louisiana State University and A&M College,
Baton Rouge

Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium (New York: Dover
Publications, Inc.)

Choi J.D., & Walker D. 1995, Parallel Computing, 21, 1387

Cooley J.W., Tookey, P.L., & Welch, P. 1970, J. Sounds Vib., 12, 315

de Zeeuw, T. 1985, MNRAS, 216, 273

Earn, D.J.D. 1996, ApJ, 465, 91

Evans, N.W. & de Zeeuw, P.T. 1992, MNRAS, 257, 152

Gradshteyn, I.S. & Ryzhik, I.M. 1994, Table of Integrals, Series, and Prod
ucts (New York: Academic Press)

87

Hachisu, I. 1986, ApJS, 62, 461

Hayashi, A., Eriguchi, Y., & Hashimoto, M. 1998, ApJ, 492, 286

Hockney, R. 1965, J. ACM, 12, 95

Jackson, J.D. 1975, Classical Electrodynamics (New York: John Wiley &
Sons)

Kalnajs, A. 1971, ApJ, 166, 275

Kumar, V., Grama A., Gupta A., & Karypis G. 1994, Introduction to Parallel
Computing, Design and Analysis of Algorithms. (The Benjamin/Cummings
Publishing Company, Inc.)

Landau, L.D., & Lifshitz, E.M. 1960, Electrodynamics of Continuous Media
(Oxford: Pergamon Press)

Miller, W., Jr. 1977, Symmetry and Separation of Variables (London: Addison-
Wesley Publishing Company)

Miller, R. H. & Smith, B. F. 1979, ApJ, 227, 407

Morse, P., & Feshbach, H. 1953, Methods of Theoretical Physics (New York:
McGraw-Hill Book Company)

Motl, P., Frank, J., & Tohline, J., 1999, (abstract) in 194th AAS meeting,
Chicago, IL

Muller, E. & Steinmetz, M. 1995, Comput. Phys. Commun., 89, 45

New, K. B. & Tohline, J. E. 1997, ApJ, 490, 311

Norman, M., & Wilson, J. R. 1978, ApJ, 224, 497

Peaceman, D. & Rachford, J.H. 1955, J. Soc. Indust. Appl. Math., 3, 28

Pickett, B. K., Cassen P., Durisen, R. H., & Link R. 1998, ApJ, 504, 468

Pickett, B. K., Durisen R. H., & Davis, G. A. 1996, ApJ, 458, 714

Press W., Flannery, B., Teukolsky, S., & Vetterling W. 1992, Numerical
Recipes in FORTRAN, The Art of Scientific Computing, (Cambridge Uni
versity Press) Second Edition.

Ramsey, A.S. 1981, Newtonian Attraction (Cambridge: Cambridge Univ.
Press)

Robijn, F.H.A. & Earn, D.J.D. 1996, MNRAS, 282, 1129

Schwardmann, U., 1993, Supercomputer, 55, 4, 1993.

Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 753

Strikwerda, J.C. 1989, Finite Difference Schemes and Partial Differential
Equations, Mathematics Series, (Wadsworth & Brooks/Cole)

Swarztrauber, P. 1974, SIAM, J. Numer. Anal., 11, 1136

Swarztrauber, P. 1977, SIAM Review, 19, 490

Tohline, J.E. 1980, ApJ, 235, 866

Toman, J., Imamura, J. N., Pickett, B. K., & Durisen, R. H. 1998, ApJ, 497,
70

Truelove, J. K., Klein, R. I., McKee, C. F., Holliman, J. H. II., Howell, L.
H., & Greenough, J. A. 1997, ApJL, 489, L179

United States. National Bureau of Standards. Computation Laboratory
1945, Tables of Associated Legendre Functions (New York: Columbia Univ.
Press)

Villumsen, J.V. 1985, ApJ, 290, 75

Watson, G.N. 1944, A Treatise on the Theory of Bessel Functions (Cam
bridge: Cambridge Univ. Press)

Yorke, W.H., & Kaisig, M. 1995, Comput. Phys. Commun., 89, 29

Yoshida, S. & Eriguchi, Y. 1995, ApJ, 438, 830

89

Appendix A: A Useful Modal Expansion

Morse & Feshbach (1953; see the expression just above their eq. 10.3.79)

have presented the following useful relationship in connection with the inte

gral representation of Qm_i\

Qm_i(cosh/i)
r2v cos (m(f)')d(f)'
0 \Jcosh jd — COS </>'

(A .l)

Multiplying both sides of this expression by em ̂ and then summing both

sides from m = — oo to m = oo, yields the following expression,

E
oo

X E
m = — oo

2tt
(coshn) = —b= f , ̂ —

2 v 2 q -^ /cosh /i — cos 4>‘

\e im(4>+4>') _|_ g i m (0 - 0 ') l _ (A . 2)

Utilizing the following representation of the Dirac delta function (cf., eq.

[3.139] of Jackson 1975)

* (0) (A.3)

the integral on the right-hand-side of eq. (A .2) can be readily performed,

giving

1
V C°sh H ~ COS </> 7T Yfi — — go

or, written entirely in terms of real functions,

1 ^

4 E .(cosh,,), (A.4)

\/cosh fl - cos <j) 7T= ---- cos (m<f)) Qm_k (coshn). (A .5)

90

Appendix B: Selected Analytical Potential-Density Pairs

For a distinguished class of nonspherical objects there exist analytical

solutions for the Newtonian potential given in terms of elementary and spe

cial functions. Below we list a few of these distinguished objects and the

analytical forms of the exterior potential associated with them. There is a

long history associated with these problems (cf., Ramsey 1981 and Binney &

Tremaine 1987). Unfortunately, these objects do not represent most of the

types of objects for which one might need to calculate gravitational forces.

Even so, they are certainly very useful in comparing numerical methods for

evaluating potentials.

Consider an homogeneous, axisymmetric spheroid defined such that,

p{R,z)
po if R2/ a\ + z2/ a2 < 1
0 if R2/ a\ + z2/ a2 > 1 (B .l)

where oq and a3 are the equatorial and polar radii of the spheroid, respec

tively. From Chandrasekhar (1969), we find that the gravitational potential

exterior to the spheroid is,

®(R,z) = irGpoalazl^l + R2

2(a§ - ai) a? — al h -

2z2 2z2 \J a3 + A

(a2 + X)\Ja2 + A - « ?) (« ? + A)

R2y/4 + X

« 3 - « l) (« l + A)

(B.2)

91

92

where

A = [(R2 + z2 — a2 — a2) + \J (aj + a2 — R2 — z2)2 — 4(afa3 — R?a\ — z2a\)\j 2,

and, for an oblate spheroid (ai > a3),

h =
7r

at — at at — as
: tan- l

\
a\ + A
at — a2 ’

whereas for a prolate spheroid < a3),

h = ; 1 In
a2 — a\

+ A - Jal - a2)2
a\ + A

For an homogeneous, triaxial ellipsoid defined such that,

(B.3)

(B.4)

(B.5)

