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Abstract

This dissertation addresses the need for an accurate and efficient tech

nique which solves the Poisson equation for arbitrarily complex, isolated, 

self-gravitating fluid systems. Generally speaking, a potential solver is com

posed of two distinct pieces: a boundary solver and an interior solver. The 

boundary solver computes the potential, $ (x b ) on a surface which bounds 

some finite volume of space, V, and contains an isolated mass-density dis

tribution, p(x). Given p(x) and $ (x b ), the interior solver computes the po

tential $(x) everywhere within V . Herein, we describe the development of a 

numerical technique which efficiently solves Poisson’s equation in cylindrical 

coordinates on massively parallel computing architectures.

First, we report the discovery of a compact cylindrical Green’s function 

(CCGF) expansion and show how the CCGF can be used to efficiently com

pute the exact numerical representation of $ ( x b ). A s an analytical represen

tation, the CCGF should prove to be extremely useful wherever one requires 

the isolated azimuthal modes of a self-gravitating system.

We then discuss some mathematical consequences of the CCGF expan

sion, such as it’s applicability to all nine axisymmetric coordinate systems 

which are ^-separable for Laplace’s equation. The CCGF expansion, as ap

plied to the spherical coordinate system, leads to a second addition theorem 

for spherical harmonics.

Finally, we present a massively parallel implementation of an interior 

solver which is based on a data-transpose technique applied to a Fourier-
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ADI (Alternating Direction Implicit) scheme. The data-transpose technique 

is a parallelization strategy in which all communication is restricted to global 

3D data-transposition operations and all computations are subsequently per

formed with perfect load balance and zero communication.

The potential solver, as implemented here in conjunction with the CCGF 

expansion, should prove to be an extremely useful tool in a wide variety of 

astrophysical studies, particularly those requiring an accurate determination 

of the gravitational held due to extremely battened or highly elongated mass 

distributions.

IX



1. Introduction

A great many astrophysical problems require the determination of a grav

itational field. The held, for the most part, can be adequately described by 

Newtonian gravity and often can be derived from a potential function. From 

a mathematical viewpoint there are two methods for obtaining the poten

tial: by solving a partial differential equation, i.e. Poisson’s equation; or 

by solving an integral equation, i.e. employing the Green’s function method 

(Jackson 1975). As Arfken (1985) has explained, boundary conditions are 

directly built into the integral equation rather than being imposed at the 

final stage of the solution of a partial differential equation. Also, mathemat

ical problems such as existence and uniqueness can be easier to handle when 

cast in integral form. On the other hand, solving differential equations is of

ten more tractable than solving integral equations, particularly when dealing 

with multidimensional problems.

In building realistic models of steady-state galaxies, a considerable amount 

of effort has been devoted in recent years toward identifying analytically pre

scribable potential-density pairs. In some cases a reasonable three dimen

sional density distribution can be represented by a sum over a finite set of 

“basis density functions” in which case Poisson’s equation can be solved using 

the corresponding basis sets of the potential-density pairs (Earn 1996; Ro- 

bijn & Earn 1996). Some useful steady-state models also can be constructed 

by superposing other special density (or surface-density) distributions with
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known potentials, such as those derivable from Stackel potentials (de Zeeuw 

1985; Evans & de Zeeuw 1992).

When following the time-evolutionary behavior of models whose struc

tures are changing on a dynamical timescale, however, one must develop 

an efficient technique for solving Poisson’s equation that works for arbitrary 

mass distributions. Furthermore, simulations of time-evolving systems often 

are carried out on grids that cover a finite (rather than an infinite) region of 

space, in which case one must also determine the potential on the boundary 

of that region. In practice, then, in many astrophysical studies a Green’s 

function method is used to fold the potential only on a boundary outside of 

a mass distribution, then a technique is developed to solve Poisson’s equa

tion to obtain the interior solution. A standard technique for calculating 

the boundary potential has been to expand the Green’s function in spherical 

coordinates, resulting in what is often referred to as a “multipole method” 

(Black & Bodenheimer 1975; Norman & Wilson 1978; Barnes & Hut 1986; 

see also §2.1.1, below) in which the potential is grouped into an infinite sum 

over a basis set of spherical harmonics described by two quantum numbers 

— one meridional, /, and the other azimuthal, to.

Because very flattened mass distributions are poorly described in a spher

ical coordinate system, we have examined whether it might be advantageous 

in numerical simulations to cast the Green’s function in a cylindrical coordi

nate system. The “familiar” expression for the cylindrical Green’s function 

expansion can be found in variety of references (cf., Morse & Feshbach 1953; 

Jackson 1975; Arfken 1985). It is expressible in terms of an infinite sum over
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the azimuthal quantum number m and an infinite integral over products of 

Bessel functions of various orders multiplied by an exponential function (see 

eq. [2.13], below). We note a previous attempt by Villumsen (1985) to solve 

the potential problem in this manner; he presents a technique where each 

infinite integral over products of Bessel functions is evaluated numerically 

using a Gauss-Legendre integrator. In that paper Villumsen states, “Cylin

drical coordinates are a more natural coordinate system for disk systems.” 

He then emphasizes the obvious problem that, due to the infinite integrals 

involved, a calculation of the potential via this straightforward application 

of the familiar cylindrical Green’s function expansion is numerically much 

more difficult than a calculation of the potential using a spherical Green’s 

function expansion.

In chapter 2 of this dissertation, we derive an extraordinarily compact 

expression for the Green’s function in cylindrical coordinates. Our expres

sion (see eq. [2.15], below) completely removes the need for a numerical 

evaluation of the infinite integrals involved since we have found an analytical 

expression for the integral in terms of half-integer degree Legendre functions 

of the second kind. As we discuss in subsequent sections of chapter 2, our 

technique should prove to be a particularly powerful tool for studying self- 

gravitating systems that conform well to a cylindrical coordinate mesh, such 

as highly flattened (disk systems) or highly elongated (jet or bipolar flow) 

mass distributions. As far as we have been able to ascertain, this result 

has not been previously derived. At the very least, based on published re
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search over the past thirty years, the result appears to be unfamiliar to the 

astrophysics community.

In chapter 3 of this dissertation, we demonstrate how the CCGF can be 

extended to all nine axisymmetric coordinate systems which are 1Z— sep

arable for Laplace’s equation. The first coordinate system we address in 

chapter 3 is the spherical coordinate system, where the result is particularly 

interesting and ends up leading to a second addition theorem for spherical 

harmonics. The standard addition theorem for spherical harmonics demon

strates how one might collapse the summation over all m terms into a single 

special function expression, whereas the second addition theorem shows how 

one may now collapse the summation over all l terms in the Green’s function. 

In this representation, one is capable of isolating each and every azimuthal 

mode in the spherical Green’s function. We prove the new addition theorem’s 

exactness in one limiting case. Furthermore, we show how this result can be 

extended to the rest of the axisymmetric Green’s functions and how in future 

investigations this result is likely to lead to a better general understanding 

of how gravity represents itself in axisymmetric coordinate systems.

In chapter 4 we describe our numerical implementation of an efficient 

scheme to solve Poisson’s equation numerically on massively parallel architec

tures. The groundwork on serial algorithms for solving Poisson’s equation is 

extensive. In particular, for some time, extremely efficient methods have been 

known for solving the set of sparse matrices that result from a second-order 

accurate Unite-differencing of the Poisson equation in cylindrical coordinates 

given the boundary solution. In Cartesian coordinates there has been a large
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successful effort in order to find accurate and highly parallel methods for solv

ing Poisson’s equation (i.e. Fast Poisson solver using Fourier methods). The 

situation is not so simple in cylindrical coordinates. Due to the non-constant 

variation of the matrix elements that result from the finite-discretization of 

the cylindrical Poisson equation, direct Fourier methods are not possible. 

It is only in the naturally periodic azimuthal coordinate direction, where 

one can take advantage of this technique which reduces the complexity of 

the problem, in terms of coupled dimensions, from three-dimensions to two- 

dimensions. Techniques like Buneman cyclic reduction can obtain the direct 

solution of the resulting two-dimensional problems in an extremely accurate 

fashion, other direct techniques aren’t even so efficient when implemented in 

serial. When one asks the question of how to solve these problems in par

allel one quickly sees that the global nature of the two-dimensional solution 

methods are very difficult to implement in parallel and do not result in a 

load-balanced solution of the matrix problem. It is here that we present the 

Fourier-ADI method, which is iterative, although very accurate, and takes 

advantage of the highly parallel data-transpose technique. In this computa

tional strategy all computations are performed without communication, and 

all communications are restricted to highly parallel, global three-dimensional 

data-transpositions. We describe in detail how this algorithm is implemented 

and give a theoretical operation count which demonstrates the highly paral

lel nature of this algorithm. It is the Fourier-ADI technique, combined with 

the CCGF technique for evaluating the boundary potential that yields an 

extremely efficient and accurate potential solver.
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It is important to recognize that the focus of this dissertation is not 

on obtaining a detailed solution to one particular astrophysical problem. 

Instead, by developing an accurate and efficient technique for solving the 

Poisson equation for arbitrarily complex mass distributions, we are laying 

the groundwork necessary to support future advances in a large number of 

subfields of astrophysics. Examples of studies that are certain to benefit from 

the developments presented here are: the fragmentation of molecular cloud 

cores in order to study star formation processes (Boss 1993; Boss 1998a; 

Truelove et al. 1997); the formation of giant gaseous protoplanets (Boss 

1998b); the dynamical bar-mode instability that arises in rapidly rotating 

gas clouds (Cazes 1999; Toman et. al. 1998, Pickett, Durisen & Davis 1996); 

protostellar disks (Pickett et. al. 1998); nonexplosive contraction of the 

cores of massive stars (Hayashi, Eriguchi, & Hashimoto 1998) and estimates 

of the gravitational radiation that should be emitted from such configurations 

(Yoshida & Eriguchi 1995); steady-state structures of triaxial galaxies (Earn 

1996; Robijn & Earn 1996); self-consistent held techniques (Hachisu 1986); 

mass transfer in close binary systems (Motl, Frank, and Tohline 1999) and 

the ultimate merger of such systems (New and Tohline 1997); and binary 

star formation (Cazes 1999).



2. A Compact Cylindrical Green’s Function Expansion

2.1 A Comparison of Potential Evaluating Techniques

In general, the integral solution to the potential problem may be written 

in terms of the Green’s function C?(x, x') as follows (cf., eq. [1.42] of Jackson 

1975):

$ (x) = —G j  p(x.r)Q(x,x.r)d3x'

G
+ “-- r47T Js dn'

da', (2 . 1)

where $ is the potential, G is the gravitational constant, p is the mass density, 

x denotes the position vector from the origin to the point at which the 

potential is being evaluated, x' denotes the position vector over which the 

mass integration is performed, V  is the volume over which x' is integrated, 

and S is the bounding surface of V . For the case of no bounding surfaces — 

as in most astrophysical systems — the surface integral in eq. (2.1) vanishes 

due to the requirement that both $ and the derivative of $ normal to the 

surface d<&/dn' vanish at infinity. In this case the Green’s function reduces 

to

g (x ,x O =  ^ ■ (2.2)
X X

These requirements therefore reduce eq. (2.1) to the more often quoted 

integral expression for the gravitational potential, namely

7
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$(x) = —G f  p(x.')Q(x,x.')d3x' = —G f  —̂———̂d3x'. (2-3)
J V JV X X

2.1.1 The Multipole Method

In spherical coordinates, the expansion of the Green’s function is (cf., eq. 

[3.70] of Jackson 1975)

1 OO l

x — Xf  =  4^ E  E
i

E l ,  2/ +  1 r'+1 Yrm(e'^ ')Y lm(0A), (2.4)
/=o m=—i ^  1 x ' y

where r represents the radial distance from the origin, 9 is the polar angle, 

</> is the azimuthal angle, and is the spherical harmonic function. (For a 

complete specification of the spherical harmonic function, see eq. [3.13] and 

the discussion associated with it.) If we insert eq. (2.4) into eq. (2.3), we 

obtain an expression for the potential at an exterior point (r > r'),

OO l
$ e^(x) =  E  E

/=0 m = — l

4tt Yim{6,(t>) <
21 +  1 r'+! qirnl

where the coefficients

(2.5)

4 „  =  /  Y ; j e ' . tp')r',pix')d3x .  (2.6)
J v

are called multipole moments. In the case of an axisymmetric configuration, 

only the m =  0 terms in expression (2.4) survive, reducing it to

1 00 rl
I _ /1 =  E “ ?+rpf(cos0 ')^(cos0). (2.7)
|x x | m=o /=0 r>

The corresponding expression for the axisymmetric potential is therefore 

given by,
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$ e x t ( r , 0 )
m—0

G j2 P i(co s 9 )r - {l+1)Mh
1=0

where now the axisymmetric multipole moments,

(2 .8)

M, =  [  p(r',ff)r''Pi(msff)dsx .  (2.9)
J v

Expressions (2.5) or (2.8) for the gravitational potential have been adopted by 

many groups when developing numerical techniques to follow self-gravitating 

fluid flows on spherical or cylindrical coordinate meshes (Black & Boden- 

heimer 1975; Norman & Wilson 1978; Boss 1980; Tohline 1980; Stone & 

Norman 1992; Boss & Myhill 1995; Muller & Steinmetz 1995; Yorke & Kaisig 

1995).

As mentioned earlier, usually this multipole technique has been used to 

determine the potential everywhere along the bounding surface of the com

putational grid, then a separate technique has been developed to solve the 

Poisson equation (see chapter 4, eq. [4.1] and the relevant discussion given 

therein) in order to obtain the gravitational potential throughout the volume 

of the grid. But when utilizing this multipole method an exact determination 

of $ for a discrete mass distribution is not possible because of the required 

infinite sum over the quantum number l. Instead, a decision must be made 

regarding when the series should be truncated in order to achieve a desired 

degree of accuracy for a given p(x.!) distribution. For example, referring to an 

expression for the axisymmetric potential analogous to our eq. (2.8), Stone 

& Norman (1992) state that, “As implemented in ZEUS-2D, we continue



10

to add higher moments until has converged to one part in 103, up to a 

maximum of 100 terms.”

One must also be sure that every location on the boundary of the com

putational grid Xb at which the exterior potential is being evaluated is at 

a radial location re that is greater than all interior grid locations at which 

matter resides. Otherwise $(x^ ) must be evaluated in two parts, namely,

$(xB) = $Krt(xs) + (2.10)

where ^ ^ ( x b ) must be determined through a separate integration over the 

mass that lies at radial locations greater than re. Specifically, the potential 

at an interior point (r < r'),

47r

/=0 m = — l 21 +  1
( 2 . 11)

where the coefficients

<L =  X  (2-i2)

As we illustrate more fully in §2.2.2, below, unless the boundary of a cylindri

cal grid is carefully designed so that it lies entirely outside the interior mass 

distribution (usually this means placing the grid boundary far away from 

the surface of the mass distribution), it will become necessary to calculate 

a separate set of “interior” and “exterior” moments of the mass distribu

tion for the majority of boundary locations. This requirement will make the 

multipole method very computationally demanding, unless accuracy is sac
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rificed through a reduction in the number of terms that are included in the 

l summation.

2.1.1.1 General Expressions

In terms of the cylindrical coordinates (i?, </>, z) the Green’s function may 

be written as (cf., problem [3.14] of Jackson 1975),

x — x
^ r oo

7|= £  Jo dk Jm(kR)Jm(kR’ ) e'r\ p-k(z>~z<) (2,13)
m — — oo

where Jm is an order to Bessel function of the first kind. Especially when 

faced with the problem of determining the gravitational potential on a cylin

drical coordinate mesh, it would seem that this is a more appropriate expres

sion to use for the Green’s function than eq. (2.4). As we discussed in the 

introduction, however, devising an efficient numerical technique by which to 

accurately evaluate the infinite integral over products of Bessel functions has 

proven to be a difficult task.

Using eq. (13.22.2) in Watson (1944) we recently have realized that,

/*°° 1 i  cR A- b  ̂ -1- c  ̂\
e~atJm(bt)Jm(ct)dt =  — =  Qm_i ( , (2.14)

Jo 'Ey be 2 V Zbc J

where Qm_ i is the half-integer degree Legendre function of the second kind.

Hence, it becomes possible to rewrite eq. (2.13) as,

1
x — x'

1
7Ta/  RR1 E  Qm- l(v), (2.15)

with
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R2 +  R'2 +  ( z -  zr)2 
2 RR'

(2.16)

We note that this same result for the Green’s function can be obtained by 

combining eq. (3.148) in Jackson (1975) with eq. (6.672.4) in Gradshteyn & 

Ryzhik (1994). Although relationship (2.14) and, hence, the ability to derive 

(2.15) from (2.13), has been known for some time, apparently the astrophysics 

community has not been aware that the cylindrical Green’s function can be 

expressed in this extraordinarily compact form. As we shall demonstrate, 

highly accurate and efficient means of evaluating $ (x ) can be developed 

from expression (2.15).

Realizing that Q _ i+m(x) =  Q - i_ m(x) (cf., ecf [8.736.7] in Gradshteyn 

& Ryzhik 1994), and that etB +  e~lB =  2cos0, we can express eq. (2.15) in 

terms of all m > 0 as

1 1 °°
A— Zn =  fjyjfi H  emcos[m(</>- <//)] Qm_i(x) , (2-17)
lx  -  x  | 7tX R R '  m=0

where em is the Neumann factor (Morse & Feshbach 1953), that is e0 =  1 

and em =  2 for m > 1. Now we substitute eq. (2.17) into eq. (2.3) obtaining

*(x) =  -  A L  /  A ,p (-')
7TV /? JV \/ #1 n/1 V j. c V ±L m — Q

emcos[m(</)- </>')] Qm_ i(x ) ,  (2.18)

which may also be rewritten as,

$ (x ) d3. /K x')
V Q-±(x)
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2 G (‘ q { ]
: J2  cos(m<f>) J  d V - ^ =  cos(m<£') Qm_k{x) (2.19) 
m=1 ^ y R7n

2G
£  sin(m</>) /  0?3® '^ 5 =f sin(m</)/) <2m_ i(x ).
 ̂—1 77 V II' 27n m = l

Finally, an azimuthal discrete Fourier transform of this last expression 

yields the following elegant representation of the gravitational potential in 

Fourier space:

FV r
♦ !? ( « .* )  = - y f  p ^ { R , z ' )  Q m_i (v) ,  (2.20)

where E refers to the area over which the meridional integration is to be 

carried, da' =  dR'dz', and the Fourier components of $ and p are defined 

such that,

j  ^ i  (x ) =  £  cos(m<f>) j  V  }  (R,z) +  £  sin(m<f>) j  %  \ (R, z ).
I  ̂ J m=0 {Pm ) m=0 {Pm )

(2.21)

(Note that $0 =  Po =  0-)

2 .1.1.2 Functional Forms of O _iw m 2

Useful expressions for Q_\(x) and Q±(x) may be obtained from eqs. 

(8.13.3) and (8.13.7), respectively, of Abramowitz & Stegun (1965), namely,

Q - l {x ) =  p K { p ) , ( 2 .2 2 )

and

Qi{x)  = XpK{p)  -  (1 + x)pE(p ) , (2.23)
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where K  represents the Complete Elliptic Integral of the First Kind, E is 

the Complete Elliptic Integral of the Second Kind, and

_  / 2 _  / 4 RR'
^ =  v T T ^  “  v (R +  R')2 +  ( z -  z 'y  • (2'24)

One can then obtain the higher degree half-integer Legendre functions of the 

second kind using the recurrence relation (cf., eq. [8.5.3] in Abramowitz & 

Stegun 1965)

ryj!   1 / Til  
O - i W  = -  S 7 3 I  O - i W -  <2-25>

For example, substituting eqs. (2.22) and (2.23) into eq. (2.25) gives the 

following useful expression for Q i(x ):

<2 §(x) = -  ^x{l  + x)^E(y).  (2.26)

According to Table XIII in Tables of Associated Legendre Functions 

(United States. National Bureau of Standards. Computation Laboratory 

1945), we may also express Qm_i(x)  in terms of Gauss’s Hypergeometric 

function as follows:

Q m - i(x) =
/T r(m  +  |)

2m+2 r(m + 1) Xm+2 iFr
2m +  3 2m +  1

;ra +  l ; X ) .  (2.27)
X

where the specific Hypergeometric function

He)
r(o )r(6 )A „

F(a +  n) T(6 +  n) yn
2F1(a,b; c ;y )

T(c +  n) n\
(2.28)
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and T is the Gamma function (see eq. [6.1.1] of Abramowitz & Stegun 1965). 

Inserting eq. (2.28) into eq. (2.27), we derive the following expression:

Q m- i { x )  =
T(m + |)

i E
r( 2m +4n +3   ̂

4 ; r( 2 m + 4 n + l
4

r (^ t 3 )  r ( ^ i ) (2x )m+2 fr'o r(m  +  1 +  n) r ( l  +  n) x 2n'
(2.29)

It is well known (see Abramowitz & Stegun 1965), that Legendre functions 

of the second kind are singular when their arguments are unity. Evaluating 

the limit of Qm_ i(x )  in eq. (2.29) for large values of x  gives the asymptotic 

behavior of Qm_ i(x )  (with only the n =  0 term in the sum surviving),

lim Q
X -» o o (x)

r(m  +  I) v 'tt
r(m + 1) (2x)m+̂ ’

(2.30)

which decays as l / x m+2-

2.2 Substantiations

In this section, we verify the correctness and highlight the utility of the 

compact cylindrical Green’s function (hereafter, CCGF) representation by 

comparing expressions for the Newtonian potential derived from it with pre

viously known results. We show that the familiar expression for the poten

tial of an infinitesimally thin, axisymmetric disk in terms of complete elliptic 

integrals can be readily derived from eq. (2.19). We also show how this 

expression can be generalized to axisymmetric systems of arbitrary vertical 

thickness and how an analogous expression for any other isolated azimuthal 

Fourier mode can now be readily derived. In the context of nonaxisymmetric 

fields, we show how Kalnajs’ reduced potential for an infinitesimally thin, 

nonaxisymmetric disk can be readily derived via our CCGF expression, and
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we draw on one more specific problem from magnetostatics to demonstrate 

how the CCGF reproduces the exact analytical expression for a potential 

problem where the solution can be expressed entirely in terms of the m =  1 

(Q i) nonaxisymmetric term.

Finally, for several “geometrically thick” configurations of uniform den

sity, we provide numerical comparisons between $ (x b ) as derived from the 

CCGF method and as determined from (a) the traditional multipole method 

and (b) analytical prescriptions, where available. In §2.2.3 we comment on 

the computational advantages and disadvantages of the CCGF method when 

the objective is to determine values of the gravitational potential outside, but 

in close proximity to, flattened or elongated mass distributions. Generally 

speaking, for a given computational grid resolution we find that the CCGF 

method provides more accurate values of $ (x b ) in equal or less computa

tional time than can be derived using the multipole method, but in certain 

situations the CCGF method can be quite demanding in terms of memory 

storage requirements.

2.2.1 Analytical Verifications and Propositions

2.2.1.1 Axisymmetric Systems with Vertical Extent

For an axisymmetric mass distribution, eq. (2.19) reduces to the form,

with

M R, Z) (2.31)

=  dcr'\fR' p(R',z ' ) Q_ i(x )
JYj 2<?o (2.32a)
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= J da'y/R' p(R!,z') pK(p), (2.32b)

where x  and h have been dehned by eqs. (2.16) and (2.24) respectively. As we 

shall illustrate in §2.2.2, this expression can be used effectively to compute 

the potentials outside of oblate spheroids, prolate spheroids, tori, or thick 

disks with arbitrarily complex p(R, z) distributions.

It is important to note that eq. (2.31) provides an expression for the 

gravitational potential of an axisymmetric mass distribution that contains 

a single term and a single moment of the mass distribution q0. In contrast 

to this, the corresponding expression for the potential in spherical coordi

nates [eq. (2.8)] requires a summation over an infinite number of terms, each 

containing a different moment of the mass distribution. Hence, eq. (2.31) 

provides an expression for the potential that is easier to evaluate and guar

anteed to be more accurate (for a given computational grid resolution) than 

eq. (2.8). We strongly recommend its adoption in numerical algorithms that 

are designed to study self-gravitating, axisymmetric fluid flows.

2.2.1.2 Behavior on the Axis 

In cylindrical coordinates,

=  [R2 +  R'2 — 2RR1 cos(</> — (j)') -\- {z — z')2]~^. (2.33)

Inserting eq. (2.33) into eq. (2.3) and taking the limit as R approaches zero, 

we see that the integral solution to the potential along the z-axis due to a 

mass distribution p{x!) is

x — x'
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lim $ (x ) =  —G f  d3x' .— ^   ̂ . (2.34)
v ; Jv ĴR,2 +  _  z,y  v ;

Here we demonstrate that this familiar, general solution to the potential along 

the z-axis can be derived from our compact expression for the cylindrical 

Green’s function.

First we examine the axisymmetric component of the potential which, 

according to eqs. (2.22), (2.32b) and (2.24) is,

$o(x) = - —  [  d3x' p(x/)
^ Jv J (R  +  R')2 +  ( z - z ' ) 2

K
4RR'

(R +  R')2 +  (z -  z')2
(2.35)

On the z-axis, eq. (2.35) becomes

lim 4>0(x)
R -+ o v 7

—  f  <iV
7r Jv

P(X'} lim K
R'2 +  (z -  z')2 R^°

4 RR!
R'2 +  ( z - z ' ) 2 J

(2.36)

According to Abramowitz & Stegun (1965; eq. [17.3.11]), /F(0) =  7t/ 2 ,  so 

from expression (2.36) we obtain

lim $ 0(x) = — G /R—±0 Jv d3 x d(x')
R'2 +  ( z -  z')2

(2.37)

which exactly matches the familiar result for the axis potential given above.

We now demonstrate that all vanish on the axis for rri > 1. According 

to eq. (2.18), the nonaxisymmetric components of the potential are,

4>r x =  - 1 4  /  lPx
7r IV

=  cos [mV -  <j>')] ~^= Qm_ i(x). (2.38)
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If we insert eq. (2.29) into eq. (2.38), we obtain

= -
2 G r(m  +  |)
/y]- 2rm-\-l  ̂ 2m_̂ 2 Jv d3x '^ y =  cos [m(fi> — <//)]

£
r( 2m + 4n +3  N r( 2m +4rt+l ' 

4 -
-1

(2.39)
“  r (to +  1 +  n) r ( l  +  n)

From this expression we can see that, on the axis, the radial contribution to

the nonaxisymmetric components of the potential is governed by the behavior 

of

lim(_R-»o
/ 2n+m  +  l / 2 \ - l  _
" ’ R̂ O

2 R' 2 ra+m+f
R2 n +m (2.40)

.R,2 +  (z -  z ')2-

which vanishes for all 2n +  m > 0. But, by definition in expression (2.39), 

n > 0 and to > 0. Hence, all of the nonaxisymmetric components of the 

potential vanish on the axis, thus providing a critical check on the validity 

of our cylindrical Green’s function expansion.

2.2.1.3 Infinitesimally Thin Axisymmetric Systems

In the case of an infinitesimally thin axisymmetric disk located in the 

plane z' =  0, the density distribution can be written as

p(R\z') =  Z (R )8(z ')} (2.41)

where H(i?') is the surface density of the disk and S(z!) is a Dirac delta func

tion. Inserting this expression for p (R , zr) into eq. (2.32b) and integrating 

over z' we obtain the following exact expression for the gravitational potential 

of any infinitesimally thin, axisymmetric disk:
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$ 0 , di sk (R,z)  =  -
2 G

dRl'/Rl T,(R') HdK(nd), (2.42)

where

4 RR!
Vd = (2.43)

(R +  Rr)2 +  z2'

This equation exactly matches the expression for the potential of an infinites

imally thin, axisymmetric galaxy disk given, for example, by eq. (2-142a) of 

Binney & Tremaine (1987). It is now clear through eqs. (2.31) and (2.32) 

that this familiar expression can be generalized to axisymmetric configura

tions with arbitrary vertical extent.

2.2.1.4 Nonaxisymmetric Systems and Kalnajs Logarithmic Spirals

Here we demonstrate that the expression for the reduced potential of 

an infinitesimally thin, nonaxisymmetric disk that has been developed by 

Kalnajs (1971; see also, for example, §2.4b of Binney & Tremaine 1987) can 

be readily derived from our CCGF. Guided by a key functional relationship 

found in Morse & Feshbach (1953), we show through a brief derivation in 

Appendix A (see specifically eq. [A.5]) that,

Y  emcos (to</>) <5m_i(cosh /i) =
7r 1

m=0 - \/2 \Jcosh fi — cos 4>

Hence, expression (2.17) for the Green’s function can be rewritten as,

(2.44)

x — x' \f2RR' cosh £ — cos(</> — <//)
(2.45)

where,
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£ =  cosh *(x) =  hi(x +  \Jx2 -  !)• (2.46)

Combining this expression with eq. (2.3), we may therefore also conclude 

that the “reduced potential,”

V (x ) = I>(x ) = — G d(x')
v \/~RJ ^2[cosh £ — cos(cf) — </>')]

cPx', (2.47)

or,

v (x) = _ G r  ™  r \ i4! r  dA  ,
Jo R'  Jo J - co l  y  2 [cosh £ — cos((/> — (//)]

>. (2.48)

Now, if we consider an infinitesimally thin disk located in the plane z' =  0, 

the density distribution can be written as,

P ^ )  =  8(z') C iR '.c/i. (2.49)

where S r e p r e s e n t s  an arbitrary nonaxisymmetric surface density 

distribution, and the integral over z' in eq. (2.48) can be completed giving,

poo /j p2tt 3

V ( R , 4)  =  - G j o —  j o

1

/2[cosh[ln(i?/i?')] — cos (</> — <//)] 

If, finally, we dehne a reduced surface density,

(2.50)

S{R,<j>) = R*X(R,</)), ( 2 .5 1 )
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and adopt in place of R the independent variable,

we obtain,

u =  In R} (2.52)

/ OO /*27T
du' d<f)'S(u\ 4> )K,2d {u ~ u', <f> — <//), (2.53)

-oo JO

where

K.2d (u — u', 4> — (f>r) =  -----  . (2.54)
A/2[cosh(u — u') — cos (cf) — (/>')]

Eq. (2.53) is the expression Kalnajs (1971) has provided for the reduced 

potential of an infinitesimally thin, nonaxisymmetric disk. It is via this 

expression that Kalnajs has realized the utility of viewing nonaxisymmetric 

surface density distributions in terms of their various “logarithmic spiral” 

components.

Our expression (2.48) may now be viewed as a generalization of Kalnajs’ 

reduced potential that applies to nonaxisymmetric structures of arbitrary 

vertical thickness, the key difference being that, in our more generalized 

expression for the reduced potential, the function K,2d (u — u',(f) — <//) must 

be replaced by the function,

^3d {x , 4>- 4>r) = (2.55)
2[x -  cos(4> -  (f>')\

where, as defined in eq. (2.16), x  itself is a function that involves a non

trivial coupling between the coordinate variables R, R', z and z', which we
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will further describe below. Although, as indicated by expression (2.46), it 

is possible to rewrite cosh_1(y) in terms of a logarithmic function and, in so 

doing, transform eq. (2.55) into a form that more closely resembles Kalnajs’ 

function AAzy the nontrivial coupling between coordinate variables within x  

makes such a formulation less compelling in the full three-dimensional prob

lem.

2.2.1.5 The m =  1 mode and the Magnetic Field of a Current Loop

A derivation of the magnetic held of a time-independent circular current 

loop of radius a, and current /  has been provided in a multitude of classical 

electromagnetism textbooks (e.g., Landau & Lifshitz 1960; Jackson 1975). 

Here we demonstrate that this classic problem can be readily solved via the 

CCGF. In a magnetostatics problem we may calculate the magnetic held 

from a vector potential, A (x) as follows,

B (x) =  V x A (x ) . (2.56)

Then in the Coulomb gauge, the vector potential satishes the following vector 

Poisson equation,

V 2A (x ) = ------J (x ), (2.57)
c

where J(x) is the current density and c is the speed of light. The integral 

solution of this vector Poisson equation produces the magnetic analogue of 

eq. (2.3), namely,

(2.58)
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In the case of a circular current loop located in the equatorial plane, 

z' =  0, the current density has only a </> component which is

J (x) =  cj)Jif,, (2.59)

where

=  /  cos ((f>r)5(zr)5(R' — a). (2.60)

Since the final solution must be invariant under rotation, we choose our 

observing point to be at </> =  0. Substituting eqs. (2.59) and (2.17) into eq. 

(2.58), we obtain the following expression for the </> component of the vector 

potential:

/  /yy /*2tt
A* =  — \ s  d(f>' cos(<f>') e m  cos(m,(f)r)Q m_ i (x i ) , 

kc V R Jo m=0 2

where

( 2 .6 1 )

_  R2 +  a2 +  z2 
Xl =  2Ra '

The only term in the summation that contributes is the m 

(2.61) becomes,

(2.62)

1 term, so eq.

A* = - J ^ Q i ( x i )  f  *cos2(<t>W = - J i Q M ’i r c v n 2 Jo c V ri  2

which via eq. (2.23), can be rewritten as,

(2.63)

A a —
Ala

CyJ (R +  a)2 +  z2
( 2 - r f ) K(m) - 2E( m) (2.64)
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This identically reproduces the previously known result for the vector poten

tial of a current loop (cf., eq. [5.37] in Jackson 1975).

2.2.1.6 The m =  2 and Other Isolated Fourier Modes

In §2.2.1.1, we used the CCGF method to derive a general expression 

that describes the m =  0 (axisymmetric) Fourier mode contribution to the 

gravitational potential for any mass distribution. Here we illustrate how 

similarly simple expressions for any other isolated azimuthal mode of a self- 

gravitating system can be derived via eq. (2.20). For an m =  2 distortion, 

for example, the two relevant Fourier components of the potential are,

q r< ,■
$ 2’2{R,z) = ----- j=  da'y/R p\2(R!,z') Qz{x)-  ( 2 -65)

Utilizing eq. (2.26), which was derived in §2.1.2.2 via the recurrence 

relation for half-integer degree Legendre functions of the second kind, we are 

able to rewrite this expression for <&\’2(R, z) in terms of more familiar elliptic 

integrals as follows:

q r< ,■
$ l ’2(R,z) =  - ^ =  J^da'y/R! pl’2(R',z') /i[(4y2 -  l ) /T ( / i ) - 4 y ( l+  x)U(/i)].

( 2 .66)

Furthermore, in the case of an infinitesimally thin disk the Fourier com

ponents of the density can be written as,

p 12’2( r ’ , z’) =  j; 12’2( r ’) s (z’),1 ,2 , (2.67)

and we obtain the following exact expression for the m =  2 Fourier compo

nents of the potential of any infinitesimally thin, self-gravitating disk:
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®2%s k(R,z)

(4%d

Ofl roo __yo d&VR?Xl’2(R!) [id

l)K(fid) -  4xd(l + Xd)E(fid) , ( 2 .68)

where Xd =  2//i| — 1. This compact analytical expression should prove useful 

in, for example, studies of m =  2 spiral-arm instabilities in self-gravitating 

galaxy or protostellar disks.