P(x >!/>*) =
po if x2/ a\ + y2/a\ + z2/a\ < 1
0 if x2/al + y2/a\ + z2/a\ > 1 (B.6)

where the three principal axes are defined such that ai > a2 > a3, the

potential at any point x = (x, y, z) exterior to the ellipsoid is,

$ (x) =

+

2Trp0aia2a3

at — as
1 - +at — as at — as

(a2 - a2)y2
+a2 — a2 {a\ ~ a2){a22 - a23) a22 - a2

,k) (B.7)

93

+
a1 + \ 2
2 2 ya2 - a>i

a2 + ̂ J1
2 2 ̂

« 2 - « 3

— a23

+ -^)(a2 + -^)(a3 +)̂-

where

and,

F (9 , k) = f
Jo

d(f>

\Jl — k2 sin2 cj)
(B.8)

E(6,k) = j dcf) \Jl — k2 sin2 </>, (B.9)

are Legendre’s elliptic integrals of the first and second kind respectively,

9 = sin 1 a? — a?
\ a\ + A (B. 10)

k2
a\ — a\
a\ ~ aV

(B -11)

and, A is defined as the algebraically largest root of the following cubic equa

tion:

x2 y2 z2
a\ + A a\ + A a2 + A

1. (B. 12)

Appendix C: HPF Code

c---
C BESSEL
C MODIFICATION HISTORY:
C H. Cohl, 19 June, 1998 --- Initial implementation.
C--

subroutine bessel(isyma)

C'

include ’grid.h’
include ’pot.h’

c

real, dimension(jmax2,kmax2,lmax) :: rhoc,rhos
!hpf$ distribute rhoc(block,block,*) onto p2
!hpf$ align rhos(i,j,k) with rhoc(i,j,k)

real, dimension(jmax2,kmax2) :: rTMP,zTMP,TMPC,TMPS
!hpf$ distribute rTMP(block ,block) onto p2
!hpf$ align zTMP(i,j) with rTMP(i,j)
!hpf$ align TMPC(i,j) with rTMP(i,j)
!hpf$ align TMPS(i,j) with rTMP(i,j)

real, dimension(jmax2,lmax) :: phirTMP,potr,phirTMPC,phirTMPS
!hpf$ distribute phirTMP(block,block) onto p2
!hpf$ align potr(i,j) with phirTMP(i,j)
!hpf$ align phirTMPC(i,j) with phirTMP(i,j)
!hpf$ align phirTMPS(i , j) with phirTMP(i,j)

real, dimension(kmax2,lmax) :: phizTMP,potz,phizTMPC,phizTMPS
!hpf$ distribute phizTMP(block,block) onto p2
!hpf$ align potz(i,j) with phizTMP(i,j)
!hpf$ align phizTMPC(i,j) with phizTMP(i,j)
!hpf$ align phizTMPS(i , j) with phizTMP(i,j)

real, dimension(jmax2,mmax) :: SjC,SjS
!hpf$ distribute SjC(block,block) onto p2
!hpf$ align S jS(i,j) with SjC(i,j)

real, dimension(kmax2,mmax) :: SkC,SkS
!hpf$ distribute SkC(block,block) onto p2
!hpf$ align SkS(i,j) with SkC(i,j)

c--

c Intialize values,
c call setup(isyma)

c Read in Density.
c open(unit=23,file=’/u/home/hcohl/bessel/rho064.dat’ ,form=’unformatted’ ,

94

95

c & status=’unknown’)
c read(23)rho
c close(23)

c--

C Evaluate m=0 contribution to "TOP" & "SIDE" potential.
TMPC(: , :)=0.0
do lp=l,lmax

TMPC(2:jmax,2:kmax)=TMPC(2:jmax,2:kmax)+rho(2:jmax,2:kmax, lp)
enddo
do j=2,jmaxl

SjC(j,1)=sum(tmr(2:jmax,2:kmax, j , 1)*TMPC(2:jmax,2:kmax))
SjS(j,1)=0.0

enddo
do k=2,kmaxl

SkC(k,1)=sum(smz(2:jmax,2:kmax, k,1)*TMPC(2:jmax,2:kmax))
SkS(k,1)=0.0

enddo

C Evaluate m=l,mmax-l contribution to "TOP" & "SIDE" potential,
do m=2,mmax

TMPC(: , :)=0.0
TMPS(: , :)=0.0
do lp=l,lmax

TMPC(2:jmax,2:kmax)=TMPC(2:jmax,2:kmax)
& +rho(2:jmax,2:kmax,lp)
& *cos(0.5*dtheta*(m-1)*(2*lp-l))

TMPS(2:jmax,2:kmax)=TMPS(2:jmax,2:kmax)
& +rho(2:jmax,2:kmax,lp)
& *sin(0.5*dtheta*(m-1)*(2*lp-l))

enddo
do j=2,jmaxl

SjC(j,m)=sum(tmr(2:jmax,2:kmax,j,m)*TMPC(2:jmax,2:kmax))
SjS(j,m)=sum(tmr(2:jmax,2:kmax,j,m)*TMPS(2:jmax,2:kmax))

enddo
do k=2,kmaxl

SkC(k,m)=sum(smz(2:jmax,2:kmax,k,m)*TMPC(2:jmax,2:kmax))
SkS(k,m)=sum(smz(2:jmax,2:kmax,k,m)*TMPS(2:jmax,2:kmax))

enddo
enddo

c forail(1=1:lmax) phirTMP(j,k,l)=(float(j)-2 .0)*delr
do 1=1,lmax

phirTMP(2:jmaxl,1)=SjC(2:jmaxl,1)
phizTMP(2:kmaxl,l)=SkC(2:kmaxl,1)

enddo
do m=2,mmax

forail(1=1:lmax) phirTMPC(2:jmaxl,1)=SjC(2:jmaxl,m)*cos(0.5*dtheta*(m-1)*(2*1-1))
forail(1=1:lmax) phirTMPS(2:jmaxl,1)=SjS(2:jmaxl,m)*sin(0.5*dtheta*(m-1)*(2*1-1))
forail(1=1:lmax) phizTMPC(2:kmaxl,l)=SkC(2:kmaxl,m)*cos(0.5*dtheta*(m-1)*(2*1-1))
forail(1=1:lmax) phizTMPS(2:kmaxl,l)=SkS(2:kmaxl,m)*sin(0.5*dtheta*(m-1)*(2*1-1))
phirTMP(2:jmaxl, :)=phirTMP(2:jmaxl,:)

& +2*phirTMPC(2:jmaxl,:)
& +2*phirTMPS(2:jmaxl,:)

phizTMP(2:kmaxl, :)=phizTMP(2:kmaxl,:)

96

& +2*phizTMPC(2:kmaxl,:)
& +2*phizTMPS(2:kmaxl,:)
enddo

potr(2:jmaxl, :)=-deltar*deltaz*dtheta*phirTMP(2:jmaxl,:)
potz(2:kmaxl, :)=-deltar*deltaz*dtheta*phizTMP(2:kmaxl,:)

c Equatorial Symmetry
potr(l, :)=cshift(potr(2, :) ,shift=lmax/2,dim=l)
potz(l, :)=potz(2,:)

c---

c open(unit=19,file=’/u/home/hcohl/bessel/tmr.dat’
c & ,status=’unknown’ ,form=’unformatted’)
c write(19) tmr
c close(19)

c open(unit=19,file=’/u/home/hcohl/bessel/smz.dat’
c & ,status=’unknown’ ,form=’unformatted’)
c write(19) smz
c close(19)

c open(unit=20,file=’/u/home/hcohl/bessel/potr.dat’
c & ,status= ’unknown’ ,form=’unformatted’)
c write(20) potr
c close(20)

c open(unit=20,file=’/u/home/hcohl/bessel/potz. dat’
c & ,status=’unknown’ ,form=’unformatted’)
c write(20) potz
c close(20)

phip(jmaxl,) = potz
phip(: ,kmaxl,:) = potr
ph ip(:,l,:) = phip(:,2,:)

return
end

c —
c HELMADI
c MODIFICATION HISTORY:
c
c

H. Cohl, 3 Jan, 1994

c H. Cohl, 16 Oct, 1993
c
c —

H. Cohl, 12 Sep, 1993

--- Made into a subroutine to
be put into pot.f.