2.2.2 Numerical Evaluations

Here we perform a variety of numerical tests in which we have discretized 

selected mass-density distributions on a uniformly-zoned cylindrical coordi

nate mesh. We have selected these models in order to elucidate the power 

that the CCGF method offers as a numerical technique for evaluating exte

rior potentials surrounding self-gravitating objects. Our comparison incorpo

rates three methods for potential evaluation: (1) analytical potential-density 

expressions, as drawn from the works of other authors and detailed here 

in Appendix B; (2) the multipole method described in §2.1.1; and (3) our 

CCGF method, as outlined in §2.1.2. Where available, analytical solutions 

provide extremely useful verification of numerical methods for potential eval

uation since any valid method should yield asymptotic convergence towards 

the analytical solution with increased grid resolution. Most of the models we 

have selected have known analytical solutions. In cases where the analytical 

solution does not exist, we simply compare the potentials obtained through 

the CCGF and multipole methods.
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Table 2.1 lists the five models we have selected and Table 2.2 summarizes 

the seven tests that we have conducted using these models. Each of the five 

selected models has a uniform density distribution that is enclosed within 

a surface of a well-defined geometry as described by the “Type of Object” 

column in Table 2.1. Fig. 2.1 portrays the above described models through 

a three-dimensional isosurface visualization of each homogeneous object’s 

boundary.

The oblate, prolate and toroidal objects are all axisymmetric. For the 

two oblate spheroids (Models I and II), the aspect ratios listed in Table 2.1 

define the size of the equatorial axis relative to the polar axis. For the prolate 

spheroid (Model III), the 20:1 aspect ratio describes the size of the polar axis 

relative to the equatorial axis. For the torus (Model IV), the aspect ratio 

describes the size of the major radius of the torus relative to its minor, cross

sectional radius. Finally, we also have chosen one nonaxisymmetric model 

(Model V) which is a 20:10:1 triaxial homogeneous ellipsoid.

The column labeled “Grid Resolution” in Table 2.2 specifies the size of the 

computational grid or grids that was used in each test. For each axisymmetric 

model (Tests 1 -6 ) ,  the stated resolution J X K  refers to the number of radial 

(J) and vertical (K)  zones used; for Model V (Test 7), the stated resolution 

J X K  X L includes the number of azimuthal (L) zones that were used as 

well. For each of the tests identified in Table 2.2, we have determined the 

fractional error of a given numerical solution for the potential $ by measuring 

at every location along the top and side boundaries of our cylindrical grid, 

the quantity,
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Table 2.1: Models

Model Type of Object Aspect Ratio Equation Number
I oblate spheroid 5:1 B.2
II oblate spheroid 20:1 B.2
III prolate spheroid 20:1 B.2
IV torus 20:1 —
V triaxial ellipsoid 20:10:1 B.7
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Figure 2.1: Three-dimensional wireframe diagrams illustrating the geometry 
of the five uniform-density models for which the external gravitational poten
tial has been calculated herein using the CCGF technique ($^) and compared 
with approximate solutions obtained via a standard multipole technique ($ y ) 
and (where available) exact analytical expressions ($^). See Table 2.1 for 
details regarding each test model’s selected aspect ratio.
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Table 2.2: Tests

Test Model Grid Resolution
1 I 128 x 128
2 I 128 x 32
3 II 1024 x 64
4 III 32 x 512
5 IV 512 x 32
6“ I J x K
7 V 512 x 32 x 256

“ J =  32i, K  =  8i, with (1 < i < 25)

e =  — t-----$* (2.69)

where is the “known” solution. Figures 2.2 - 2.7 present subsets of these 

error measurements in various ways.

In presenting the results of these tests, the numerically derived potential 

$  is either the Newtonian potential generated via the multipole method, 

or via the CCGF method, Where available, the “known” solution is 

given by the analytical solution, as drawn from the relevant Appendix 

B expression and identified by the entry in the “Equation Number” column 

of Table 2.1. Otherwise we take to be since we recognize it as the 

more correct numerical solution for the discretized model. Note that in Test 

6, Model I has been re-examined using 25 different grid resolutions. This has 

been done in order to ascertain how the determination of relative to 

improves with grid resolution.
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2.2.2.1 Axisymmetric Models

For the four axisymmetric models listed in Table 2.1, has been deter

mined via eq. (2.31) and its associated moment of the mass distribution as 

defined by eq. (2.32b). The thick-dashed curves in Figs. 2.2, 2.3, and 2.4 

represent the fractional error obtained by comparing with (k"4 for Mod

els I, II, and III, respectively. Since, as emphasized in §2.2.1.1, eq. (2.31) 

provides an expression for the gravitational potential that contains only one 

term, any error that arises in the determination of relative to (k"4 must be 

entirely attributed to the fact that, at any finite grid resolution, a numerical 

integration of eq. (2.32b) cannot possibly give the precise analytical answer. 

It is important to appreciate that this “failing” has nothing to do with our 

ability to evaluate the special function K(n)  accurately. Instead, it stems 

from the fact that the models for which we have analytically known poten

tials have spheroidal surfaces, and it is impossible to represent such surfaces 

precisely within a cylindrical coordinate mesh. Indeed, even a straightfor

ward volume integration over the density distribution will give a total mass 

that is different from the analytically “known” mass because a spheroidal 

object cannot be perfectly represented in a cylindrical mesh. We shall return 

to this issue when discussing Test 6, below.

In contrast to this, errors in the determination of are dominated 

by the fact that, in any practical implementation of the multipole method, 

the summation over multipole moments must be truncated at some finite 

number of terms, lmax. Only in the limit lmax —> oo will the value of 

given by eq. (2.8) for an axisymmetric mass distribution converge to the
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value of given by eq. (2.31), for example. Because the contribution 

that each multipole moment makes to the potential drops off as r~(l+1\ a 

reasonably small error can be realized with a reasonably small value of lmax 

if the boundary cells at which is to be evaluated are placed at locations 

r that are fairly far from the mass distribution. For each of the seven tests 

listed in Table 2.2, has been determined for six different even values of 

lmax in the range 0 < lmax if 10 in an effort to illustrate how rapidly the 

determination of converges toward (k"4 and as more and more terms 

are included in the l summation. We illustrate results only for even values of 

lmax because all five models listed in Table 2.1 exhibit reflection symmetry 

through the equatorial plane and, by design, this symmetry forces all odd 

multipole moments to be identically zero. In each of the Figs. 2.2 -  2.5 

and 2.7, dotted curves illustrate errors in the determinations of when 

lmax =  0; thin-dashed curves represent errors resulting from setting lmax =  2; 

and the dash-dot curves show errors in resulting from the inclusion of 

even multipole moments through lmax =  10. The three solid curves generally 

lying between the thin-dashed curve and the dash-dot curve in each figure 

represent, in sequence, errors in that result from setting lmax =  4, 6, and 8.

Figure 2.2 illustrates results from Tests 1 and 2 on Model I (the 5:1 oblate 

spheroid). In both of these tests, our computational mesh had 128 radial grid 

zones of uniform radial (A R) and vertical (Az  =  A R) thickness, and the 

oblate spheroid was positioned such that its equatorial radius extended out 

to grid location 123. Tests 1 and 2 differed in only one respect, as indicated 

in Table 2.2: With a cylindrical computational mesh that had four times as
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many vertical zones, Test 1 was designed to place the top boundary of the 

computational grid much farther from the surface of the oblate spheroid than 

in Test 2. Because every point along the boundary of the grid in Test 1 was at 

a radial location re greater than the equatorial radius of the Model I spheroid, 

was evaluated using eqs. (2.5) and (2.6), with m set equal to zero, as in 

eqs. (2.8) and (2.9). However, in Test 2 it was also necessary to include an 

evaluation of (eq. [2.11]) and, hence, a separate evaluation of qfm and 

qfml for each zone along the top of the grid boundary. As a result (see the 

related discussion in §2.2.3, below), the evaluation of in Test 2 was much 

more computationally demanding than in Test 1. Errors in the determination 

of the potential along the top boundary of these two different cylindrical 

computational domains are shown in Figs. 2.2a and 2.2c; corresponding 

errors along the side boundary are displayed in Figs. 2.2b and 2.2d.

The results presented in Fig. 2.2 highlight three key points that have 

been discussed in a more general context, above. First, in both tests very 

nearly follows the analytically derived potential (k"4 at all locations on the 

grid boundary. It is, however, everywhere offset from (k"4 by a small amount. 

This small offset is due almost entirely to the effect mentioned above of being 

unable to properly represent a perfect spheroidal surface within a cylindrical 

coordinate grid. Second, as lmax is increased, the multipole method yields 

better and better results which converge toward the solution but in no 

case is the typical error in smaller than the typical error in Third, 

for a given choice of lmax, the typical error in measured along the top of 

the cylindrical grid is smaller in Test 1 (Fig. 2.2a) than it is in Test 2
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Figure 2.2: Model I (5:1 oblate spheroid). The fractional error in the numeri
cally determined gravitational potential (calculated via two different Green’s 
function techniques) relative to the analytically known potential is shown 
here as a function of position R along the top and Z along the side bound
aries of the selected cylindrical computational mesh, as defined in Table 2.2. 
Frames (a) and (b) illustrate results from Test 1 in which the top boundary 
of a 128 X 128 computational mesh has been positioned at the same distance 
from the center of the grid as the side boundary. A thin, solid horizontal 
line has been drawn at zero for reference purposes. The thick dashed line 
running approximately horizontally across both frames shows the errors in 
the potential as determined via the CCGF technique, he., ($^ — <1)A)/^A. 
(See the discussion associated with Test 6 for an explanation of why these 
curves are slightly offset from zero.) All other curves illustrate the errors 
in the potential as determined via the standard multipole technique he., 
($ y — $ A) /$ A, as the limiting number of terms in the multipole expansion is 
increased successively by 2 from 1 =  0 (dotted curve) to l =  2 (dashed curve), 
etc., through Z =  10 (dot-dashed curve). Frames (c) and (d) illustrate the 
same type of information as displayed in frames (a) and (b), respectively, but 
for Test 2 in which the top boundary of a 128 X 32 computational mesh has 
been placed a factor of 4 closer to the center of the grid, in a position that 
lies very close to the surface of the Model I spheroid. Results from this Test 
2 also appear as the example marked “A” in Fig. 2.6.
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(Fig. 2.2c). This is because the top of the grid is farther from the surface of 

the mass distribution in Test f than in Test 2.

Figure 2.3 illustrates the results from Test 3 on Model II (the 20:1 oblate 

spheroid). This test is similar to Test 2 in that the top boundary of the 

computational grid has been placed very close to the surface of the spheroid. 

In one quadrant of a meridional plane cutting through Model II, Fig. 2.3a 

illustrates precisely where the top and side cylindrical boundaries have been 

placed with respect to the surface of the spheroid. Test 3 differs from Test 2, 

however, in that the spheroidal model for which the gravitational potential is 

being determined has a relatively extreme (20:1) axis ratio. In order to main

tain a uniformly zoned computational grid, a correspondingly extreme radial 

to vertical (1024 X 64) grid resolution was adopted for Test 3. In addition to 

displaying in Fig. 2.3c the fractional errors that resulted from our determi

nations of and along the top boundary of the computational grid, we 

have shown in Fig. 2.3b the functional variation of the boundary potentials 

from which the errors displayed in Fig. 2.3c have been derived. This is a 

particularly severe test of the multipole moment method because the poten

tial of extremely flattened mass distributions is not well-represented by an 

expansion in terms of spherical harmonics. Notice, however, that the CCGF 

method has no difficulty evaluating the potential for this extremely flattened 

spheroid; in both Figs. 2.3b and 3c the thick-dashed curve representing 

is nearly indistinguishable from the thin solid line representing
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Figure 2.3: Model II (20:1 oblate spheroid); results from Test 3, as defined 
in Table 2.2. (a) A meridional cross-section through Model II is shown in 
which the equatorial radius of the object extends to R =  1.0 and the polar 
radius extends to Z =  0.05. The top and right-hand edges of this figure 
frame illustrate precisely the positioning of the top and side boundaries of 
the 1024 X 64 cylindrical computational mesh have been positioned, relative 
to the highly flattened spheroidal surface, (b) The gravitational potential $ 
is plotted as a function of R along the top boundary of the computational 
mesh, as determined analytically (thin solid curve), via the CCGF technique 
(thick dashed curve), and via the standard multipole technique as the limiting 
number of terms in the multipole expansion is increased successively by 2 
from 1 =  0 (dotted curve) to l =  2 (dashed curve), etc., through l =  10 (dot- 
dashed curve), (c) Similar to frames a and c of Fig. 2.2, the fractional error in 
the numerically determined gravitational potential relative to the analytically 
known potential is shown as a function of position R along the top of the 
selected cylindrical computational mesh. These fractional errors have been 
derived directly from the values of $ displayed in (b), and the meaning of 
the various curves is the same as in (b). Note, in particular, that at all radii 
the error in (bold dashed curve) is almost indistinguishable from zero.
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In Fig. 2.4 we show results from Test 4 on Model III, the 20:1 pro

late spheroid. For this test, the model has been discretized on a 32 X 512 

cylindrical grid. In this case, the primary challenge for both the multipole 

moment and CCGF methods is to accurately evaluate the potential along 

the side, rather than the top, of the computational grid. Figure 2.4a shows 

the fractional error as a function of x along the side of this highly elongated 

coordinate mesh while Fig. 2.4b shows the fractional error as a function of 

R along the top of the grid. Once again appears to be tracking the an

alytical solution extremely well and is seen to be converging toward 

(and <JG) as the maximum number of terms in the multipole expansion is 

increased. However, for a given value of lmax, the typical error in appears 

to be larger for the prolate model (Fig. 2.4) than for the oblate model with 

the same aspect ratio (Fig. 2.3).

Figure 2.5 shows results for Test 5 on Model IV, an axisymmetric torus 

with a 20:1 aspect ratio. The information that has been displayed in the 

three frames of Fig. 2.5 is analogous to the information that was displayed in 

Fig. 2.3 for Model II. Specifically, Fig. 2.5a shows a meridional cross-section 

through the torus, with the symmetry axis of the torus (and the cylindrical 

computational grid) at the left, while the top and right-hand edges of the 

frame identify precisely where the top and side cylindrical boundaries were 

placed with respect to the surface of the torus. In this case we do not have 

an analytical solution for the potential against which to compare or 

but in Fig. 2.5b it is clear that as lmax is increased is converging toward
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Figure 2.4: Model III (20:1 prolate spheroid); results from Test 4, as defined 
in Table 2.2. (a) Analogous to frames b and d of Fig. 2.2, the fractional 
error in the numerically determined gravitational potential relative to the 
analytically known potential (k"4 is shown as a function of position Z along 
the side boundary of the selected cylindrical computational mesh, (b) Anal
ogous to frames a and c of Fig. 2.2 and frame c of Fig. 2.3, the fractional 
error in the numerically determined gravitational potential relative to the 
analytically known potential (k"4 is shown as a function of position R along 
the top boundary of the selected cylindrical computational mesh.
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(thick-dashed curve), so in Fig. 2.5c the error in has been measured 

relative to

For Test 6 we have returned to Model I to illustrate how the calculated 

error in improves with increasing computational grid resolution. As indi

cated in Table 2.2, for this test we have computed the value of the potential 

on the boundary of 25 different sized grid meshes, all of which are integer 

multiples of a 32 X 8 cylindrical (R,z) grid. As is explained in detail in the 

figure caption, Fig. 2.6a illustrates how the maximum, minimum, and mean 

fractional error in vary along the top boundary of the cylindrical grid 

as the radial grid resolution is increased from J =  32 to J =  608, and Fig. 

2.6c illustrates how the maximum, minimum, and mean fractional error in

vary along the side boundary of the cylindrical grid as the vertical reso

lution is increased from K  =  32 to K  =  200. Along both the top and side 

boundaries we have been able to achieve mean fractional errors ~  10-5 . For 

five selected grid resolutions (labeled B, C, D, E, and F in each frame of Fig. 

2.6), we also have shown in detail how the fractional error in varies across 

the top (Fig. 2.6b) and along the side (Fig. 2.6d) boundaries of the grid. 

The curves in Fig. 2.6b (or Fig. 2.6d) should each be compared directly with 

the thick-dashed curve plotted in Fig. 2.2b (or Fig. 2.2d), which presents the 

equivalent information from Test 2 -  a relatively low resolution (128 X 32), 

but otherwise identical calculation that also shows up and is labeled “A” in 

the results of Test 6.
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Figure 2.5: Model IV (20:1 torus); results from Test 5. (a) Analogous to Fig. 
2.3a, a meridional cross-section through Model IV in which the major and 
minor radii of the torus are 1.0 and 0.05, respectively. The top and right- 
hand edges of this figure frame illustrate precisely the positioning of the top 
and side boundaries of the 512 X 32 cylindrical computational mesh have been 
positioned, relative to the surface of the slender torus, (b) Analogous to Fig. 
2.3b, the gravitational potential $ is plotted as a function of R along the top 
boundary of the computational mesh, as determined via the GGGF technique 
(thick dashed curve), and via the standard multipole technique as the limiting 
number of terms in the multipole expansion is increased successively by 2 
from / =  0 (dotted curve) to / =  2 (dashed curve), etc., through / =  10 (dot- 
dashed curve), (c) Analogous to Fig. 2.3c, but because the potential exterior 
to a torus is not known analytically, the fractional error in the numerically 
determined gravitational potential is shown here relative to the potential 
as determined from the GGGF technique. The meaning of the various curves 
is the same as in (b).
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Figure 2.6: Model I (5:1 oblate spheroid); results from Test 6. Fractional 
errors in the gravitational potential derived via the CCGF technique using 
25 different cylindrical grid resolutions (see Table 2.2) to resolve the oblate 
spheroidal mass distribution, (a) For a specified radial grid resolution J, 
the vertical column of dots identifies on a logarithmic scale the full range 
of fractional errors that have been derived along the top boundary of the 
computational mesh. Each dot identifies the fractional error at a specific 
radial grid location so, for example, for the column of dots (labeled A) that 
is drawn from a calculation using a grid resolution J =  128 (as in Test 2; see 
also Fig. 2.3), 128 different dots have been plotted showing errors that range 
from 1.5 X 10-6 to 2 X 10-3 . At each grid resolution J, an open circle has 
been drawn to identify the largest, smallest, and median error; a solid line 
connecting the circles helps the eye recognize an overall trend in computed 
errors as the resolution of the model is improved, (b) Analogous to the thick 
dashed curve shown in Fig. 2.2c, the fractional error in the gravitational 
potential determined via the CCGF technique relative to the analytically 
known potential is shown as a function of position R along the top of 
the selected cylindrical computational mesh, but for several different grid 
resolutions. The curves labeled B through F  are drawn from models having 
the grid resolutions J as indicated by the corresponding column labels in 
frame a of this figure, (c) and (d) Same as frames a and b of this figure, 
respectively, but showing fractional errors that have been derived along the 
side boundary of the computational mesh from calculations using various 
vertical grid resolutions K  (see Table 2.2).
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We should point out that the fractional errors presented in Fig. 2.6 

for Test 6 have all been calculated in a slightly different manner from the 

fractional errors that have been presented for Tests 1 - 5 .  Before comparing 

$<9 to in Test 6, we have renormalized the total mass that has been used 

in the determination of to correspond with the total mass that results 

from a discretization of Model I inside our cylindrical computational grid of 

the specified (J X K)  resolution. As explained earlier in the context of Tests 

1 and 2, the thick-dashed curves in Fig. 2.2 are slightly offset from zero 

primarily because of a slight discrepancy in mass that arises from trying to 

map a perfect spheroid onto a cylindrical coordinate mesh. By adjusting the 

mass that is being used in the analytical determination of the gravitational 

potential for Model I to account for this discrepancy, we are able to present 

the fractional errors in such a way that they asymptotically approach zero 

at the largest illustrated values of R (Fig. 2.6b) and x (Fig. 2.6d). We also 

suspect that geometric imperfections arising from the discretization of the 

flattened spheroid are also responsible for the fact that the typical fractional 

errors shown in Figs. 2.6a and 2.6c level out around 10-5 and do not continue 

to decrease with increasing grid resolution.

2.2.2.2 A Nonaxisymmetric Model

In an effort to illustrate how well the CCGF method works for nonaxisym

metric mass distributions, we have developed a test based on the analytically 

known potential exterior to a triaxial homogeneous ellipsoid, as given in Ap

pendix B by eq. (B.7). Specifically, as detailed in Tables 2.1 and 2.2 for 

Test 7, we have embedded an homogeneous triaxial ellipsoid with a 20:10:1
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axis ratio in a uniformly zoned cylindrical mesh with 512 X 32 X 256 zones 

in the R} z, and </> directions, respectively. Test 7 is similar to Test 3 in the 

sense that the top and side boundaries of the computational grid were posi

tioned just outside the surface of the ellipsoid in such a way that a vertical 

cross-section through the configuration that contains the major and minor 

axes of the ellipsoid looks identical to Fig. 2.3a. As a result, a vertical cross

section containing the minor and intermediate axes of the ellipsoid would 

show that, in the equatorial plane of the grid, the ellipsoidal surface extends 

only half-way out to the side boundary of the computational grid. Hence, 

we should expect any numerical evaluation of the potential on the top and 

side boundaries of our cylindrical grid to produce better results at azimuthal 

angles near the intermediate axis of the ellipsoid (he., near </> =  tt/ 2 and 

3tt/ 2) than at azimuthal angles near the ellipsoid’s major axis (</> =  0 and 7r; 

see Fig. 2.7b, below).

The analytical potential outside of an homogeneous, triaxial ellipsoid con

tains an infinite number of azimuthal Fourier components. When the ellipsoid 

is discretized and placed inside of a grid with a finite number of azimuthal 

zones, L (in our case, L =  256), we know by Fourier’s Theorem that the “ex

act” potential corresponding to this discretized object will exhibit, at most, 

Fourier components extending up to mode m = L/2 (in our case, m =  128). 

As we have shown in §2.1.2.1 (specifically, eq. [2.20]), via the CCGF method 

the amplitude and phase of each one of these Fourier modes can be deter

mined precisely by performing a single integral over the mass distribution, 

weighted by the appropriate special function, Qm_i(x) -  In contrast to this
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(see §2.1.1), when the method of multipole moments is employed, each of the 

azimuthal Fourier modes can only be determined exactly via a summation 

over an infinite number of terms (/ =  0 to oo), each one of which requires 

a separate integral over the mass distribution. Hence, by analogy with our 

determination of the axisymmetric potential, the multipole method can be 

implemented in the context of nonaxisymmetric mass distributions only if 

the l summation is truncated to a finite number of terms for each separate 

azimuthal Fourier mode. In a practical implementation of either method, 

it is computationally prudent to limit the calculation of Fourier mode am

plitudes to a number substantially smaller than to =  L/2, in which case 

one must admit that even the CCGF method can at best produce only an 

approximation to the “exact” discretized potential. But at least the CCGF 

method provides an accurate determination of the amplitude and phase of 

each of the included azimuthal Fourier modes whereas, by truncating the l 

summation, the multipole method cannot.

In conducting Test 7, we have included in the evaluation of even 

terms through lmax =  10 and, for each value of /, even azimuthal modes 

through to =  ± /. (All odd azimuthal moments of the mass distribution are 

guaranteed to be zero because Model V exhibits a periodic symmetry about 

the azimuthal angle </> =  tt as well as about </> =  0 or 2tt.) Therefore, in our 

evaluation of the double summation in eq. (2.5) to calculate in Test 7, 

36 separate terms have been included. In addition, we have had to evaluate 

an entirely independent set of 36 terms associated with the summation in 

eq. (2.11) because, as in Tests 2, 3, and 5, most of the zones along the top
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boundary of our computational grid had radial locations re < oq, that is to 

say, at least some of the material enclosed by Model V ’s ellipsoidal surface 

fell outside a sphere of radius rs- In contrast to this, when evaluating at 

each grid boundary location via eq. (2.19), we included only 16 terms. But 

these 16 terms permitted us to include azimuthal Fourier mode contributions 

to the potential up through mode m =  30 because the odd azimuthal modes 

were guaranteed to be zero.

Figures 2.7a and 2.7b show how closely our determination of and 

in Test 7 come to matching the analytical potential for Model V. 

Rather than trying to display the errors in and at all grid boundary 

locations, Fig. 2.7a displays azimuthally averaged errors as a function of 

R along the top of the computational grid and Fig. 2.7b displays radially 

averaged errors as a function of </> over the same region. Being azimuthally 

averaged, the error measurements presented in Fig. 2.7a do not tell us much 

that was not already apparent in our examination of the corresponding ax- 

isymmetric spheroid (see Test 3 and, specifically, Fig. 2.3c). However, Fig. 

2.7b is clearly illustrating something new. It illustrates that the potential 

determined through the CCGF method (represented by the thick-dashed 

line) represents the azimuthal variation of the potential outside of triaxial 

ellipsoid very accurately. We also see in Fig. 2.7b that, as lmax is increased, 

approaches
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Figure 2.7: Model V (20:10:1 triaxial ellipsoid); results from Test 7. (a) 
Analogous to Fig. 2.3c, except that, at each radius, the fractional error 
has been derived from an azimuthal average because Model V is not an 
axisymmetric configuration, (b) In an effort to display information that is 
complementary to the results shown in frame a for this nonaxisymmetric 
configuration, the fractional error in the derived potential is shown as a 
function of azimuthal angle </>. The displayed error has been derived from a 
radial average at each angular position, (c) The error in the m =  2 Fourier 
component of the potential is displayed as a function of R along the top 
boundary of the computational mesh. In all three frames, by analogy with 
Fig. 2.3c, fractional errors have been determined via the CCGF technique 
(thick dashed curve), and via the standard multipole technique as the limiting 
number of terms in the multipole expansion is increased successively by 2 
from 1 =  0 (dotted curve) to l =  2 (dashed curve), etc., through l =  10 
(dot-dashed curve).
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Finally, via a Fourier analysis of we have determined the correct 

amplitude as a function of radius of a single, isolated azimuthal mode, 

for Model V, and in Fig. 2.7c we have compared this function with the 

corresponding m =  2 Fourier mode amplitudes of and As a point 

of reference, the m =  2 Fourier amplitude has been derived via the 

integral expression (2.66) given in §2.2.1.6. Fig. 2.7c shows in a somewhat 

cleaner manner than does Fig. 2.7b that the CCGF method works as well 

for the determination of the gravitational potential of nonaxisymmetric mass 

distributions as it does for axisymmetric systems. At most radii, is almost 

indistinguishable from Note, however, that near the z-axis of the grid 

(he., near the polar axis of the ellipsoid), does differ from by a few 

percent. This deviation almost certainly occurs because we have used only 32 

vertical zones to resolve Model V ’s highly flattened mass distribution. Hence, 

the upper surface of our discretized mass model does not reproduce well 

the smooth quadratic surface of the analytically defined ellipsoid. Similar, 

although lower amplitude, deviations can be found near the z-axis in Fig. 

2.2c (Test 2), Fig. 2.4a (Test 4), and Fig. 2.7a. Once again, it is fair to say 

that <&2 provides a more correct description of the gravitational potential for 

the discretized mass model than does This statement is supported by 

the fact that, as lmax is increased, is converging toward in Figs 2.7a 

and 2.7c, rather than toward 

2.2.3 Computational Demands

Here we compare the computational demands of the multipole moment 

and CCGF methods. We do so not from the standpoint of a static problem



53

whose solution need only be determined once, but from the standpoint of a 

dynamical problem in which the system’s two- or three-dimensional density 

distribution is changing with time, in which case a solution to the gravita

tional potential must be frequently redetermined in order to ensure that the 

potential is at all times consistent with the density distribution.

We will assume that, during such an evolutionary simulation, the cylindri

cal computational grid and the positions along the grid boundaries at which 

the potential $ (x^) is to be determined do not change with time. Under 

this assumption, it is clear that, whichever Green’s function method is be

ing used, the terms included in the Green’s function itself do not vary with 

time because these terms are only functions of the coordinates. Hence, the 

functions Yim(6,(f)) (for the multipole moment method) or Qm_i(x )  (for the 

CCGF method) need only be calculated once, as appropriate, for each grid 

cell location and stored in memory for reuse throughout a time-evolutionary 

calculation. The primary calculational cost associated with either Green’s 

function method therefore has very little to do with the cost of evaluating 

various Yim or the Qm_i  expressions. Instead, the cost is directly related 

to the number of integrals N  over (moments of) the mass distribution that 

must be reevaluated each time the mass-density distribution of the evolving 

system is updated.

For a (two-dimensional) mass distribution that is axisymmetric, but that 

otherwise exhibits no special geometric symmetries, the multipole moment 

method includes lmax +  1 terms in the Green’s function expansion whereas 

the CCGF method contains only one. However, because the argument x  °f
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the special function Qm_i(x)  is, itself, a function of the boundary coordi

nates (R}z) } a separate moment of the mass distribution must be calculated 

for each grid boundary location. Hence, for the CCGF method, the num

ber of moments N® that must be reevaluated each time the mass-density 

distribution changes is,

N Q = 2 J  +  K, (2.70)

where, as in Table 2.2, J and K  specify the radial and vertical grid resolu

tions, respectively, and the factor of 2 indicates that in general “«/” boundary 

values must be determined along the bottom as well as along the top of the 

cylindrical grid. In contrast to this, the terms in the multipole moment (he., 

spherical coordinate Green’s function) expansion are not explicitly functions 

of the boundary coordinates, so

N Y =  l m ax +  1 - (2 -7 1 )

Now, as discussed earlier, in order to achieve the same level of accuracy with 

the multipole moment method as can be achieved with the CCGF method, 

lmax must be set to oo. But if, in practice, one is satisfied with the level 

of accuracy achieved by setting lmax to a value lmax < (2 J +  K  — 1), then 

N Y /N® < 1, and one may conclude that the multipole method is computa

tionally less expensive than the CCGF method.

However, this is not the full story. Even though the terms in the multipole 

moment expansion are not explicitly functions of the boundary coordinates, 

the limits on the volume integration for each moment of the mass distribution
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will be a function of the boundary coordinates unless every point x# along 

the boundary of the computational grid is at a radial location re that is 

greater than all interior grid locations at which matter resides. (See the 

related discussion associated with eq. [2.10] in §2.1.1.) Test 1 (see Figs. 2.2a 

and 2.2b) is the only test presented above for which this special condition was 

true. By setting J =  K,  every point along the top boundary of our cylindrical 

grid was at a radial location re greater than the equatorial radius of the 5:1 

oblate spheroid, so the number of separate moments of the mass distribution 

that had to be evaluated in Test 1 was, indeed, N Y = lmax +  1. However, 

as explained in §2.1.1, for situations in which the boundary of the grid is 

positioned close to the surface of a flattened or elongated mass distribution, 

it is necessary to calculate a separate set of “interior” and “exterior” mass 

moments for the majority of boundary locations.

For example, for mass distributions that are flattened along the symmetry 

axis, as in our Tests 2, 3, 5, and 6, boundary locations along the side of 

the grid do not require separate sets of mass moments but most boundary 

locations along the top and bottom of the grid do. Hence,

N Y ~  4J(lmax +  1), (2.72)

where the extra factor of 2 comes from having to determine both interior 

and exterior moments for each value of /, as shown in eq. (2.10). Therefore, 

N y /Nq lmax, and the (less accurate) multipole moment method proves to

be more expensive to implement computationally than the CCGF method.
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For a nonaxisymmetric (three-dimensional) mass distribution, the CCGF 

method will require the same number of moments as in the axisymmetric 

case for each separate azimuthal Fourier mode. Hence, if the discrete Fourier 

series is truncated at mode number mmax, the number of moments N® that 

must be reevaluated each time the mass-density distribution changes is,

N q =  2mmax x (2J +  K),  (2.73)

where the leading factor of 2 comes from the fact that each Fourier mode 

requires the determination of both an amplitude and a phase. In the optimum 

situation where the boundary of the computational grid is everywhere outside 

the mass distribution, in three dimensions the multipole moment method will 

require the evaluation of

N Y ~  [21 +  1] =  {lmax + l ) 2 (2.74)
1=0

separate moments (unless the strategic decision is made to set mmax ^  l max)- 

In most situations, then, N Y/N® will be less than unity, as in the corre

sponding optimum axisymmetric case, but the ratio will be somewhat larger 

here.

Again, though, for situations in which the boundary of the grid is posi

tioned close to the surface of a flattened or elongated mass distribution, the 

number of moments required for the multipole moment method climbs sub

stantially. For example, for a flattened nonaxisymmetric mass distribution 

like the one examined above in connection with Test 7,



57

N y ~  4J x [2/ +  1] — 4J(lmax +  l ) 2, (2.75)
1=0

and the ratio N Y/N® becomes even larger than it was for the corresponding 

axisymmetric case. Hence, in connection with a broad range of astrophys- 

ically interesting, two- and three-dimensional fluid flow problems, we have 

found the CCGF method to be not only much more accurate but also less 

expensive to implement than the traditional multipole method.

One note of caution is in order. Because the argument x  ° f the spe

cial function Qm_i(x)  is a function of both coordinates of the interior mass 

(R',z'), at the beginning of any time-evolutionary simulation a 2D array of 

“Qv values must be calculated at each location along the boundary of the 

grid and for each discrete Fourier mode to. Hence, although the expense 

associated with the calculation of this global “Qv array can be confined to 

initialization routines, it must generally be a four-dimensional array having 

dimensions ~  [J X K  X mmax X (2 J-\-K)\. As a result, the CCGF method can 

be quite demanding in terms of storage space. Because, for a given azimuthal 

mode number to, the function Qm_i(x)  is very smooth over the entire range 

of y, it may prove to be more practical to store only mmax one-dimensional 

arrays that could be referenced by all boundary grid cells in which the par

ticular Qm_ i function has been evaluated at a reasonably large number and 

sufficiently wide range of discrete values of y. Then, when performing its 

own evaluation of the moments of the mass distribution, each boundary cell 

could evaluate Qm_i(x)  as needed via an interpolation within the discretized 

array. We have not yet implemented such a scheme, although as we begin
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to investigate problems having sizes larger than the one illustrated in Test 7, 

above, we will probably need to do so.



3. A Compact Green’s Function Expansion for Axisymmetric
Coordinate Systems

One primary contribution from chapter 2 was the discovery that the 

Green’s function in cylindrical coordinates can be written in an extraor

dinarily compact form, namely, eq. (2.15). In order to better understand 

what it is that we have uncovered, we investigate in this chapter the nature 

or, specifically, the geometry of our solution. The first time we brought up 

an image of the meridional variations in <3_i (y), if appeared to us that the 

contours of constant y were circles. In particular, when we first mathemati

cally examined the structure of y, sure enough, contours of constant y were 

circles emanating from the x = x' point with ever increasing radius such that 

the left side of the circle mapped towards the z-axis. In fact, starting with 

the definition of y in eq. (2.16), one may derive that

( R - R ' x f  +  (z - z' f  =  R'2(x ^ - l ) ^  (3.1)

which is the equation for a circle in the meridional plane! These circles are 

centered at the point (R'y, zr) with radius R'\/y 2 — 1. When these circles 

are revolved around the z-axis, they describe circular tori.1 Upon further 

verification (Morse & Feshbach 1953; Abramowitz & Stegun 1965), we found 

that the half-integer degree associated Legendre functions are called toroidal 

harmonics and they provide the principal set of basis functions in toroidal 

coordinates.
1We are grateful to Eric Barnes and Dana Browne for independently bringing to our 

attention the similarity between our plots of constant y and the toroidal coordinate system.