--- Debugged.
--- Initial implementation.

subroutine helmadi(isyma,nsteps)

c
include ’grid.h’
include ’pot.h’

c
real, dimension (jmax2, kmax2, lmax) :: ffrho,ffphi

!hpf$ distribute(block,block,*) onto p2 :: ffrho,ffphi

97

real,dimension(jmax2,kmax2,lmax): : epsir,knownr,bndryr,rhor, phir
!hpf$ distributee* ,block,block) onto p2 :: epsir,knownr,bndryr,rhor,phir

real,dimension(jmax2,kmax2,lmax): :knownz,bndryz,rhoz, phiz
!hpf$ distribute(block,*,block) onto p2 :: knownz,bndryz,rhoz,phiz

real,dimension(nsteps): :dt

dt(nsteps)=4./r(jmaxl,1,1)**2
alph=(r(jmaxl,l,l)/r(3,l,l))**(2./(nsteps-1))
do i=2,nsteps

ii=nsteps+l-i
dt(ii)=alph*dt(ii+1)

enddo

C Fourier transform density in azimuthal direction,
call Realft(rhop,jmax2,kmax2, lmax,+l)
ffrho(:,: , 1)=rhop(:,:,1)
ffrho(: ,:,2 :lmax/2)=rhop(:,:,3:lmax:2)
ffrho(:,:,lmax/2+l)=rhop(:,:,2)
ffrho(:,:,lmax/2+2:lmax)=-rhop(:,:,4:lmax:2)

C Fourier transform initial guess for potential in azimuthal direction,
call Realft(phip,jmax2,kmax2, lmax,+l)
ffphi(:,: , 1)=phip(:,:,1)
ffphi(:,:,2:lmax/2)=phip(:,:,3:lmax:2)
ffphi(:,:,lmax/2+l)=phip(:,:,2)
ffphi(:,:,lmax/2+2:lmax)=-phip(:,:,4:lmax:2)

phir=ffphi
rhoz=ffrho
rhor=rhoz

do i=l,nsteps

dtt=dt(i)

ADI sweep in radial direction.
epsir=0.0
epsir(j 1:j2 ,k l:k2, :)=dtt-2.*gamma
epsir(j1-1, : , :)=0.0
epsir(j2+1, : , :)=0.0
if (isyma.eq.2.or. isyma.eq.3) epsir(j1:j2 ,k l, :)=dtt-l.*gamma
b r(jl:j2 ,k l:k2 ,:)=brb(j1:j2 ,k l:k2, :)+dtt
bndryr=0.0
bndryr(j2,kl:k2, :)=-alphar(j2,kl:k2, :)*phir(j2+l,kl:k2,:)
knownr(j1:j2 ,kl:k2, :)=-4*pi*rhor(j 1:j2 ,k l:k2,:)

+epsir(j 1: j2 ,kl:k2 , :)*phir(j 1:j2 ,k l:k2,:)
+gamma*phir(j l :j2,kl+l:k2+l,:)
+gamma*phir(j l :j2 ,k l- l:k2-l, :)*factr(j l :j2 ,k l:k2,:)
+bndryr(j 1:j2 ,k l:k2,:)

call tridagr(ar,br,cr,knownr,phir,jmax2,kmax2,lmax,j 1,j2,kl,k2)
phiz=phir

ADI sweep in vertical direction.
bz(jl:j2 ,k l:k2 ,:)=bzb(jl:j2,kl:k2, :)+dtt
elambdaz(j 1:j2 ,k l:k2, :)=elambdazb(j1:j2 ,k l:k2, :)+dtt

$
$
$
$

98

bndryz=0.
if (isyma.eq.1) bndryz(j 1:j2 ,k l, :)=gamma*phiz(j l :j2 , kl-1,:)
bndryz(j 1: j2 ,k2, :)=gamma*phiz(j 1:j 2,k2+l,:)
knownz(j 1: j2 ,kl:k2, :)=-4*pi*rhoz(jl:j2,kl:k2,:)

$ +elambdaz(j1:j2 , k l:k2, :) *phiz(j1:j2 , k l:k2,:)
$ -alphazCjl:j2 ,kl:k2,:)*phiz(jl+l:j2+l,kl:k2,:)
$ -factz(j 1:j2 , k l:k2, :) *betaz(j l :j2,kl:k2,:)
$ *ph iz(jl-l:j2 -l,k l:k2,:)
$ +bndryz(j l :j2 ,k l:k2,:)

call tridagz(az,bz,cz,knownz,phiz,jmax2,kmax2,lmax,j 1,j2,kl,k2)
phir=phiz

enddo

C Inverse Fourier transform in azimuthal direction,
ffphi=phir

phip(: , : , l)=ffphi(:,:,1)
phip(: , : ,2)=ffphi(: , : ,lmax/2+l)
phip(: , : ,3 : lmax:2)=ffphi(: , : ,2 : lmax/2)
phip(: , : ,4 : lmax:2)=-ffphi(: , : , lmax/2+2:lmax)
call Realft(phip,jmax2,kmax2,lmax,-1)
do i=l,lmax

phip(: , : , i)=phip(: , : , i) /(lmax/2)
enddo

if (isyma.eq.3) then
phip(l, : , :)=phip(2 , :, :)

else
phip(l, : , :)=cshift(phip(2 shift=lmax/2,dim=2)

endif
if (isyma.eq.2.or.isyma.eq.3) phip(: ,1 , :)=phip(: ,2,:)

return
end

c---
C POISSON
C MODIFICATION HISTORY:
C H. Cohl, 12 Sep, 1993 Initial implementation.
c---

subroutine poisson(isyma)

C'

include ’grid.h’
include ’pot.h’

C'

real :: timef,etimel,etime2

C Use current potential if available,
if (itstep.gt.1) then

nsteps=5
else

nsteps=20
if (isyma.eq.l) then

99

phip(jl-l:j2,kl:k2,:)=0.0
else
phip(jl-l:j2,kl-l:k2,:)=0.0

endif
endif

etimel=timef()

call bessel(isyma)

et ime2=timef()
write(6,*)" Time elapsed (Boundary: bessel) : "

& , (etime2-etimel)/1000.0, " seconds."
etimel=timef()

call helmadi(isyma,nsteps)

et ime2=timef()
write(6,*)" Time elapsed (Interior: ADI) : "

& ,(etime2-etimel)/1000.0, " seconds."

return
end

c--
C POT
C---
C MODIFICATION HISTORY:
C H. Cohl, 11 Jan, 1994 Initial implementation.
C--
chsc Remove comment when placed in hydrocode
c subroutine pot(isyma)

C--

include ’grid.h’
include ’pot.h’

c---

Chsc Remove when placed in hydrocode
call setup(isyma)

Chsc Place in setup.f for hydrocode
call potsetup(isyma)

C--
call poisson(isyma)

phi=phip
C--

Chsc Remove when placed in hydrocode.
open(unit=22,

$ file=’/u/home/hcohl/adi/phi.dat’,status=’unknown’,form=’unformatted’)
write(22)phi
close(22)

Chsc Remove comment when placed in hydrocode.
c return

1 0 0

end
C---
C POTSETUP
C MODIFICATION HISTORY:
C H. Cohl, 27 Mar, 1997 Initial implementation.
C---

subroutine potsetup(isyma)

C'

USE HPF.LIBRARY
include ’grid.h’
include ’pot.h’

C'

integer :: shx,shy,pj,pk
integer, dimension(7) :: shape
integer :: isyma
integer :: rank
real, dimension(jmax2) :: xrhf
real, dimension(kmax2) :: xzhf

! hpf $

INTERFACE
EXTRINSIC (f77_L0CAL) SUBROUTINE

tm (shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr)
shx
shy

INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
REAL, INTENT(IN)
REAL, INTENT(IN)
REAL, INTENT(OUT)

include ’proc.h’

PJ
pk
jmax2
kmax2
mmax
xrhf(jmax2)
xzhf(kmax2)
tmr(jmax2,kmax2,jmax2,mmax)

distribute tmr(block,block,*,*) onto p2
END SUBROUTINE tm

END INTERFACE

! hpf $

INTERFACE
EXTRINSIC (f77_L0CAL) SUBROUTINE

sm
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL,
REAL,
REAL,

(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,smz)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(OUT)

shx
shy
PJ
pk
jmax2
kmax2
mmax
xrhf(jmax2)
xzhf(kmax2)
smz(jmax2,kmax2,kmax2,mmax)

include ’proc.h’
distribute smz(block,block,*,*) onto p2
END SUBROUTINE sm

END INTERFACE

1 0 1

C'

! hpf $
! hpf $
! hpf $
! hpf $

real,dimension(jmax2,kmax2,lmax): : elm,mlmode,orhf,orhf2
align elm(i,j,k) with r (i,j,k)
align mlmode(i , j,k) with r (i,j,k)
align orhf(i,j,k) with r (i,j,k)
align orhf2(i,j,k) with r (i,j,k)

real,dimension(jmax2,kmax2,lmax): :betar
!hpf$ distributee*,block,block) onto p2 :: betar

c Determine number of elements per processor
call hpf.distribution(tmr,processors_rank=rank,processors_shape=shape)
shx=shape(1)
shy=shape(2)
pj=jmax2/shx
pk=kmax2/shy
xrhf(:)=rhf(:,1,1)
xzhf(:)=zhf(1,:,1)

c Read in tm & sm arrays.
c if (itstep.eq.1) then

call tm(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr)
call sm(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,smz)

c endif

c--
open(unit=20,

$ file=’/u/home/hcohl/adi/rho064.dat’ ,
$ status=’unknown’ ,form=’unformatted’)
read(20)rho
close(20)

C--
open(unit=21,

$ file=’/u/home/hcohl/adi/pot064.dat’ ,
$ status=’unknown’ ,form=’unformatted’)
read(21)phi
close(21)

C--
c write(6,*)phi(:,2,l)

phip=phi
c phip=0.0

rhop=rho

jl=2
kl=2
j2=jmax
k2=kmax

eodr2=l./(deltar**2)
eodtheta2=l./(dtheta**2)
gamma=l./(deltaz**2)
orhf=1./rhf
orhf2=orhf**2

lstop=lmax/2+l
do l=l,lmax

if (isyma.eq.3) then

1 0 2

if (l.le.lstop) mode=(l-l)*2
if (l.gt.lstop) mode=(l-lstop)*2

else
if (l.le.lstop) mode=(l-l)
if (l.gt.lstop) mode=(l-lstop)

endif
mlmode(j 1: j2 ,kl:k2,1) = (-1)**mode
elm(j1:j2,kl:k2, l)=cos(mode*dtheta)

enddo

alphar(j 1:j2 ,k l:k2, :)=-r(j 1+1:j2+l,kl:k2,:)*orhf(j 1:j2 ,k l:k2, :)*eodr2
alphaz(j 1:j2 ,k l:k2, :)=alphar(jI :j2 ,k l:k2 ,:)
betar(j 1:j2,kl:k2, :)= -r(jl:j2 ,k l:k2 ,:)*orhf(j 1:j2 ,k l:k2, :) *eodr2
betaz(j 1:j2,kl:k2, :)=betar(j 1:j2 ,k l:k2,:)

ar(jl+ l:j2 ,k l:k2,:)=betar(jl+1:j2,kl:k2,:)
c r (j l :j2 -l,k l:k2 ,:)=alphar(j 1:j2 -l,k l:k2 ,:)

az(j 1:j2 , kl + 1:k2, :)=-gamma
cz(j 1:j2 ,k l:k2-l, :)=-gamma

brb(jl+1:j2,kl:k2, :)=2.*eodr2-2.*
$ (elm(jl+l:j2 ,kl:k2,:) - l .)*eodtheta2*orhf2(jl+1:j2 ,kl:k2,:)

if (isyma.eq.3) then
brb(jl,kl:k2, :)=-alphar(jl,kl:k2,:)

c $ -2.*betar(j 1,kl:k2,:)
$ -2.*(elm(jl,kl:k2,:) - l .)*eodtheta2*orhf2(jl,kl:k2,:)
else

brb(jl,kl:k2, :)=-alphar(jl,kl:k2,:)+
$ (mlmode(j1,k l:k2, :)-l.)*betar(j 1,kl:k2,:)
$ -2.*(elm(jl,kl:k2,:) - l .)*eodtheta2*orhf2(jl,kl:k2,:)
endif

bzb(j1:j2 ,kl:k2, :)=2.*gamma
if (isyma.eq.2.or.isyma.eq.3) bzb(j1:j2 ,k l, :)=gamma

elambdazb(j1+1:j2,kl:k2, :)=-2.*eodr2+2.*
$ (elm(jl + 1:j 2,kl:k2,:) - l .)*eodtheta2*orhf2(j1+1:j2 ,k l:k2,:)

if (isyma.eq.3) then
elambdazb(jl,kl:k2, :)=alphaz(jl,kl:k2,:)

c $ +2.*betaz(j 1,kl:k2,:)
$ +2.*(elm(jl,kl:k2, :) - l .)*eodtheta2*orhf2(jl,kl:k2,:)
else

elambdazb(jl,kl:k2, :)=alphaz(jl,kl:k2,:)
$ - (mlmode(j l ,kl:k2, :) - l .)*betaz(jl,kl:k2,:)
$ +2.*(elm(jl,kl:k2, :) - l .)*eodtheta2*orhf2(jl,kl:k2,:)
endif

factr=l.
if (isyma.eq.2.or.isyma.eq.3) factr(: ,k l, :)=0.
factz=l.
factz(j 1 , : , :)=0.