59
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Table 3.1: Axisymmeric Coordinate Systems

# Coordinate System Miller #
1 Cylindrical 2
2 Spherical 5
3 Prolate Spheroidal 6
4 Oblate Spheroidal 7
5 Parabolic 8
6 Lame I (unnamed) 14
7 Lame II (unnamed) 15
8 Lame III (unnamed) 16
9 Toroidal 17

So, if the half-integer degree Legendre functions of the second kind are 

toroidal harmonics, we can ask ourselves, “What is the Green’s function in 

toroidal coordinates and how does it compare to the compact cylindrical 

Green’s function expansion?” Furthermore, the J2 ) that appears
m — — oo

in our compact cylindrical Green’s function expansion appears as well in 

the Green’s function for every other coordinate system that is axisymmetric 

and 7 ,̂-separable for Laplace’s equation. (For a list of most of the Green’s 

functions involved, see chapter 10 of Morse & Feshbach 1953.) The nine 

coordinate systems that are both axisymmetric and are 1Z—separable for 

Laplace’s equation are listed here in Table 3.1. Table 3.1 has three columns: 

in the first column, we number the nine coordinate systems; in the second 

column, we attempt to provide a familiar name for each coordinate system; 

and in the third column, we cross reference our coordinate system numbers 

with those listed in Miller (1977).
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These nine axisymmetric coordinate systems are a subset of the total 

seventeen curvilinear orthogonal coordinate systems which are ^-separable 

for Laplace’s equation. Bocher (1894) provides the first complete description 

of all these coordinate systems. In a more recent discussion, Miller (1977) 

gives a complete geometrical description of these systems and shows that they 

can be classified in a number of ways. For instance, in the situation where 

the modulation factor, is unity, there are eleven orthogonal curvilinear 

coordinate systems. These coordinate systems are all represented as confocal 

families of quadrics:

x2 y2 z2
----------- 1----- --------1-----------
CL\ T  A (L2 T  A (23 T  A

All of these coordinate surfaces are limiting cases of the confocal ellipsoidal 

coordinate surfaces, and the corresponding surfaces are ellipsoids, hyper

boloids, and their various limits, such as paraboloids, spheres and planes. 

More generally, all seventeen coordinate systems may be described as orthog

onal families of confocal cyelides, where a cyelide is a surface that satisfies 

the following equation:

ci(x2 +  y2 +  z2)2 +  P (x } y, z ) =  0, (3-3)

where a is a constant and P  is any polynomial of order two. If a =  0, the 

cy elide reduces to the already discussed eleven coordinate systems which have 

quadric coordinate surfaces. The remaining nonquadric coordinate systems 

are of the more general cyclidic form with a ^  0. (For a detailed listing of 

these coordinate systems see Tables 14 & 17 in Miller 1977).

1. 3.2
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Now let us return to the nine axisymmetric coordinate systems in Table

3.1 for which Laplace’s equation is 7\l-separable. Given in terms of a solution 

of Laplace’s equation, T, Miller (1977) shows that they correspond to the 

diagonalization of the operator

d d
J  3 — ^ 2 “ --------- X \ -:dXl ~Ldx2' 3̂'4)

These special systems have the property that their eigenfunctions take the

form,

T(x) = <Le™̂ , (3.5)

and,

=  rat, (3-6)

where $ is a function of the remaining two variables. If we substitute this T 

into Laplace’s equation and factor out em^, we obtain a differential equation 

for $(i?, z), which in cylindrical coordinates is

<92$ 1 <9$ m2 <92$--------1------------------- $  H-------- =  0.
dR2 R dR  R2 dz2

(3.7)

This expression for to > 0 is often referred to as the equation of general

ized axisymmetric potential theory. It is clear that the compact cylindrical 

Green’s function expansion we derived in chapter 2 must apply to all nine 

of these axisymmetric coordinate systems for which Laplace’s equation is 

7 ,̂-separable through eq. (3.7).

In order to demonstrate this, we need to obtain the standard Green’s 

function expansion for all of these coordinate systems. In our compact rep-
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resentation, we express the cylindrical Green’s function in terms of a single 

sum over the azimuthal quantum number, to. Having already described how 

this occurs in cylindrical coordinates we now show how this result applies to 

spherical coordinates.

3.1 A Compact Spherical Green’s Function Expansion

Here we describe how the toroidal representation of the cylindrical Green’s 

function may be extended to spherical coordinates. The transformation from 

Cartesian coordinates to spherical coordinates is given by

x =  r sin 9 cos </>,

y =  rsin0sin</>, (3-8)

z =  r cos 6.

The Green’s function in spherical coordinates can be written as (cf., eq. [3.38] 

in Jackson 1975),

where

1
x — x'

OO

£/=o
-jJj-P,(cos7),
r ■->

(3.9)

r<
r' if r' < r 
r if r < r' and r> r' if r' > r 

r if r > r' (3.10)

and r< =  r> if r =  r', Pi is the degree l Legendre function of the first kind 

(Legendre polynomial) with

cos 7  = cos 6 cos 9' + sin 9 sin 9' cos(</> — <//). ( 3 . 1 1 )
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The addition theorem for spherical harmonics states (cf., Jackson 1975)

A '7r ^
« ( « • ' » )  =  2 j T I  E  C P ' . W . P , * ) .  (3.12)

Now if we insert eq. (3.12) into (3.9) we obtain the familiar expression for the 

spherical Green’s function given earlier by eq. (2.4). The spherical harmonics 

can be written in terms of the associated Legendre functions of the first kind 

as follows:

Ylm(6,<f>) =
21 +  1 T(/ — m +  1)

P/” (cos 6)e imcf) (3.13) ̂ 47t T(/ +  m +  1)

Furthermore, if we insert eq. (3.13) into eq. (2.4) and interchange the l and 

m sums,2 we can rewrite eq. (2.4) as follows,

x — x'

OO

£
m — — oo

%(4>-4>r)
CO

£
l—m

r< T(l — m +  1)
r ly l r(/ + m + 1)P'r(cos e)P'r(cos0'), (3.14)

which can be rewritten as

1
x — x77= E

oo r l+m

m = — co ^ r i + m + i  r(/ + 2m + i)M+m

Now, from eq. (2.15) we are equally certain that

(3.15)

1 1
x — x' 7rv rrJ sin 6 sin O' _

£  Qm_ l{xh
i n H' ^ (3,16)

7TI — — CO

where now in spherical coordinates,

2We are indebted to Prof. A. R. P. Rau for suggesting that we investigate what happens 
when the l and m sums are interchanged.
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r2 +  r/2 — 2rr' cos 9 cos O'
^ 2rr, sm9sm9l

Hence, by comparing eq. (3.15) and (3.16), we deduce that

(3.17)

f .  C C i r ,,r) f2+ ( 1 . (3.1s)“  r(+ + 1 (1 +  2ra +  1) T T 7rv rr' sm 9 sm 9'

We offer this as a valid second addition theorem for spherical harmonics. 

This addition theorem, which using eq. (2.46) may also be written as,

<3m_i(cosh£) =  47r2VrrJ sin 9 sin 9'e rrn̂  ^
°° rl 1

x E T a T Y  YUOAW,HO', •!>'), (3.0 )

complements the familiar one given above as eq. (3.12) in that it provides a 

mechanism for collapsing the summation over l instead of to.

As a demonstration of the validity of this formula we now show that it is 

indeed correct in a certain limit. For to =  0 eq. (3.18) becomes,

°° ri
~l+ipi(cos 8)Pi(cos 9') =

Q-k(x) (3.20)
_ 7r v  rr' sin 9 sin 9'

Now if we further assume that both the primed and unprimed coordinates

are located in the equatorial plane z =  z' =  0, then cos 9 =  cos 9' =  0, 

sin# =  sin#' =  1, and x  and h become, respectively,

.̂2 _|_ ,̂/2 

2 rr' ’
(3.21)

and
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It can easily be shown that,

(3.22)

[^(0)]2 =
cos2[ f ]  r  2(|/ + 1 )  

7T r 2(|/ + 1)'
(3.23)

Combining eqs. (3.20) through (3.23) with (2.22) and further assuming r' <

r. we obtaiam

K j /
+  r/ g  r,2l r 2(2i±l)

(3.24)
2 r2l+l T2(/ +  1)'

Now if we make the substitution x =  r '/r , the argument of the complete 

elliptic integral of the first kind becomes 2 y fr /( l+  x), and eq. (3.24) becomes

K 1 +  x
1 +  x o o  p 2  /  21+1 '

,21 1 t 2 .
;=o r2(/ +1)' (3.25)

When compared to eqs. (8.113.1) and (8.126.3) in Gradshteyn & Ryzhik 

(1994), namely,

7T(  / 1 \ 2 / 1 - 3 \ 2
n l - m  ' 2 ■ ( l k4 +  --- +

a w = 2 I 1 + u; *■, + v 2 -4

and

(2n -  1)! 
2 nn\

k2n+ ■■■}, (3.26)

K .1 +  x.
= (1 +  x)K(x) , (3.27)

the equality is demonstrated and therefore the validity of eq. (3.18) has been 

demonstrated, at least in one limit.
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3.2 A Compact Toroidal Green’s Function Expansion

Thus far we have demonstrated via eq. (2.14) that there is an integral 

expression relating the principal basis functions in cylindrical coordinates 

(Bessel functions) to the special functions Qm_ i (x )  and via eq. (3.18) a sum

mation formula relating the principal basis functions in spherical coordinates 

(associated Legendre functions of the first kind) to the function Qm_i(x)-  It 

is now clear to us that similar integral or summation formula expressions can 

be obtained for all nine axisymmetric coordinate systems which are in Table 

3.1. In order to complete such an analysis, one must have in hand the general 

Green’s function expansion for each system. In Morse & Feshbach (1953), 

one may find the Green’s function expansions for oblate spheroidal coordi

nates (eq. [10.3.63]), prolate spheroidal coordinates (eq. [10.3.53]) as well as 

for parabolic coordinates (eq. [10.3.68]). They also give an expression for the 

Green’s function in toroidal coordinates (eq. [10.3.81]), but there appears to 

be a typo in this expression and, as yet, we have been unable to ascertain 

the true form of the Green’s function in this crucial coordinate system for 

our study. Furthermore, we have not yet been able to find any reference 

which gives the Green’s function expansion in the three axisymmetric Lame 

coordinate systems, referred to in Table 3.1, in order to compare with the 

CCGF. In future investigations we plan to derive from first principles, all 

of the relevant Green’s function expansions and thereby obtain what should 

prove to be new mathematical expressions relating all the basis functions 

involved to the half-integer degree Legendre function of the second kind.



4. Parallel Implementation of a Data-Transpose Technique for the 
Solution of Poisson’s Equation in Cylindrical Coordinates

Here we describe our numerical implementation of an efficient scheme to 

solve Poisson’s equation numerically on massively parallel architectures. The 

groundwork on serial algorithms for solving Poisson’s equation is extensive. 

In particular, for some time, extremely efficient methods have been known 

for solving the set of sparse matrices that result from a second-order accurate 

finite-differencing of the Poisson equation in cylindrical coordinates given the 

boundary solution. In Cartesian coordinates there has been a large successful 

effort in order to find accurate and highly parallel methods for solving Pois

son’s equation (i.e. Fast Poisson solver using Fourier methods). The situation 

is not so simple in cylindrical coordinates, however. Due to the non-constant 

variation of the matrix elements that result from the Unite-discretization 

of the cylindrical Poisson equation, direct Fourier methods are not possi

ble. It is only in the naturally periodic azimuthal coordinate direction that 

one can take advantage of this technique which reduces the complexity of 

the problem, in terms of coupled dimensions, from three-dimensions to two- 

dimensions. Techniques like Buneman cyclic reduction (Swarztrauber 1977) 

provide the direct solution of the resulting set of two-dimensional problems 

in an extremely accurate fashion; other direct techniques aren’t even so ef

ficient when implemented in serial. When one asks the question of how to 

solve these problems in parallel one quickly sees that the global nature of the 

two-dimensional solution methods are very difficult to implement in parallel 

and do not result in a load-balanced solution of the matrix problem. It is here

6 8
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that we present the Fourier-ADI method, which is iterative, although very ac

curate, and takes advantage of the highly parallel data-transpose technique. 

In this computational strategy all computations are performed without com

munication, and all communications are restricted to highly parallel, global 

three-dimensional data-transpositions. We describe in detail how this algo

rithm is implemented and give a theoretical operation count which demon

strates the highly parallel nature of this algorithm. It is the Fourier-ADI 

technique, combined with the CCGF technique for evaluating the boundary 

potential that yields an extremely efficient and accurate potential solver.

We have adopted a Unite-difference method for the solution of the cylin

drical Poisson equation. In iterative schemes, the solution of a partial dif

ferential equation (PDE) is obtained by starting with an initial guess and 

then proceeding iteratively until the solution is obtained to within desired 

accuracy. In direct schemes, the solution of the PDE is obtained by direct 

numerical solution of the Unite-difference equations. Direct methods are usu

ally preferred over iterative methods since they are guaranteed to generate 

an exact solution.

Here we utilize both a fast direct method and an iterative method to 

solve the problem at hand. Both methods are implemented in parallel using 

a data-transpose technique. The data-transpose technique is a paralleliza

tion strategy in which all communication is restricted to global 3D data- 

transposition operations and all computations are subsequently performed 

with perfect load balance and zero communication.



70

In the remainder of this chapter, we present a detailed description of our 

parallel algorithm. In §4.1, we describe the sequential algorithms that we 

use in conjunction with the data-transpose technique in order to solve the 

cylindrical Poisson equation. In §4.2, we describe the parallel data-transpose 

technique, how it applies to the two sequential algorithms we presented in 

section §4.1, and a theoretical description of how the technique can be applied 

to a 2D mesh topology.

4.1 Sequential Algorithms

We present a parallel method to solve Poisson’s equation

V 2$ =  4 nGp, (4.1)

where V 2 denotes the Laplacian operator in three dimensions, $  is the scalar 

Newtonian potential, G is the gravitational constant, and p is the mass- 

density scalar distribution function.

In a cylindrical geometry, the Cartesian vertical coordinate, z, remains 

unchanged, but the Cartesian x and y coordinates are replaced by the polar 

coordinates R (radial) and </> (azimuthal) via the transformation

x =  R cos </>,

y =  R sin <f). (4-2)

Our domain boundaries are specified by the conditions

0 < R < R b ,
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0 < </> < 27t, (4.3)

M < zb ■>

where Rb is the radius of the cylindrical domain, 2zb is the height of the 

cylinder, and the angle </> is measured in radians

We perform a spatial discretization of our domain using the indices (j, k, l) 

to refer to the (Rj, Zk,<f>i) positions of each cell center with A R 1} Azk} and 

A<f>i being the radial, vertical and azimuthal grid spacing of each cell. Both 

the potential and the source function are evaluated at the center of each grid 

cell. As in chapter 2, the 3D discretization is performed using J radial zones, 

K  vertical zones, and L azimuthal zones, but here we are concerned about 

the solution of eq. (4.1) throughout the interior volume of the grid rather 

than just on its boundary surface.

In our applications, mixed Dirichlet, Neumann, and periodic boundary 

conditions are usually assumed for the potential $, viz.

<f>(RB,(f>,z) =  g(cj), z),

$(R, <t>, + ZB) =  h+(R, </>), (4.4)

- zb) =  h_(R,(f)),

$ (R ,2 tt, zb ) =  $ (R,0 ,z ) ,

where the functions g, h+ , and are the boundary potentials computed 

using the CCGF technique described in chapter 2. The interior of our domain 

is mapped onto a rectangular computational grid which extends between 

2 < j  < J, 2 < k < K, and 1 < l < L. Since the azimuthal coordinate
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direction is periodic in nature, the index l runs modulo L, i.e. I +  L =  l. We 

also require continuity of the solution across the z axis, this is evaluated at 

j  =  1 by setting $(1, k, l) =  $(2, k, l +  L/2). The boundary values g, h_ and 

h.|_ are evaluated a t j  =  J +  l,£; =  l and k =  K  +  1, respectively.

4.1.1 Finite-Difference Derivation of the Equation of Generalized 
Axisymmetric Potential Theory

Written in cylindrical coordinates Poisson’s equation reads

i l / A  ,
R d R [ d R } R2 d<p*

1 <92<h <92<h
+ = 4nGp(R,<t>,z).

dz2
(4.5)

The hnite-difference representation of eq. (4.5) is

RjA R j
Ri+i/2

A? + i/ 2$
Ai?

- — R;
A j_1/2$ x 1 A ?$ A

i+i/2
i—1/2" Rj (A</>/)2 (A ^ )

AttG ^

(4.6)

where, for every index i, the symbols A; and A2 indicate the sense that the 

first and second differences are taken and their proper centering. For exam

ple, A j+1/2 denotes that the first difference is taken in the radial coordinate 

direction and is centered at the (j +  1/2, k,l) location, while A 2 denotes 

that the second difference is taken in the azimuthal coordinate direction 

and is centered at the (j, k,l) location. Similarly ARj  =  RJ+1/2 — R j -1/2, 

ARj+ 1 / 2  =  Rj+1 — Rj-, Afy =  (f>i+1 / 2  — 4>i-1/2, and Azk =  z^+1/2 — £jt_i/2. 

Expanding the differences A and A2 up to second order in the grid spacings 

ARj, Azk} and A</>/, one obtains

A(j) $ ( j  +  l ,k , l )  +  B(j )  $ ( j - l , M )
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+ C(j,l) [i(j ,k ,l  + 1) + t U M  -  1)] (4.7)

+D(k) [®(j, fc + 1,/) + * 0 ,  fc -  1,/)]

-{A(j) + B(j) + 2[C(j,l) + B(fc)]} m  M) = 4*GpU, M).

The coefficients in eq. (4.7) are defined by the expressions

M j )  — ^j+i/2(-RjAi?j+i /2Ai?j)

B(j)  =  Rj-i/2(Rj^Rj~i/2^Rj) S (4-8)

C{j, l) =  (RjA(f)i)~2,

D(k) =  (A  zk)~\

The 3D problem represented by eq. (4.7) can be decoupled into a set 

of independent 2D problems, in a nalogy to eq. (2.21) from chapter 2, by 

performing a discrete Fourier transform in the azimuthal coordinate direction 

of the general form

L / 2

Q(j, M )  =  k) cos(m<f>i) +  Q2m(j, k) sin(m</>,)}, (4.9)
m—0

where Q denotes either $ or p, and Qlm, with i =  1 and i =  2, are the 

Fourier coefficients of the cosine and the sine terms, respectively. Substitut

ing eq. (4.9) into eq. (4.7), assuming a constant value of A</>; =  A</> =  27r/T, 

and accounting for the continuity boundary condition across the z-axis, one 

obtains

M j )  4>m{j +  k) +  B(j)  \ 1 +  ĵ 2 [ ( 1)m -  1] ( ^ ( j  -  1 +  Sj2, k)
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+ D (k ) k +  1) +  k — l)j (4-10)

+  {2(Am -  l )C ( j )  -  [A(j) +  B(j )  +  2D(k)]}  =  4nGp*m(j, k),

where 8 is the Kronecker symbol,

m =  0 , 1,2, . . . ,  L/2 ( for 7 =  1) ,  (4.11)

to =  1, 2, 3 , . . . ,  L/2 — 1 ( for 7 =  2) ,

and Am =  cos(toA</>). The equations for i =  1 are derived by equating co

efficients of the cosine terms in the Fourier expansion and the equations for 

i =  2 are derived by equating coefficients of the sine terms. Eq. (4.10) is the 

finite-difference representation of the equation of generalized axisymmetric 

potential theory (eq. [3.7]).

4.1.2 Solution Methods for the Equation of Generalized Axisym
metric Potential Theory

4.1.2.1 The ADI Method

The alternating direction implicit (ADI) (Peaceman & Rachford 1955; 

Strikwerda 1989) method is a widely used iterative method for solving multi

dimensional boundary value problems. It is an operator-splitting scheme 

which solves implicitly, and in an alternating fashion, each of the dimensions 

of a multi-dimensional elliptic problem. It combines two ideas, described 

below, and results in a rapidly convergent and numerically stable algorithm. 

(See Press et al. 1992, Black & Bodenheimer 1975 and references given 

therein for implementations of the same technique to the solution of various 

PDEs.)
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The first idea of ADI is to write the original operator equation in the 

form of a diffusion equation, viz.

^  =  V 2$ -  AirGp. (4.12)

The diffusion equation uses a false dimensionless time which helps the algo

rithm settle into a final steady-state solution of eq. (4.1). We have adopted 

the prescription proposed by Black and Bodenheimer (1975) to compute the 

“time steps” for a variable number of iterations. The second idea incorpo

rated in the ADI technique is to implement a partially implicit solution of the 

2D finite-difference equations. This is performed by splitting the terms of the 

2D equations in such a way that, at each step, the finite-difference terms in 

two given directions are treated as known and unknown, respectively. When 

this is done, each 2D equation transforms into a set of tridiagonal equations. 

We then use the optimal sequential tridiagonal solver, LU (Lower-Upper) 

decomposition with forward- and back-substitution (hereafter referred to as 

just LU decomposition) to solve each tridiagonal matrix (Press et al. 1992).

In our specific implementation, the spatial operator in the generalized 

axisymmetric potential theory (eq. [4.10]) along with the diffusion term in 

eq. (4.12) is split as follows. For each choice of the Fourier mode elements i 

and to, during the 77-sweep we use

A(j)  r +1/2(j +  1 ,k) + B ( j ) {  1 +  Sj2[ ( - l ) m -  1 ] } r +1/2(j -  1 +  sj2,k)

— [A{j)  +  B(J) -  2(A -  l )C( j )  +  ^ } r +1/2(j,k) =

4ttGpn( j , k) -  D(k ) [cbn( j , k +  1) +  </>n(j, k -  1)] (4.13)
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+ (2D ( k ) - i - t ) o

and during the z-sweep we use

D(k) [ r + lu , k  + 1) + r +Iu ,k  - 1)] -  (2B(fc) + i t ) r +Iu ,k )  =

4:TrGpn+1/2(j,k)  — A(j )  <f>n+1/2(j +  1,&)

-BU )  { l + <S.,2[(-1)’" -  1 ] } r +I,2U -  1 + <5,2, k) (4.14)

-[2(A -  l)C'(i) -  (,4(j) + BU) -  £ )] r +ll2U,k).

In both cases, as indicated by the “time step” superscripts n, n +  1/2, or 

n +  1, terms on the right-hand side of the expressions are considered known 

quantities, and terms on the left are considered unknown.

4.1.2.2 Fourier Analysis

One popular method for the solution of Poisson’s equation is to use 

Fourier Analysis (Hockney 1965) in order to convert the 3D problem into 

a set of completely decoupled ID problems. This method is highly efficient 

and takes advantage of the fast Fourier transform (FFT) algorithm. The 

resulting tridiagonal system can then be solved directly using LU decompo

sition.

We usually assume Dirichlet-Dirichlet (DD) boundary conditions in the 

vertical coordinate direction. This boundary condition can be accommo

dated by applying a sine transform in the vertical coordinate direction. 

In fact, any combination of Neumann and Dirichlet boundary conditions 

can be dealt with by using the appropriate discrete transform. (Cooley et 

al. 1970; Swarztrauber 1974; Swarztrauber 1977) For instance, in the case
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of Neumann-Dirichlet (ND) boundary conditions, a discrete quarter cosine 

transform would accomplish the decoupling. As described by Cooley et al. 

(1970), ah of the possible combinations can be obtained using certain appro

priate pre- and post-conditioning operations on the input and output of a 

standard FFT routine.

When the appropriate transform is substituted into eq. (4.10) and uniform 

zoning is utilized (i.e. A zj~ =  Az  =  constant), one obtains

m s ) <Ku A 3  + 1) + b (j ) { i + <5)2[ ( - i r  -  i i j c m  - 1+ w

+{2(A„. -  l)C(j) +  2(At. — 1)D — \Mj) +  *>(;)]} c y i )  = 4*G,t^U),

where \y depends on the specific Fourier basis transform. Once the solution 

to this tridiagonal system is obtained via LU decomposition, the appropriate 

inverse transform is then applied in the vertical coordinate direction followed 

by an inverse Fourier transform in the azimuthal coordinate direction in order 

to bring the solution back into coordinate space.

4.2 Parallel Data-Transpose Technique

A large effort has gone into the development of fast sequential algorithms 

for the solution of Poisson’s equation (see Press et al. 1992 for many ex

amples). On shared-memory parallel computing architectures, the sequen

tial algorithms with the lowest operation count are optimal, given a way to 

distribute the computations uniformly among the processors (Briggs 1990). 

Similarly, a large effort has gone into the development of fast parallel al

gorithms for the solution of the Cartesian Poisson equation on distributed- 

memory architectures (cf., Kumar et al. 1994; Schwardmann 1993). We
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adopt a strategy for the parallel solution of the cylindrical Poisson equation 

on a distributed-memory architecture that has perfect computational load 

balance.

If a sequential algorithm requires a recursive sweep in one coordinate 

direction, then this sweep can be performed at each of the other coordinate 

locations independently. If we distribute our data in such a way that the 

coordinate direction in which the sweep needs to be performed is stored in 

the internal memory of each processor (node), then the computation can be 

performed in parallel on each of the nodes. Since each recursive sweep is 

performed completely in memory, no communication is required in the part 

of the calculation. The next sweep that needs to be performed is distributed 

across a set of processors. If we perform this recursive sweep with no change 

in the data distribution, then inter-processor communication will be required 

in order to perform the sweep, with the recursive nature of the sweep leading 

to poor load balance. Another choice that we have is to perform a global 

data-transposition operation on the storage array so that the second sweep 

direction is redistributed into the internal memory of each node. The question 

of which choice is optimal is architecture dependent.

On a 2D mesh of processors, the most natural way to map a 3D array 

is to spread two of the array directions out across the processors (X  and Y  

processor grid directions) and to store the third array direction in the internal 

memory of each node (M ). If we perform the data-transposition operation 

between the X  processor grid direction and M, then the global data-transpose 

can be performed in parallel for each Y  processor grid location. Similarly, if
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we perform the data-transposition operation between the Y  processor grid 

direction and M, then the global data-transpose operation can be performed 

in parallel for each X  processor grid location (Choi & Walker 1995). We 

have performed a data-transposition operation between each computational 

sweep for the preceding two algorithms.

4.3 Analysis

4.3.1 Theoretical Timing Analysis

Since the data-transpose technique allows both sequential algorithms to 

be implemented, in parallel, with no change in the computational strategy, 

the sequential operation count gives us a partial measure of the parallel ex

ecution time. A more accurate model for the total parallel execution time 

must include the data-transpose operations in the analysis. In both algo

rithms, a forward and inverse FFT is applied in the azimuthal coordinate 

direction. Including the highest order terms, the sequential operation count 

for a length p real FFT is |(5plog2(p) +  13p) (Swarztrauber 1977). Similarly, 

the operation count for a length p tridiagonal solution using LU decompo

sition is 5p (Press et al. 1992). The sequential operation count for the real 

fast sine transform is |(5plog2(p) +  22p) (Cooley et al. 1970). In order to 

simplify the calculation, we assume equal number of grid points in all three 

coordinate directions, i.e. N  =  J =  K  =  L. Therefore, the total sequential 

operation count for ADI is A 2[5Alog2(A ) +  13A  +  10A /] , where I is the 

total number of iterations needed to converge to a solution. As an exam

ple, the total sequential operation count for Fourier Analysis applied to the
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fast sine transform method for the Dirichlet-Dirichlet boundary condition is

iV2[10iVlog2(iV) + 40iV].

Given these sequential operation counts we can then estimate the parallel 

execution time. In the ADI algorithm, the data-transpose function is called 

3 +  2 / times and in the Fourier analysis algorithm it is called 4 times. In the 

case where each data-element is mapped to a single processor, the parallel 

operation count will be equal to the sequential operation count, reduced by 

a factor of N 2. Including this fact and including the amount of time spent in 

the data-transpose function, we estimate the parallel execution time for the 

ADI algorithm to be

t a d i  = [5tVlog2(iV) +  13A" +  10 N I]C +  (3 +  2 I)txRAN, (4.16)

and we estimate the parallel execution time for the Fourier analysis algorithm 

to be

tFA =  [10iVlog2(iV) +  40 N]C +  4 tTRAN, (4-17)

where C is a constant that determines how much time is spent on average per 

operation count and tj^RAN is the amount of time that is takes to complete 

a single data-transpose operation.

We have thus demonstrated that the parallel efficiency of the Fourier-ADI 

technique is on the same order as the Fourier analysis technique, which is 

the technique that has been broadly adopted for Cartesian problems. The 

Fourier-ADI technique has a remarkably short execution time, and the data- 

transpositions that are required to make it function efficiently on distributed
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memory, parallel computers prove not to be the main bottleneck in this 

solution methodology. This has become our computational strategy of choice 

for solving the Poisson equation on massively parallel computers.



5. Conclusion

In trying to build a mathematical model that accurately describes the 

observed appearance or behavior of a complex physical system, what often 

distinguishes the task of an astronomer from that of a physicist is the need to 

accurately determine in a self-consistent way the time-varying gravitational 

held that is associated with the system. The long-range influence of the grav

itational held makes this a nontrivial task in virtually all situations; and for 

all but the simplest systems, a determination of the gravitational potential 

that is consistent with a given mass distribution can only be achieved with 

numerical rather than analytical tools. Rather than studying in depth the 

behavior of one particular type of astrophysical system, the objective of this 

dissertation has been to identify and implement techniques that can be used 

to accurately and efficiently determine the gravitational potential of arbitrar

ily complex systems. In this way we hope to facilitate and indeed accelerate 

modeling efforts in a variety of important areas. Our focus has been on the 

numerical solution of the Poisson equation in cylindrical coordinates because 

a very large number of interesting astrophysical mass distributions are partic

ularly well suited to such a coordinate description. But the techniques that 

we have developed are fairly readily adaptable to other orthogonal curvilinear 

coordinate systems and, particularly in connection with our study of Green’s 

function expansions, will almost certainly be useful in analytical studies of 

related, but less complex systems.
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The numerical simulations that we perform are guided by previous at

tempts at these problems (see for example, Black & Bodenheimer 1975; Miller 

& Smith 1979). These efforts were performed on the most powerful comput

ers of their day. Even then the need for efficiency was paramount; only the 

most efficient algorithms could tackle the largest of the small-scale problems 

computable at that time. We recognize the limitation that a single pro

cessor imposes for computing time-dependent, large-scale, three-dimensional 

astrophysically interesting problems. This limitation has forced us to start 

developing and implementing our algorithms on massively parallel comput

ing architectures. Only through the usage of a large number of processors, 

each with its own local memory, may these types of large-scale problems 

presently be solved. The theorist, while always searching for analytically 

soluble solutions, is now driven towards computationalist strategies. In the 

parallel programming paradigm, computation (cpu time) and communica

tion (I/O  time) combine to further complicate the already difficult task of 

implementing an efficient algorithm.

Local problems, such as the numerical solution of the Navier-Stokes equa

tions, prove to be extremely efficient when implemented in parallel. Global 

problems, however, such as the parallel solution of Poisson’s equation, have 

proven to be more difficult to implement efficiently in parallel. Global prob

lems require more sophisticated communication strategies. For global prob

lems, we must match the most stream-lined computation algorithm with the 

most effective communication strategy in order to minimize the compute

time.
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The traditional serial algorithms that have frequently been used in the 

past to numerically obtain the Newtonian potential are not easily paral- 

lelizable. We came to the conclusion that a more beneficial parallelization 

technique for the Poisson solver was to use the Fourier-ADI technique, de

scribed here in detail in chapter 4. This powerful parallel technique relies 

on fast networks that can perform global 3D data-transpositions quite effi

ciently. Once we were satisfied with the performance of our parallel Poisson 

solver, which was first implemented on LSU’s 8192 node MasPar MP-1, we 

then set out to parallelize our boundary solver.

It also has been clear for some time that the traditional multipole method 

does not conform well to a cylindrical coordinate grid. Its implementation re

quires that all the mass be contained within a spherical radius vector extend

ing from the origin to each boundary location. Hence, in order to accurately 

and efficiently compute the boundary potential, we were forced to place the 

boundary far from the mass distribution. This was particularly problematic 

when encountering highly flattened mass distributions, since we then had to 

compute the gravitational potential throughout a grid that contained great 

amounts of empty space. We then set out to find a more accurate algo

rithm for the boundary solver which would hopefully conform better to our 

cylindrical mesh. We examined the possibility of computing the Newtonian 

potential using a cylindrical Green’s function. The cylindrical Green’s func

tion, which is discussed in a variety of textbooks (e.g., Jackson 1975; Morse 

& Feshbach 1953) was expressible in terms of certain special functions, i.e. 

Bessel functions and exponential functions pieced together with an infinite
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integral over a continuous wave number and an infinite summation over the 

azimuthal quantum number, to. The infinite integral posed a serious imped

iment to the numerical implementation of the cylindrical Green’s function 

technique. Initially, our attempt to use the cylindrical Green’s function to 

determine the Newtonian potential was hindered by our inability to find an 

efficient numerical method to compute the infinite integrals involved. We 

were able to obviate this problem through the propitious discovery of an 

analytical solution to the integral, which led us to the compact cylindrical 

Green’s function (CCGF) expansion presented in detail here in chapter 2.

The CCGF is expressible as a single sum over the azimuthal quantum 

number, to and is written in terms of half-integer degree Legendre functions 

of the second kind. These functions, which are also commonly referred to as 

toroidal harmonics, are known to be the set of basis functions which sepa

rate Laplace’s equation in toroidal coordinates. In chapter 3 we have outlined 

how the toroidal harmonics may be used to secure similarly compact Green’s 

function expansions in other coordinate systems. This has led, in particu

lar, to the indentihcation of a second useful addition theorem in spherical 

coordinates.

The successful numerical implementation of the CCGF algorithm in paral

lel, combined with the massively parallel data-transpose Fourier-ADI method 

for solving Poisson’s equation in cylindrical coordinates, has proven to be an 

effective tool for computing the Newtonian potential for arbitrarily complex, 

isolated mass distributions. In connection with a broad range of astrophys- 

ically interesting, two- and three-dimensional fluid flow problems, we have
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found this general tool to be not only more accurate but also less expensive 

to implement than more traditional methods. We strongly encourage the 

adoption of these techniques by other groups who are attempting to study 

large, complex, time-evolving astrophysical systems. In an effort to hasten 

the adoption of these techniques, we have included in appendices C, D, E, 

& F, the potential solver code, or respectively, the HPF code, the f77 code, 

grid.h, and the Makefile we use to compile the code on the MIMD Cray T3E.
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Appendix A: A Useful Modal Expansion

Morse & Feshbach (1953; see the expression just above their eq. 10.3.79) 

have presented the following useful relationship in connection with the inte

gral representation of Qm_i\

Qm_i(cosh/i)
r2v cos (m(f)')d(f)'
0 \Jcosh jd — COS </>'

(A .l)

Multiplying both sides of this expression by em  ̂ and then summing both 

sides from m = — oo to m =  oo, yields the following expression,

E
oo

X E
m = — oo

2tt
(coshn) =  —b= f  ,  ̂ —

2 v 2  q -^ /cosh /i — cos 4>‘ 

\e im(4>+4>') _|_ g i m ( 0 - 0 ' ) l  _ (A . 2)

Utilizing the following representation of the Dirac delta function (cf., eq. 

[3.139] of Jackson 1975)

* (0 ) (A.3)

the integral on the right-hand-side of eq. (A .2) can be readily performed, 

giving

1
V C°sh H ~  COS </> 7T Yfi — — go

or, written entirely in terms of real functions, 

1 ^

4  E  .(cosh,,), (A.4)

\/cosh fl -  cos <j) 7T= ----  cos (m<f)) Qm_k (coshn). (A .5)
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Appendix B: Selected Analytical Potential-Density Pairs

For a distinguished class of nonspherical objects there exist analytical 

solutions for the Newtonian potential given in terms of elementary and spe

cial functions. Below we list a few of these distinguished objects and the 

analytical forms of the exterior potential associated with them. There is a 

long history associated with these problems (cf., Ramsey 1981 and Binney & 

Tremaine 1987). Unfortunately, these objects do not represent most of the 

types of objects for which one might need to calculate gravitational forces. 

Even so, they are certainly very useful in comparing numerical methods for 

evaluating potentials.