return
end

C'
C REALFT

103

C'

subroutine realft(data,nx,ny,nz,isign)

c
include ’proc.h’

real,dimension(nx,ny,nz): :data
!hpf$ distribute data(block,block,*) onto p2

real,dimension(nx,ny) : :hli,hlr,h2i,h2r
!hpf$ distribute(block,block) onto p2 :: hli,hlr,h2i,h2r

re a l::theta,wi,wpi,wpr,wr,wtemp

theta=3.141592653589T93/(nz/2)
cl=0.5
if (isign.eq.l) then

c2=-0.5
call fourl(data,nx,ny,nz/2,+l)

else
c2=0.5
theta=-theta

endif
wpr=-2.0*sin(0.5*theta)**2
wpi=sin(theta)
wr=l.0+wpr
wi=wpi
n2p3=nz+3
do i=2,nz/4

il=2*i-l
i2=il+l
i3=n2p3-i2
i4=i3+l
wrs=wr
wis=wi
hlr=cl*(data(: , : , il)+data(: , : , i3))
hli=cl*(data(: , : , i2)-data(: , : , i4))
h2r=-c2*(data(: , : , i2)+data(: , : , i4))
h2i=c2*(data(: , : , il)-data(: , : , i3))
data(: , : , il)=hlr+wrs*h2r-wis*h2i
data(: , : , i2)=hli+wrs*h2i+wis*h2r
data(: , : , i3)=hlr-wrs*h2r+wis*h2i
data(: , : , i4)=-hli+wrs*h2i+wis*h2r
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo
if (isign.eq.l) then

hlr(: , :)=data(:,:,1)
data(: , : ,1)=hlr(: , :)+data(:,:,2)
data(: , : ,2)=hlr(: , :)-data(:,:,2)

else
hlr(: , :)=data(:,:,1)
data(:,:,l)= cl*(h lr(:) :)+data(:,:,2))
data(:,:,2)=cl*(hlr(:,:)-data(:,:,2))
call fourl(data,nx,ny,nz/2,-l)

endif
return

104

end
c-------------
C FOUR1
C------------

subroutine fourl(data,nx,ny,nnz,isign)

c
include ’proc.h’

real,dimension(nx,ny,2*nnz): :data
!hpf$ distribute data(block,block,*) onto p2

real,dimension(nx,ny) : : tempi,tempr
!hpf$ distribute(block , block) onto p2 :: tempi,tempr

re a l::theta,wi,wpi,wpr,wr,wtemp
integer: :nx,ny,nnz, isign, i ,istep,j,m,mmax,nz

nz=2*nnz
j = l
do i=l,nz ,2

i f (j .g t . i)then
tempr=data(: , : , j)
tempi=data(: , : , j+1)
data(: , : , j)=data(: , : , i)
data(: , : , j+l)=data(: , : ,i+l)
data(: , : , i)=tempr
data(: , : , i+1)=tempi

endif
m=nz/2

1 continue
if ((m.ge.2).and.(j .gt.m)) then

j=j-m
m=m/2

goto 1
endif
j=j+m

enddo
mmax=2

2 continue
if (nz.gt.mmax) then

istep=2*mmax
theta=6.28318530T17959/(isign*mmax)
wpr=-2.*sin(0.5*theta)**2
wpi=sin(theta)
wr=l.
wi=0.
do m=l,mmax,2

do i=m,nz,istep
j=i+mmax
tempr=wr*data(: , : , j)-wi*data(: , : , j+1)
tempi=wr*data(: , : , j+l)+wi*data(: , : , j)
data(: , : , j)=data(: , : , i)-tempr
data(: , : , j+l)=data(: , : , i+1)-tempi
data(: , : ,i)=data(: , : ,i)+tempr
data(: , : ,i+l)=data(: , : ,i+l)+tempi

enddo

105

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo
mmax=istep

goto 2
endif
return
end

C---
C SETUP
C /u/home/hcohl/adi
C MODIFICATION HISTORY:
C H. Cohl, 27 Mar, 1997 Initial implementation.
C---

subroutine setup(isyma)

C'

include ’grid.h’
c---

c Set time step.
itstep=2

c itstep=l

c Set grid geometry.
isyma=2

c Set up grid spacing,
c deltar=le-2
c deltaz=le-2

deltar=l.88679E-02
deltaz=l.88679E-02
pi=3.1415926535e0
grav=l.0

if (isyma.eq.3) then
dtheta=pi/real(lmax)

else
dtheta=2.*pi/real(lmax)

endif

forall(j=l:jmax2,k=l:kmax2,1=1:lmax) r (j ,k ,l)=(float(j)-2 .0)*deltar
forall(j=l:jmax2,k=l:kmax2,1=1:lmax) rhf(j ,k ,1)=(float(j) - l .5)*deltar
rplus = eoshift(r,dim=l,shift= 1)
rplus(jmax2, : , :) = rplus(jmaxl, : , :) + deltar

if (isyma.eq.l) then
forall(j= l:jmax2,k=l:kmax2,1=1:lmax)

& z(j ,k ,l)=(float(k)-l.O-kmax/2)*deltaz
else

forall(j= l:jmax2,k=l:kmax2,1=1:lmax)
& z (j,k ,l)=(float(k)-2.0)*deltaz
endif

if (isyma.eq.l) then
forall(j= l:jmax2,k=l:kmax2,1=1:lmax)

106

& zhf(j , k,1)=(float(k)-0.5-kmax/2)*deltaz
else

forall(j=l:jmax2, k=l:kmax2,1=1:lmax)
& zhf(j ,k ,1)=(float(k)-l.5)*deltaz
endif

return
end

C--
C TRIDAGR
C--
C MODIFICATION HISTORY:
C H. Cohl, 18 Sep, 1993 --- Initial implementation.
C NOTES: Given a tridiagonal matrix M of size NxN with
C diagonal elements M(i,i) are in B(1)..B(N)
C lower offdiagonal elements M(i+l,i) are in A(2)..A(N)
C upper offdiagonal elements M(i,i+1) are in C(1)..C(N-1)
C solve the equation MU=R for the vector U().
C--

subroutine tridagr(a,b,c,r,u,nx,ny,nz,j 1,j2,kl,k2)

include ’proc.h’

real,dimension(nx,ny,nz): : a,b,c ,r ,u,gam ,bet
!hpf$ distributee*,block,block) onto p2 :: a,b,c ,r,u,gam,bet

c---

C Forward Pass
betCjl,kl:k2, :)=b(jl,kl:k2,:)
u (jl,k l:k2 ,:)=r(j 1,k l:k2, :)/bet(jl,kl:k2,:)

do 10 j=jl + l , j 2
gam(j,kl:k2 , :)=c(j-1,kl:k2, :) /bet(j-1,kl:k2,:)
bet(j , k l :k2, :)=b(j,kl:k2, :)-a (j,k l:k2, :) *gam(j,kl:k2,:)
u (j,k l:k2 ,:)=(r(j,k l:k2 ,:)-a (j,k l:k2 ,:)

$ *u(j 1,kl:k2,:))/bet(j,kl:k2,:)
10 continue

C Back-substitution pass
do j =j 2 — 1, j l ,-l

u(j,kl:k2,:)=u(j,kl:k2,:)-gam(j+1,kl:k2, :) *u(j+1,kl:k2,:)
enddo

return
end

c---
C TRIDAGZ
C--
C MODIFICATION HISTORY:
C H. Cohl, 18 Sep, 1993 Initial implementation.
C NOTES: Given a tridiagonal matrix M of size NxN with
C diagonal elements M(i,i) are in B(1)..B(N)
C lower offdiagonal elements M(i+l,i) are in A(2)..A(N)
C upper offdiagonal elements M(i,i+1) are in C(1)..C(N-1)
C solve the equation MU=R for the vector U().
C--

107

subroutine tridagz(a,b,c,r,u,nx,ny,nz,jl,j2,kl,k2)

c
include ’proc.h’

real,dimension(nx,ny,nz): : a,b,c, r ,u, gam , bet
!hpf$ distribute(block,*,block) onto p2 :: a,b,c ,r,u,gam,bet

C Forward Pass
b e t(jl:j2 ,k l, :)=b(jl:j2 ,k l,:)
u (jl:j2 ,k l,:)= r(jl:j2 ,k l,:)/bet(j 1:j 2,k l,:)

do k=kl+l,k2
gam(j1:j 2,k, :)= c(jl:j2 ,k -l,:)/bet(j 1:j 2,k—1,:)
bet(j 1:j2 ,k ,:)= b (jl:j2 ,k ,:)-a (jl:j2 ,k ,:)*gam(j1:j2 ,k,:)
u (jl:j2 ,k ,:)= (r(jl:j2 ,k ,:) - a (j l :j2 ,k ,:)

$ *u(jl:j2 ,k-l,:))/bet(j 1:j2 ,k,:)
enddo

C Back-substitution pass
do k=k2-l,kl,-l

u (j1:j2 ,k , :)=u(jl:j2 ,k,:)-gam(j1:j2,k+l, :)*u (jl:j 2,k+1,:)
enddo

return
end

Appendix D: F77 Code

c--
FUNCTION elle(phi,ak)
REAL elle,ak,phi

CU USES rd,rf
REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(l.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1 .)-((s*ak)**2)*rd(cc,q,1 .)/3.)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .
C--

FUNCTION ellf(phi,ak)
REAL e l lf , ak,phi

CU USES rf
REAL s,rf
s=sin(phi)
ellf=s*rf(cos(phi)**2, (1.-s*ak)*(1.+s*ak), 1.)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .
c--

FUNCTION factrl(n)
INTEGER n
REAL factrl

CU USES gammln
INTEGER j,ntop
REAL a(33),gammln
SAVE ntop,a
DATA ntop,a(l)/0,l./
if (n.lt.O) then

pause ’negative factorial in fac tr l’
else if (n.le.ntop) then

factrl=a(n+l)
else if (n.le.32) then

do 11 j=ntop+l,n
a(j+i) =j*a(j)

11 continue
ntop=n
factrl=a(n+l)

else
factrl=exp(gammln(n+1.))

endif
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .
c--

FUNCTION gammln(xx)
REAL gammln,xx
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)
SAVE cof,stp

108

109

DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,
*24.01409824083091dO,-1.231739572450155d0, . 1208650973866179d-2,
*-.5395239384953d-5,2.5066282746310005d0/
x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=l.000000000190015d0
do 11 j = l,6

y=y+l.dO
ser=ser+cof(j)/y

11 continue
gammln=tmp+log(stp*ser/x)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .

FUNCTION rd(x,y,z)
REAL rd,x,y , z ,ERRTOL,TINY,610,01,02,03,04,05,06
PARAMETER (ERRT0L=.000015,TINY=1.e-25,BIG=4.5E21,01=3./14.,02=1./6.,

*03=9./22.,C4=3./26.,05=.25*03,06=1.5*04)
REAL alamb,ave ,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,

*sqrtz,sum,xt,yt,zt
if(min(x ,y).I t .0 ..or.min(x+y,z).It.TINY.or.max(x,y,

*z).gt.BIG)pause ’ invalid arguments in rd’
xt=x
y t= y
zt=z
sum=0.
fac=l.

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)) .gt.ERRT0L)goto 1
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ec+ec
rd=3.*sum+f ac*(1.+ed*(-Cl+C5*ed-C6*delz*ee)+delz*(C2*ee+delz*(-03*

*ec+delz*C4*ea)))/(ave*sqrt(ave))
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,Cl,02,03,04
PARAMETER (ERRT0L=.000025,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,

*01=1./24.,C2=.l,C3=3./44.,C4=1./14.)

1 1 0

REAL alamb, ave,delx,dely, delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt ,zt
if(min(x ,y , z).I t .0 ..or.min(x+y, x+z,y+z).It.TINY.or.max(x,y,

*z).gt.BIG)pause ’ invalid arguments in r f ’
xt=x
yt=y
zt=z

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)) .gt.ERRT0L)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(l.+(Cl*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .

subroutine sm(isyma,shx,shy,pj,pk,jmax2,kmax2,mmax, xrhf,xzhf,smz)

include ’/usr/local/pgi/t3e/include/pglocal.f’

parameter(irmax = 111)
integer n,m,mm,nprocs,myproc
integer isyma,shx,shy,pj,pk
integer jmax2,kmax2,mmax
integer jstart,kstart,jfinish,kfinish
integer loc(shx*shy,2)
real xrhf(jmax2),xzhf(kmax2)
real smz(pj,pk,kmax2,mmax)
real qp(mmax),qm(mmax)
real RB,e llf , elle ,pi,pi2,coef
real b,c,ap,am,xp,xm,mup,mum,lap,lam
real Kmup,Kmum,Emup,Emum
real nu
real coefh,dcoefh,gamma,factorial
real aa,bb,cc,yy,alpha,sum,diff,Fabcy

cjc I added these arrays to speed this process up!
real myalpha(mmax),mycoefh(mmax)
real mydcoefh(irmax,mmax)
real gmlhf

RB=xrhf(jmax2-1)
c=RB

myproc = pghpf_myprocnum()
nprocs = pghpf_nprocs()

I l l

c pi = 3.14159265358979324e0
pi = 3.1415926535897932384626433832795028841971693993751058209749446
pi2 = 0.5*pi

n=l
do j=l,shy

do i=l,shx
loc(n,l)=i-l
loc(n,2)=j-1
n=n+l

enddo
enddo

if (loc(myproc+1,1).eq.0) then
jstart=2

else
jstart=l

endif
if (loc(myproc+1,2).eq.0) then

kstart=2
else

kstart=l
endif

if (loc(myproc+1,1).eq.shx-1) then
jfinish=pj-2

else
jfinish=pj

endif
if (loc(myproc+1,2).eq.shy-1) then

kfinish=pk-2
else

kfinish=pk
endif

cjc ARRAY SETUP
gmlhf = gammln(0.5)
do m=l,mmax

mm=m-l
if (isyma.eq.3) mm=2*(m-l)

mycoefh(m)=exp(gmlhf+gammln(mm+.5))/factrl(mm)
aa=(mm+l.5)/2.
bb=(mm+.5)/2.
cc=mm+l
myalpha(m)=exp(gammln(cc)-gammln(aa)-gammln(bb))
do ir=l, irmax

fr=factrl(ir-1)
mydcoefh(ir,m)=exp(gammln(aa+ir-l)+gammln(bb+ir-l)-gammln(cc+ir-l))/fr

enddo
enddo

c Equatorial Symmetry
if (isyma.eq.2) then

do jj= jstart,jfinish
b=xrhf(loc(myproc+1,1)*pj+jj)
coef=sqrt(b/c)/pi
do kk=kstart,kfinish