Consider an homogeneous, axisymmetric spheroid defined such that,

p{R,z)
po if R2/ a\ +  z2/ a2 < 1 
0 if R2/ a\ +  z2/ a2 > 1 (B .l)

where oq and a3 are the equatorial and polar radii of the spheroid, respec

tively. From Chandrasekhar (1969), we find that the gravitational potential 

exterior to the spheroid is,

®(R,z) =  irGpoalazl^l + R2

2(a§ -  ai ) a? — al h -

2z2 2z2 \J a3 +  A 

(a2 +  X)\Ja2 +  A - « ? ) ( « ? +  A)

R2y/4 +  X

« 3  -  « l ) ( « l  +  A )

(B.2)
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where

A =  [(R2 +  z2 — a2 — a2) +  \J (aj +  a2 — R2 — z2)2 — 4(afa3 — R?a\ — z2a\)\j 2,

and, for an oblate spheroid (ai > a3),

h  =
7r

at — at at — as
: tan- l

\
a\ +  A
at — a2 ’

whereas for a prolate spheroid < a3),

h  =  ; 1 In
a2 — a\

+ A -  Jal -  a2)2
a\ +  A

For an homogeneous, triaxial ellipsoid defined such that,

(B.3)

(B.4)

(B.5)

P(x >!/>*) =
po if x2/ a\ +  y2/a\ +  z2/a\ < 1 
0 if x2/al +  y2/a\ +  z2/a\ > 1 (B.6)

where the three principal axes are defined such that ai > a2 > a3, the 

potential at any point x =  (x, y, z) exterior to the ellipsoid is,

$ (x ) =

+

2Trp0aia2a3

at — as
1 - +at — as at — as

(a2 -  a2)y2
+a2 — a2 {a\ ~ a2){a22 -  a23) a22 - a2

,k) (B.7)
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+
a1 +  \ 2
2 2 ya2 -  a>i

a2 +   ̂ J1 
2 2  ̂

« 2  -  « 3

— a23

+ -^)(a2 + -^)(a3 + )̂-

where

and,

F ( 9 , k ) =  f
Jo

d(f>

\Jl — k2 sin2 cj)
(B.8)

E(6,k)  =  j  dcf) \Jl — k2 sin2 </>, (B.9)

are Legendre’s elliptic integrals of the first and second kind respectively,

9 =  sin 1 a? — a?
\ a\ +  A (B. 10)

k2
a\ — a\ 
a\ ~ aV

(B -11)

and, A is defined as the algebraically largest root of the following cubic equa

tion:

x2 y2 z2
a\ +  A a\ +  A a2 +  A

1. (B. 12)



Appendix C: HPF Code

c-----------------------------------------------------------------------------------
C BESSEL
C MODIFICATION HISTORY:
C H. Cohl, 19 June, 1998 ---  Initial implementation.
C--------------------------------------------------------------------------

subroutine bessel(isyma)

C'

include ’grid.h’ 
include ’pot.h’

c

real, dimension(jmax2,kmax2,lmax) :: rhoc,rhos 
!hpf$ distribute rhoc(block,block,*) onto p2 
!hpf$ align rhos(i,j,k) with rhoc(i,j,k)

real, dimension(jmax2,kmax2) :: rTMP,zTMP,TMPC,TMPS 
!hpf$ distribute rTMP(block ,block) onto p2 
!hpf$ align zTMP(i,j) with rTMP(i,j)
!hpf$ align TMPC(i,j) with rTMP(i,j)
!hpf$ align TMPS(i,j) with rTMP(i,j)

real, dimension(jmax2,lmax) :: phirTMP,potr,phirTMPC,phirTMPS 
!hpf$ distribute phirTMP(block,block) onto p2 
!hpf$ align potr(i,j) with phirTMP(i,j)
!hpf$ align phirTMPC(i,j ) with phirTMP(i,j)
!hpf$ align phirTMPS(i , j ) with phirTMP(i,j)

real, dimension(kmax2,lmax) :: phizTMP,potz,phizTMPC,phizTMPS 
!hpf$ distribute phizTMP(block,block) onto p2 
!hpf$ align potz(i,j) with phizTMP(i,j)
!hpf$ align phizTMPC(i,j ) with phizTMP(i,j)
!hpf$ align phizTMPS(i , j ) with phizTMP(i,j)

real, dimension(jmax2,mmax) :: SjC,SjS 
!hpf$ distribute SjC(block,block) onto p2 
!hpf$ align S jS(i,j) with SjC(i,j)

real, dimension(kmax2,mmax) :: SkC,SkS 
!hpf$ distribute SkC(block,block) onto p2 
!hpf$ align SkS(i,j) with SkC(i,j)

c----------------------------------------------------------------------------------------------

c Intialize values,
c call setup(isyma)

c Read in Density.
c open(unit=23,file=’/u/home/hcohl/bessel/rho064.dat’ ,form=’unformatted’ ,
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c & status=’unknown’)
c read(23)rho
c close(23)

c------------------------------------------------------------------------------------

C Evaluate m=0 contribution to "TOP" & "SIDE" potential.
TMPC(: , : )=0.0 
do lp=l,lmax

TMPC(2:jmax,2:kmax)=TMPC(2:jmax,2:kmax)+rho(2:jmax,2:kmax, lp) 
enddo
do j=2,jmaxl

SjC(j,1)=sum(tmr(2:jmax,2:kmax, j , 1)*TMPC(2:jmax,2:kmax))
SjS(j,1)=0.0 

enddo
do k=2,kmaxl

SkC(k,1)=sum(smz(2:jmax,2:kmax, k,1)*TMPC(2:jmax,2:kmax))
SkS(k,1)=0.0 

enddo

C Evaluate m=l,mmax-l contribution to "TOP" & "SIDE" potential,
do m=2,mmax 

TMPC(: , : )=0.0 
TMPS( : , : )=0.0 
do lp=l,lmax

TMPC(2:jmax,2:kmax)=TMPC(2:jmax,2:kmax)
& +rho(2:jmax,2:kmax,lp)
& *cos(0.5*dtheta*(m-1)*(2*lp-l))

TMPS(2:jmax,2:kmax)=TMPS(2:jmax,2:kmax)
& +rho(2:jmax,2:kmax,lp)
& *sin(0.5*dtheta*(m-1)*(2*lp-l))

enddo
do j=2,jmaxl

SjC(j,m)=sum(tmr(2:jmax,2:kmax,j,m)*TMPC(2:jmax,2:kmax))
SjS(j,m)=sum(tmr(2:jmax,2:kmax,j,m)*TMPS(2:jmax,2:kmax)) 

enddo
do k=2,kmaxl

SkC(k,m)=sum(smz(2:jmax,2:kmax,k,m)*TMPC(2:jmax,2:kmax)) 
SkS(k,m)=sum(smz(2:jmax,2:kmax,k,m)*TMPS(2:jmax,2:kmax)) 

enddo 
enddo

c forail(1=1:lmax) phirTMP(j,k,l)=(float(j)-2 .0)*delr
do 1=1,lmax

phirTMP(2:jmaxl,1)=SjC(2:jmaxl,1) 
phizTMP(2:kmaxl,l)=SkC(2:kmaxl,1) 

enddo
do m=2,mmax

forail(1=1:lmax) phirTMPC(2:jmaxl,1)=SjC(2:jmaxl,m)*cos(0.5*dtheta*(m-1)*(2*1-1)) 
forail(1=1:lmax) phirTMPS(2:jmaxl,1)=SjS(2:jmaxl,m)*sin(0.5*dtheta*(m-1)*(2*1-1)) 
forail(1=1:lmax) phizTMPC(2:kmaxl,l)=SkC(2:kmaxl,m)*cos(0.5*dtheta*(m-1)*(2*1-1)) 
forail(1=1:lmax) phizTMPS(2:kmaxl,l)=SkS(2:kmaxl,m)*sin(0.5*dtheta*(m-1)*(2*1-1)) 
phirTMP(2:jmaxl, : )=phirTMP(2:jmaxl,:)

& +2*phirTMPC(2:jmaxl,:)
& +2*phirTMPS(2:jmaxl,:)

phizTMP(2:kmaxl, : )=phizTMP(2:kmaxl,:)
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& +2*phizTMPC(2:kmaxl,:)
& +2*phizTMPS(2:kmaxl,:)
enddo

potr(2:jmaxl, : )=-deltar*deltaz*dtheta*phirTMP(2:jmaxl,:) 
potz(2:kmaxl, : )=-deltar*deltaz*dtheta*phizTMP(2:kmaxl,:)

c Equatorial Symmetry
potr(l, : )=cshift(potr(2, : ) ,shift=lmax/2,dim=l) 
potz(l, : )=potz(2,:)

c-------------------------------------------------------------------

c open(unit=19,file=’/u/home/hcohl/bessel/tmr.dat’
c & ,status=’unknown’ ,form=’unformatted’ )
c write(19) tmr
c close(19)

c open(unit=19,file=’/u/home/hcohl/bessel/smz.dat’
c & ,status=’unknown’ ,form=’unformatted’ )
c write(19) smz
c close(19)

c open(unit=20,file=’/u/home/hcohl/bessel/potr.dat’
c & ,status= ’unknown’ ,form=’unformatted’ )
c write(20) potr
c close(20)

c open(unit=20,file=’/u/home/hcohl/bessel/potz. dat’
c & ,status=’unknown’ ,form=’unformatted’ )
c write(20) potz
c close(20)

phip(jmaxl, )  = potz 
phip(: ,kmaxl,:) = potr
ph ip(:,l,:) = phip(:,2,:)

return
end

c —
c HELMADI
c MODIFICATION HISTORY:
c
c

H. Cohl, 3 Jan, 1994

c H. Cohl, 16 Oct, 1993
c
c —

H. Cohl, 12 Sep, 1993

--- Made into a subroutine to
be put into pot.f.

---  Debugged.
--- Initial implementation.

subroutine helmadi(isyma,nsteps)

c
include ’grid.h’ 
include ’pot.h’

c
real, dimension (jmax2, kmax2, lmax) :: ffrho,ffphi 

!hpf$ distribute(block,block,*) onto p2 :: ffrho,ffphi
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real,dimension(jmax2,kmax2,lmax): : epsir,knownr,bndryr,rhor, phir 
!hpf$ distributee* ,block,block) onto p2 :: epsir,knownr,bndryr,rhor,phir

real,dimension(jmax2,kmax2,lmax): :knownz,bndryz,rhoz, phiz 
!hpf$ distribute(block,*,block) onto p2 :: knownz,bndryz,rhoz,phiz

real,dimension(nsteps): :dt

dt(nsteps)=4./r(jmaxl,1,1)**2 
alph=(r(jmaxl,l,l)/r(3,l,l))**(2./(nsteps-1)) 
do i=2,nsteps 

ii=nsteps+l-i 
dt(ii)=alph*dt(ii+1) 

enddo

C Fourier transform density in azimuthal direction,
call Realft(rhop,jmax2,kmax2, lmax,+l) 
ffrho(:,: , 1)=rhop(:,:,1) 
ffrho( : ,:,2 :lmax/2)=rhop(:,:,3:lmax:2) 
ffrho(:,:,lmax/2+l)=rhop(:,:,2) 
ffrho(:,:,lmax/2+2:lmax)=-rhop(:,:,4:lmax:2)

C Fourier transform initial guess for potential in azimuthal direction,
call Realft(phip,jmax2,kmax2, lmax,+l) 
ffphi(:,: , 1)=phip(:,:,1) 
ffphi(:,:,2:lmax/2)=phip(:,:,3:lmax:2) 
ffphi(:,:,lmax/2+l)=phip(:,:,2) 
ffphi(:,:,lmax/2+2:lmax)=-phip(:,:,4:lmax:2)

phir=ffphi 
rhoz=ffrho 
rhor=rhoz

do i=l,nsteps

dtt=dt(i)

ADI sweep in radial direction. 
epsir=0.0
epsir(j 1:j2 ,k l:k2, : )=dtt-2.*gamma 
epsir(j1-1, : , : )=0.0 
epsir(j2+1, : , : )=0.0
if  (isyma.eq.2.or. isyma.eq.3) epsir(j1:j2 ,k l, : )=dtt-l.*gamma 
b r(jl:j2 ,k l:k2 ,: )=brb(j1:j2 ,k l:k2, :)+dtt 
bndryr=0.0
bndryr(j2,kl:k2, : )=-alphar(j2,kl:k2, : )*phir(j2+l,kl:k2,:) 
knownr(j1:j2 ,kl:k2, : )=-4*pi*rhor(j 1:j2 ,k l:k2,:)

+epsir(j 1: j2 ,kl:k2 , : )*phir(j 1:j2 ,k l:k2,:)
+gamma*phir(j l :j2,kl+l:k2+l,:)
+gamma*phir(j l :j2 ,k l- l:k2-l, : )*factr(j l :j2 ,k l:k2,:)
+bndryr(j 1:j2 ,k l:k2,:)

call tridagr(ar,br,cr,knownr,phir,jmax2,kmax2,lmax,j 1,j2,kl,k2) 
phiz=phir

ADI sweep in vertical direction. 
bz(jl:j2 ,k l:k2 ,: )=bzb(jl:j2,kl:k2, :)+dtt 
elambdaz(j 1:j2 ,k l:k2, : )=elambdazb(j1:j2 ,k l:k2, : )+dtt

$
$
$
$
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bndryz=0.
if  (isyma.eq.1) bndryz(j 1:j2 ,k l, : )=gamma*phiz(j l :j2 , kl-1,:) 
bndryz(j 1: j2 ,k2, : )=gamma*phiz(j 1:j 2,k2+l,:) 
knownz(j 1: j2 ,kl:k2, : )=-4*pi*rhoz(jl:j2,kl:k2,:)

$ +elambdaz(j1:j2 , k l:k2, : ) *phiz(j1:j2 , k l:k2,:)
$ -alphazCjl:j2 ,kl:k2,: )*phiz(jl+l:j2+l,kl:k2,:)
$ -factz(j 1:j2 , k l:k2, : ) *betaz(j l :j2,kl:k2,:)
$ *ph iz(jl-l:j2 -l,k l:k2,:)
$ +bndryz(j l :j2 ,k l:k2,:)

call tridagz(az,bz,cz,knownz,phiz,jmax2,kmax2,lmax,j 1,j2,kl,k2) 
phir=phiz

enddo

C Inverse Fourier transform in azimuthal direction,
ffphi=phir

phip(: , : , l)=ffphi( :,:,1 )
phip(: , :  ,2)=ffphi(: , : ,lmax/2+l)
phip(: , : ,3 : lmax:2)=ffphi(: , : ,2 : lmax/2)
phip(: , : ,4 : lmax:2)=-ffphi( : , : , lmax/2+2:lmax)
call Realft(phip,jmax2,kmax2,lmax,-1)
do i=l,lmax

phip(: , :  , i)=phip(: , : , i ) /(lmax/2) 
enddo

if (isyma.eq.3) then
phip(l, : , : )=phip(2 , :, :)  

else
phip(l, : , : )=cshift(phip( 2 shift=lmax/2,dim=2) 

endif
if  (isyma.eq.2.or.isyma.eq.3) phip(: ,1 , : )=phip(: ,2,:)

return
end

c-------------------------------------------------------------------------------
C POISSON
C MODIFICATION HISTORY:
C H. Cohl, 12 Sep, 1993  Initial implementation.
c-------------------------------------------------------------------------------

subroutine poisson(isyma)

C'

include ’grid.h’ 
include ’pot.h’

C'

real :: timef,etimel,etime2

C Use current potential if  available, 
if  (itstep.gt.1) then 

nsteps=5 
else

nsteps=20
if (isyma.eq.l) then
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phip(jl-l:j2,kl:k2,:)=0.0 
else
phip(jl-l:j2,kl-l:k2,:)=0.0 

endif 
endif

etimel=timef() 

call bessel(isyma) 

et ime2=timef()
write(6,*)" Time elapsed (Boundary: bessel) : " 

& , (etime2-etimel)/1000.0, " seconds."
etimel=timef()

call helmadi(isyma,nsteps)

et ime2=timef()
write(6,*)" Time elapsed (Interior: ADI) : "

& ,(etime2-etimel)/1000.0, " seconds."

return
end

c----------------------------------------------------------------------------
C POT
C---------------------------------------------------------------------
C MODIFICATION HISTORY:
C H. Cohl, 11 Jan, 1994  Initial implementation.
C--------------------------------------------------------------------
chsc Remove comment when placed in hydrocode 
c subroutine pot(isyma)

C--------------------------------------------------------------------

include ’grid.h’ 
include ’pot.h’

c-------------------------------------------------

Chsc Remove when placed in hydrocode 
call setup(isyma)

Chsc Place in setup.f for hydrocode 
call potsetup(isyma)

C--------------------------------------------
call poisson(isyma)

phi=phip
C--------------------------------------------------------------------------

Chsc Remove when placed in hydrocode. 
open(unit=22,

$ file=’/u/home/hcohl/adi/phi.dat’,status=’unknown’,form=’unformatted’)
write(22)phi 
close(22)

Chsc Remove comment when placed in hydrocode.
c return
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end
C-------------------------------------------------------------------
C POTSETUP
C MODIFICATION HISTORY:
C H. Cohl, 27 Mar, 1997  Initial implementation.
C-------------------------------------------------------------------

subroutine potsetup(isyma)

C'

USE HPF.LIBRARY 
include ’grid.h’ 
include ’pot.h’

C'

integer :: shx,shy,pj,pk 
integer, dimension(7) :: shape 
integer :: isyma 
integer :: rank
real, dimension(jmax2) :: xrhf 
real, dimension(kmax2) :: xzhf

! hpf $

INTERFACE
EXTRINSIC (f77_L0CAL) SUBROUTINE

tm (shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr) 
shx 
shy

INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
INTEGER, INTENT(IN) 
REAL, INTENT(IN) 
REAL, INTENT(IN) 
REAL, INTENT(OUT) 

include ’proc.h’