1 1 2

do kkk=2,kmax2-l

if (loc(myproc+1,2)*pk+kk.I t .kkk) then
ap=xzhf(kkk)+xzhf(loc(myproc+1, 2)*pk+kk)
am=xzhf(kkk)-xzhf(loc(myproc+1, 2)*pk+kk)

else
ap=xzhf(loc(myproc+1,2)*pk+kk)+xzhf(kkk)
am=xzhf(loc(myproc+1,2)*pk+kk)-xzhf(kkk)

endif

xp=0.5*(ap**2+b**2+c**2)/(b*c)
if (xp.I t .1.025) then

mup=sqrt(2.0/(1.0+xp))
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup)
qp(1)=Kmup*mup
qp(2)=xp*mup*Kmup-lap*Emup
do m=3,mmax

nu=(2.*m-5.)/2.
qp(m)=(2.*nu+l.)/(nu+l.)*xp*qp(m-l)-nu/(nu+l.)*qp(m-2)

enddo
else

do m=l,mmax
mm=m-l
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qp(m)=coefh*Fabcy

enddo
endif

xm=0.5*(am**2+b**2+c**2)/(b*c)
if (xm.I t .1.025) then

mum=sqrt(2.0/(1.0+xm))
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum)
qm(1)=Kmum*mum
qm(2)=xm*mum*Kmum-lam*Emum
do m=3,mmax

nu=(2.*m-5.)/2.
qm(m)=(2.*nu+l.)/(nu+l.)*xm*qm(m-l)-nu/(nu+l.)*qm(m-2)

enddo
else

do m=l,mmax
mm=m-l
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

113

enddo
Fabcy=alpha*sum
qm(m)=coefh*Fabcy

enddo
endif

do m=l,mmax
smz(jj,k k , kkk,m)=coef*(qp(m)+qm(m))

enddo

enddo
enddo

enddo
c Pi-symmetry

else if (isyma.eq.3) then
do jj= jstart,jfinish

if (myproc.eq.l) write(6,*)jj,jfinish
b=xrhf(loc(myproc+1,1)*pj+jj)
coef=sqrt(b/c)/pi
do kk=kstart,kfinish

do kkk=2,kmax2-l

if (loc(myproc+1,2)*pk+kk.I t .kkk) then
ap=xzhf(kkk)+xzhf(loc(myproc+1,2)*pk+kk)
am=xzhf(kkk)-xzhf(loc(myproc+1, 2)*pk+kk)

else
ap=xzhf(loc(myproc+1,2)*pk+kk)+xzhf(kkk)
am=xzhf(loc(myproc+1,2)*pk+kk)-xzhf(kkk)

endif

xp=0.5*(ap**2+b**2+c**2)/(b*c)
if (xp.I t .1.025) then

mup=sqrt(2.0/(1.0+xp))
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup)
qp(1)=Kmup*mup
qp(2)=(4/3.*xp**2-l/3.)*mup*Kmup-4/3.*xp*lap*Emup
do m=3,mmax

nu=(4.*m-9.)/2.
qp(m)=qp(m-l)*((2*nu+3)*(2*nu+l)*xp**2/((nu+2)*(nu+l))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qp(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+l))

enddo
else

do m=l,mmax
mm=2*(m-l)
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qp(m)=coefh*Fabcy

enddo
endif

114

xm=0.5*(am**2+b**2+c**2)/(b*c)
if (xm.I t .1.025) then

mum=sqrt(2.0/(1.0+xm))
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum)
qm(1)=Kmum*mum
qm(2)=(4/3.*xm**2-l/3.)*mum*Kmum-4/3.*xm*lam*Emum
do m=3,mmax

nu=(4.*m-9.)/2.
qm(m)=qm(m-l)*((2*nu+3)+(2*nu+l)*xm**2/((nu+2)*(nu+1))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qm(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+1))

enddo
else

do m=l,mmax
mm=2*(m-l)
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qm(m)=coefh*Fabcy

enddo
endif

do m=l,mmax
smz(jj,kk,kkk,m)=coef*(qp(m)+qm(m))

enddo

enddo
enddo

enddo
endif

return
end

subroutine tm(isyma,shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr)

include ’/usr/local/pgi/t3e/include/pglocal.f’

parameter(irmax = 111)
integer n,m,mm,nprocs,myproc
integer isyma,shx,shy,pj,pk
integer jmax2,kmax2,mmax
integer jstart,kstart,jfinish,kfinish
integer loc(shx*shy,2)
real xrhf(jmax2),xzhf(kmax2)
real tmr(pj,pk,jmax2,mmax)

115

real qp(mmax),qm(mmax)
real zB,e l l f ,elle,pi,pi2,coef
real b,c,ap, am,xp,xm,mup,mum, lap,lam
real Kmup,Kmum,Emup,Emum
real nu
real coefh,dcoefh,gamma,factorial
real aa,bb,cc,yy,alpha,sum,diff,Fabcy

cjc I added these arrays to speed this process up!
real myalpha(mmax),mycoefh(mmax)
real mydcoefh(irmax,mmax)
real gmlhf

zB=xzhf(kmax2-l)

myproc = pghpf_myprocnum()
nprocs = pghpf_nprocs()

c pi = 3.14159265358979324
pi = 3.1415926535897932384626433832795028841971693993751058209749446
pi2 = 0.5*pi

n=l
do j=l,shy

do i=l,shx
loc(n,l)=i-l
loc(n,2)=j-1
n=n+l

enddo
enddo

if (loc(myproc+1,1).eq.0) then
jstart=2

else
jstart=l

endif
if (loc(myproc+1,2).eq.0) then

kstart=2
else

kstart=l
endif

if (loc(myproc+1,1).eq.shx-1) then
jfinish=pj-2

else
jfinish=pj

endif
if (loc(myproc+1,2).eq.shy-1) then

kfinish=pk-2
else

kfinish=pk
endif

cjc array setup
gmlhf = gammln(0.5)
do m=l,mmax

mm=m-l
if (isyma.eq.3) mm=2*(m-l)
mycoefh(m)=exp(gmlhf+gammln(mm+.5))/factrl(mm)
aa=(mm+l.5)/2.

116

bb=(mm+.5)/2.
cc=mm+l
myalpha(m)=exp(gammln(cc)-gammln(aa)-gammln(bb))
do ir=l, irmax

fr=factrl(ir-l)
mydcoefh(ir,m)=exp(gammln(aa+ir-l)+gammln(bb+ir-l)-gammln(cc+ir-l))/f r

enddo
enddo

c Equatorial Symmetry
if (isyma.eq.2) then

do jj= jstart,jfinish
do kk=kstart,kfinish

do jjj=2,jmax2-l

b=xrhf(loc(myproc+l,1)*pj +jj)
c=xrhf(jjj)
ap=zB+xzhf(loc(myproc+1, 2)*pk+kk)
am=zB-xzhf(loc(myproc+1, 2)*pk+kk)
coef=sqrt(b/c)/pi

xp=0.5*(ap**2+b**2+c**2)/(b*c)
if (xp.I t .1.025) then

mup=sqrt(2.0/(1.0+xp))
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup)
qp(1)=Kmup*mup
qp(2)=xp*mup*Kmup-lap*Emup
do m=3,mmax

nu=(2.*m-5.)/2.
qp(m)=(2.*nu+l.)/(nu+l.)*xp*qp(m-l)-nu/(nu+l.)*qp(m-2)

enddo
else

do m=l,mmax
mm=m-l
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qp(m)=coefh*Fabcy

enddo
endif

xm=0.5*(am**2+b**2+c**2)/(b*c)
if (xm.I t .1.025) then

mum=sqrt(2.0/(1.0+xm))
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum)
qm(1)=Kmum*mum
qm(2)=xm*mum*Kmum-lam*Emum
do m=3,mmax

nu=(2.*m-5.)/2.
qm(m)=(2.*nu+l.)/(nu+l.)*xm*qm(m-l)-nu/(nu+l.)*qm(m-2)

117

enddo
else

do m=l,mmax
mm=m-l
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qm(m)=coefh*Fabcy

enddo
endif

do m=l,mmax
tmr(j j ,kk,jjj,m)=coef*(qp(m)+qm(m))

enddo

enddo
enddo

enddo
c Pi-symmetry

else if (isyma.eq.3) then
do jj= jstart,jfinish

if (myproc.eq.l) write(6,*)jj,jfinish
do kk=kstart,kfinish

do jjj=2,jmax2-l

b=xrhf(loc(myproc+l,1)*pj+jj)
c=xrhf(j j j)
ap=zB+xzhf(loc(myproc+1, 2)*pk+kk)
am=zB-xzhf(loc(myproc+1, 2)*pk+kk)
coef=sqrt(b/c)/pi

xp=0.5*(ap**2+b**2+c**2)/(b*c)
if (xp.I t .1.025) then

mup=sqrt(2.0/(1.0+xp))
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup)
qp(1)=Kmup*mup
qp(2)=(4/3.*xp**2-l/3.)*mup*Kmup-4/3.*xp*lap*Emup
do m=3,mmax

nu=(4.*m-9.)/2.
qp(m)=qp(m-l)*((2*nu+3)*(2*nu+l)*xp**2/((nu+2)*(nu+l))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qp(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+l))

enddo
else

do m=l,mmax
mm=2*(m-l)
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

118

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qp(m)=coefh*Fabcy

enddo
endif

xm=0.5*(am**2+b**2+c**2)/(b*c)
if (xm.I t .1.025) then

mum=sqrt(2.0/(1.0+xm))
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum)
qm(1)=Kmum*mum
qm(2)=(4/3.*xm**2-l/3.)*mum*Kmum-4/3.*xm*lam*Emum
do m=3,mmax

nu=(4.*m-9.)/2.
qm(m)=qm(m-l)*((2*nu+3)+(2*nu+l)*xm**2/((nu+2)*(nu+1))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qm(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+1))

enddo
else

do m=l,mmax
mm=2*(m-l)
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l)
sum=sum+diff

enddo
Fabcy=alpha*sum
qm(m)=coefh*Fabcy

enddo
endif

do m=l,mmax
tmr(j j ,kk,jjj,m)=coef*(qp(m)+qm(m))

enddo

enddo
enddo

enddo
endif

return
end

Appendix E: GRID.H

c---
C GRID.H
C---

c This f ile contains a load of common blocks. Many of these should be
c removed from commons and confined to the subroutines where they are
c used so as to limit the use of memory.

integer, parameter :: jmax2 = 512, kmax2 = 32, lmax = 128
integer, parameter :: jmaxl = jmax2 - 1, jmax = jmax2 - 2
integer, parameter :: kmaxl = kmax2 - 1, kmax = kmax2 - 2

include ’proc.h’

real, dimension (jmax2, kmax2, lmax) :: r,z,rhf,zhf
!hpf$ distribute r(block,block,*) onto p2
!hpf$ align z (i,j,k) with r (i,j,k)
!hpf$ align rh f(i,j,k) with r (i,j,k)
!hpf$ align zhf(i,j,k) with r (i,j,k)

common /grid/ r,z,rhf,zhf

real, dimension (jmax2, kmax2, lmax) :: rplus , zplus , rhfminus,zhfminus
!hpf$ align rplus(i,j,k) with r (i,j,k)
!hpf$ align zplus(i,j,k) with r (i,j,k)
!hpf$ align rhfminus(i,j ,k) with r (i,j,k)
!hpf$ align zhfminus(i , j ,k) with r (i,j,k)

common /jgrid/ rplus, zplus, rhfminus, zhfminus

real, dimension (jmax2, kmax2, lmax) :: phi, rho
!hpf$ align phi(i,j,k) with r (i,j,k)
!hpf$ align rho(i,j,k) with r (i,j,k)

common /pois/ phi,rho

integer :: itstep
common /timst/ itstep

real :: deltar, deltaz,dtheta
common /jgrid2/ deltar, deltaz,dtheta

real :: p i, grav
common /blok6b/ pi,grav

!hpf$ processors p2(8,4)

119

Appendix F: Makefile

OFILE_DIR= obj

HPFFILES= main.hpf setup.hpf

FFILES= tm.f sm.f e lle .f e llf .f rd.f rf .f gammln.f factrl.f

.SUFFIXES : .hpf

0FILES1= $(HPFFILES:.hpf=.o)

0FILES2= $(FFILES: .f=.o)

0FILES= $(0FILES1) $(0FILES2)

main:$(OFILES)
pghpf -03 -o /home/hcohl/isymal/main $(0FILES) ;

.hpf.o: $(HPFFILES)
pghpf -03 -Mextend -Mreplicate=dims:3 -Moverlap=size:1 -c $<

.f.o: $(FFILES)
f90 -c -dp -03 -N 132 $<

cleanall:
/bin/rm -f * .o *.f

120

V i t a

Howard S. Cohl was born in Paterson, New Jersey, on April 30, 1968. At

the age of 18, Howard attained the rank of Eagle Scout in the Boy Scouts

of America. He graduated from Indiana University, Bloomington, Indiana,

with a bachelor of science degree in Astronomy and Astrophysics in 1990.

He then worked for two years as a research assistant at the National Solar

Observatory in Sunspot, New Mexico. In 1992, he began his graduate career

in the Department of Physics and Astronomy at Louisiana State University

and A&M College (L.S.U.), Baton Rouge, Louisiana. He obtained a master

of science degree in physics from L.S.U. in 1994. He expects to receive the

degree of Doctor of Philosophy in physics at the end of the summer of 1999.

121