PJ 
pk
jmax2
kmax2
mmax
xrhf(jmax2) 
xzhf(kmax2)
tmr(jmax2,kmax2,jmax2,mmax)

distribute tmr(block,block,*,*) onto p2
END SUBROUTINE tm 

END INTERFACE

! hpf $

INTERFACE
EXTRINSIC (f77_L0CAL) SUBROUTINE

sm
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL,
REAL,
REAL,

(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,smz)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(IN)
INTENT(OUT)

shx
shy
PJ
pk
jmax2
kmax2
mmax
xrhf(jmax2) 
xzhf(kmax2)
smz(jmax2,kmax2,kmax2,mmax)

include ’proc.h’
distribute smz(block,block,*,*) onto p2
END SUBROUTINE sm 

END INTERFACE



1 0 1

C'

! hpf $ 
! hpf $ 
! hpf $ 
! hpf $

real,dimension(jmax2,kmax2,lmax): : elm,mlmode,orhf,orhf2 
align elm(i,j,k) with r ( i,j,k ) 
align mlmode(i , j,k) with r ( i,j,k ) 
align orhf(i,j,k) with r ( i,j,k ) 
align orhf2(i,j,k) with r ( i,j,k )

real,dimension(jmax2,kmax2,lmax): :betar 
!hpf$ distributee*,block,block) onto p2 :: betar

c Determine number of elements per processor
call hpf.distribution(tmr,processors_rank=rank,processors_shape=shape)
shx=shape(1)
shy=shape(2)
pj=jmax2/shx
pk=kmax2/shy
xrhf(:)=rhf(:,1,1)
xzhf(:)=zhf(1,:,1)

c Read in tm & sm arrays.
c if  (itstep.eq.1) then

call tm(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr) 
call sm(shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,smz) 

c endif

c--------------------------------------------------------------
open(unit=20,

$ file=’/u/home/hcohl/adi/rho064.dat’ ,
$ status=’unknown’ ,form=’unformatted’ )
read(20)rho 
close(20)

C--------------------------------------------------------
open(unit=21,

$ file=’/u/home/hcohl/adi/pot064.dat’ ,
$ status=’unknown’ ,form=’unformatted’ )
read(21)phi 
close(21)

C--------------------------------------------------------
c write(6,*)phi(:,2,l)

phip=phi 
c phip=0.0

rhop=rho

jl=2
kl=2
j2=jmax
k2=kmax

eodr2=l./(deltar**2) 
eodtheta2=l./(dtheta**2) 
gamma=l./(deltaz**2) 
orhf=1./rhf 
orhf2=orhf**2

lstop=lmax/2+l 
do l=l,lmax

if (isyma.eq.3) then
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if  (l.le.lstop) mode=(l-l)*2 
if  (l.gt.lstop) mode=(l-lstop)*2 

else
if  (l.le.lstop) mode=(l-l) 
if  (l.gt.lstop) mode=(l-lstop) 

endif
mlmode(j 1: j2 ,kl:k2,1) = (-1)**mode 
elm(j1:j2,kl:k2, l)=cos(mode*dtheta) 

enddo

alphar(j 1:j2 ,k l:k2, : )=-r(j 1+1:j2+l,kl:k2,: )*orhf(j 1:j2 ,k l:k2, : )*eodr2 
alphaz(j 1:j2 ,k l:k2, : )=alphar(jI :j2 ,k l:k2 ,:)
betar(j 1:j2,kl:k2, :)= -r(jl:j2 ,k l:k2 ,: )*orhf(j 1:j2 ,k l:k2, : ) *eodr2 
betaz(j 1:j2,kl:k2, : )=betar(j 1:j2 ,k l:k2,:)

ar(jl+ l:j2 ,k l:k2,: )=betar(jl+1:j2,kl:k2,:) 
c r ( j l :j2 -l,k l:k2 ,: )=alphar(j 1:j2 -l,k l:k2 ,:)

az(j 1:j2 , kl + 1:k2, : )=-gamma 
cz(j 1:j2 ,k l:k2-l, : )=-gamma

brb(jl+1:j2,kl:k2, : )=2.*eodr2-2.*
$ (elm(jl+l:j2 ,kl:k2,: ) - l . )*eodtheta2*orhf2(jl+1:j2 ,kl:k2,:)

if  (isyma.eq.3) then
brb(jl,kl:k2, : )=-alphar(jl,kl:k2,:) 

c $ -2.*betar(j 1,kl:k2,:)
$ -2.*(elm(jl,kl:k2,: ) - l . )*eodtheta2*orhf2(jl,kl:k2,:)
else

brb(jl,kl:k2, : )=-alphar(jl,kl:k2,:)+
$ (mlmode(j1,k l:k2, :)-l.)*betar(j 1,kl:k2,:)
$ -2.*(elm(jl,kl:k2,: ) - l . )*eodtheta2*orhf2(jl,kl:k2,:)
endif

bzb(j1:j2 ,kl:k2, : )=2.*gamma
if (isyma.eq.2.or.isyma.eq.3) bzb(j1:j2 ,k l, : )=gamma

elambdazb(j1+1:j2,kl:k2, : )=-2.*eodr2+2.*
$ (elm(jl + 1:j 2,kl:k2,: ) - l .)*eodtheta2*orhf2(j1+1:j2 ,k l:k2,:)

if  (isyma.eq.3) then
elambdazb(jl,kl:k2, : )=alphaz(jl,kl:k2,:) 

c $ +2.*betaz(j 1,kl:k2,:)
$ +2.*(elm(jl,kl:k2, : ) - l . )*eodtheta2*orhf2(jl,kl:k2,:)
else

elambdazb(jl,kl:k2, : )=alphaz(jl,kl:k2,:)
$ - (mlmode(j l ,kl:k2, : ) - l . )*betaz(jl,kl:k2,:)
$ +2.*(elm(jl,kl:k2, : ) - l . )*eodtheta2*orhf2(jl,kl:k2,:)
endif

factr=l.
if  (isyma.eq.2.or.isyma.eq.3) factr( : ,k l, : )=0.
factz=l.
factz(j 1 , : , : )=0.

return
end

C'
C REALFT
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C'

subroutine realft(data,nx,ny,nz,isign)

c
include ’proc.h’

real,dimension(nx,ny,nz): :data 
!hpf$ distribute data(block,block,*) onto p2

real,dimension(nx,ny) : :hli,hlr,h2i,h2r 
!hpf$ distribute(block,block) onto p2 :: hli,hlr,h2i,h2r

re a l::theta,wi,wpi,wpr,wr,wtemp

theta=3.141592653589T93/(nz/2) 
cl=0.5
if  (isign.eq.l) then 

c2=-0.5
call fourl(data,nx,ny,nz/2,+l) 

else 
c2=0.5
theta=-theta

endif
wpr=-2.0*sin(0.5*theta)**2 
wpi=sin(theta) 
wr=l.0+wpr 
wi=wpi 
n2p3=nz+3 
do i=2,nz/4 

il=2*i-l 
i2=il+l 
i3=n2p3-i2 
i4=i3+l 
wrs=wr 
wis=wi
hlr=cl*(data(: , : , il)+data(: , : , i3)) 
hli=cl*(data(: , : , i2)-data(: , : , i4)) 
h2r=-c2*(data(: , : , i2)+data(: , : , i4)) 
h2i=c2*(data(: , : , il)-data(: , : , i3)) 
data(: , : , il)=hlr+wrs*h2r-wis*h2i 
data(: , : , i2)=hli+wrs*h2i+wis*h2r 
data(: , : , i3)=hlr-wrs*h2r+wis*h2i 
data(: , : , i4)=-hli+wrs*h2i+wis*h2r 
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo
if (isign.eq.l) then

hlr( : , : )=data(:,:,1 ) 
data(: , : ,1 )=hlr( : , : )+data(:,:,2 ) 
data(: , : ,2)=hlr(: , : )-data(:,:,2 ) 

else
hlr( : , : )=data(:,:,1 )
data(:,:,l)= cl*(h lr(:) :)+data(:,:,2 )) 
data(:,:,2)=cl*(hlr(:,:)-data(:,:,2 )) 
call fourl(data,nx,ny,nz/2,-l) 

endif
return
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end
c-------------
C FOUR1 
C------------

subroutine fourl(data,nx,ny,nnz,isign)

c
include ’proc.h’

real,dimension(nx,ny,2*nnz): :data 
!hpf$ distribute data(block,block,*) onto p2

real,dimension(nx,ny) : : tempi,tempr 
!hpf$ distribute(block , block) onto p2 :: tempi,tempr

re a l::theta,wi,wpi,wpr,wr,wtemp
integer: :nx,ny,nnz, isign, i ,istep,j,m,mmax,nz

nz=2*nnz
j = l
do i=l,nz ,2

i f (j .g t . i)then
tempr=data(: , : , j ) 
tempi=data(: , : , j+1) 
data(: , : , j)=data(: , : , i) 
data(: , : , j+l)=data(: , : ,i+l) 
data(: , : , i)=tempr 
data(: , : , i+1)=tempi 

endif 
m=nz/2

1 continue
if ( (m.ge.2).and.( j .gt.m)) then

j=j-m
m=m/2 

goto 1 
endif
j=j+m

enddo
mmax=2

2 continue
if (nz.gt.mmax) then 

istep=2*mmax
theta=6.28318530T17959/(isign*mmax)
wpr=-2.*sin(0.5*theta)**2
wpi=sin(theta)
wr=l.
wi=0.
do m=l,mmax,2 

do i=m,nz,istep 
j=i+mmax
tempr=wr*data(: , : , j )-wi*data(: , : , j+1) 
tempi=wr*data(: , : , j+l)+wi*data(: , : , j ) 
data(: , : , j)=data(: , : , i)-tempr 
data(: , : , j+l)=data(: , : , i+1)-tempi 
data(: , : ,i)=data(: , : ,i)+tempr 
data(: , : ,i+l)=data(: , : ,i+l)+tempi 

enddo
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wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo
mmax=istep 

goto 2 
endif 
return 
end

C-------------------------------------------------------------------
C SETUP
C /u/home/hcohl/adi
C MODIFICATION HISTORY:
C H. Cohl, 27 Mar, 1997  Initial implementation.
C-------------------------------------------------------------------

subroutine setup(isyma)

C'

include ’grid.h’
c-----------------------------------------------------------------------------------

c Set time step.
itstep=2 

c itstep=l

c Set grid geometry.
isyma=2

c Set up grid spacing,
c deltar=le-2
c deltaz=le-2

deltar=l.88679E-02 
deltaz=l.88679E-02 
pi=3.1415926535e0 
grav=l.0

if  (isyma.eq.3) then 
dtheta=pi/real(lmax) 

else
dtheta=2.*pi/real(lmax) 

endif

forall(j=l:jmax2,k=l:kmax2,1=1:lmax) r (j ,k ,l)=(float(j)-2 .0)*deltar 
forall(j=l:jmax2,k=l:kmax2,1=1:lmax) rhf(j ,k ,1)=(float(j ) - l .5)*deltar 
rplus = eoshift(r,dim=l,shift= 1) 
rplus(jmax2, : , : )  = rplus(jmaxl, : , : )  + deltar

if  (isyma.eq.l) then
forall(j= l:jmax2,k=l:kmax2,1=1:lmax)

& z(j ,k ,l)=(float(k)-l.O-kmax/2)*deltaz
else

forall(j= l:jmax2,k=l:kmax2,1=1:lmax)
& z (j,k ,l)=(float(k)-2.0)*deltaz
endif

if  (isyma.eq.l) then
forall(j= l:jmax2,k=l:kmax2,1=1:lmax)
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& zhf(j , k,1)=(float(k)-0.5-kmax/2)*deltaz
else

forall(j=l:jmax2, k=l:kmax2,1=1:lmax)
& zhf(j ,k ,1)=(float(k)-l.5)*deltaz
endif

return
end

C--------------------------------------------------------------------------
C TRIDAGR
C--------------------------------------------------------------------------
C MODIFICATION HISTORY:
C H. Cohl, 18 Sep, 1993 ---  Initial implementation.
C NOTES: Given a tridiagonal matrix M of size NxN with 
C diagonal elements M(i,i) are in B(1)..B(N)
C lower offdiagonal elements M(i+l,i) are in A(2)..A(N)
C upper offdiagonal elements M(i,i+1) are in C(1)..C(N-1)
C solve the equation MU=R for the vector U().
C--------------------------------------------------------------------------

subroutine tridagr(a,b,c,r,u,nx,ny,nz,j 1,j2,kl,k2) 

include ’proc.h’

real,dimension(nx,ny,nz): : a,b,c ,r ,u,gam ,bet 
!hpf$ distributee*,block,block) onto p2 :: a,b,c ,r,u,gam,bet

c---------------------------------------------------------------------------

C Forward Pass
betCjl,kl:k2, : )=b(jl,kl:k2,:)
u (jl,k l:k2 ,: )=r(j 1,k l:k2, : )/bet(jl,kl:k2,:)

do 10 j=jl + l , j 2
gam(j,kl:k2 , : )=c(j-1,kl:k2, : ) /bet(j-1,kl:k2,:)
bet(j , k l :k2, : )=b(j,kl:k2, : )-a (j,k l:k2, : ) *gam(j,kl:k2,:)
u (j,k l:k2 ,: )=(r(j,k l:k2 ,:)-a (j,k l:k2 ,:)

$ *u(j 1,kl:k2,:) )/bet(j,kl:k2,:)
10 continue

C Back-substitution pass
do j =j 2 — 1, j l  ,-l

u(j,kl:k2,:)=u(j,kl:k2,: )-gam(j+1,kl:k2, : ) *u(j+1,kl:k2,:) 
enddo

return
end

c-----------------------------------------------------------------------------------
C TRIDAGZ
C--------------------------------------------------------------------------
C MODIFICATION HISTORY:
C H. Cohl, 18 Sep, 1993   Initial implementation.
C NOTES: Given a tridiagonal matrix M of size NxN with 
C diagonal elements M(i,i) are in B(1)..B(N)
C lower offdiagonal elements M(i+l,i) are in A(2)..A(N)
C upper offdiagonal elements M(i,i+1) are in C(1)..C(N-1)
C solve the equation MU=R for the vector U().
C--------------------------------------------------------------------------
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subroutine tridagz(a,b,c,r,u,nx,ny,nz,jl,j2,kl,k2)

c
include ’proc.h’

real,dimension(nx,ny,nz): : a,b,c, r ,u, gam , bet 
!hpf$ distribute(block,*,block) onto p2 :: a,b,c ,r,u,gam,bet

C Forward Pass
b e t(jl:j2 ,k l, : )=b(jl:j2 ,k l,:) 
u (jl:j2 ,k l,:)= r(jl:j2 ,k l,: )/bet(j 1:j 2,k l,:)

do k=kl+l,k2
gam(j1:j 2,k, :)= c(jl:j2 ,k -l,:)/bet(j 1:j 2,k—1,:)
bet(j 1:j2 ,k ,:)= b (jl:j2 ,k ,:)-a (jl:j2 ,k ,:)*gam(j1:j2 ,k,:)
u (jl:j2 ,k ,:)= (r(jl:j2 ,k ,: ) - a ( j l :j2 ,k ,:)

$ *u(jl:j2 ,k-l,:))/bet(j 1:j2 ,k,:)
enddo

C Back-substitution pass
do k=k2-l,kl,-l

u (j1:j2 ,k , :)=u(jl:j2 ,k,: )-gam(j1:j2,k+l, :)*u (jl:j 2,k+1,:) 
enddo

return
end



Appendix D: F77 Code

c----------------------------------------------------------------------
FUNCTION elle(phi,ak)
REAL elle,ak,phi 

CU USES rd,rf
REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(l.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1 .)-((s*ak)**2)*rd(cc,q,1 .)/3.)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .
C----------------------------------------------------------------

FUNCTION ellf(phi,ak)
REAL e l lf , ak,phi 

CU USES rf
REAL s,rf 
s=sin(phi)
ellf=s*rf(cos(phi)**2, (1.-s*ak)*(1.+s*ak), 1.)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .
c----------------------------------------------------------------------

FUNCTION factrl(n)
INTEGER n 
REAL factrl 

CU USES gammln
INTEGER j,ntop 
REAL a(33),gammln 
SAVE ntop,a 
DATA ntop,a(l)/0,l./ 
if  (n.lt.O) then

pause ’negative factorial in fac tr l’ 
else if  (n.le.ntop) then 

factrl=a(n+l) 
else if  (n.le.32) then 

do 11 j=ntop+l,n
a( j+i) =j*a( j )

11 continue
ntop=n
factrl=a(n+l) 

else
factrl=exp(gammln(n+1.)) 

endif 
return 
END

C (C) Copr. 1986-92 Numerical Recipes Software .
c----------------------------------------------------------------------

FUNCTION gammln(xx)
REAL gammln,xx 
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)
SAVE cof,stp
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DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,
*24.01409824083091dO,-1.231739572450155d0, . 1208650973866179d-2, 
*-.5395239384953d-5,2.5066282746310005d0/ 
x=xx 
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp 
ser=l.000000000190015d0 
do 11 j = l,6 

y=y+l.dO 
ser=ser+cof(j )/y 

11 continue
gammln=tmp+log(stp*ser/x)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .

FUNCTION rd(x,y,z)
REAL rd,x,y , z ,ERRTOL,TINY,610,01,02,03,04,05,06
PARAMETER (ERRT0L=.000015,TINY=1.e-25,BIG=4.5E21,01=3./14.,02=1./6., 

*03=9./22.,C4=3./26.,05=.25*03,06=1.5*04)
REAL alamb,ave ,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,

*sqrtz,sum,xt,yt,zt
if(min(x ,y ).I t .0 ..or.min(x+y,z).It.TINY.or.max(x,y,

*z).gt.BIG)pause ’ invalid arguments in rd’ 
xt=x
y t= y
zt=z 
sum=0. 
fac=l.

1 continue
sqrtx=sqrt(xt) 
sqrty=sqrt(yt) 
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)) .gt.ERRT0L)goto 1
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ec+ec
rd=3.*sum+f ac*(1.+ed*(-Cl+C5*ed-C6*delz*ee)+delz*(C2*ee+delz*(-03* 

*ec+delz*C4*ea)))/(ave*sqrt(ave)) 
return 
END

C (C) Copr. 1986-92 Numerical Recipes Software .

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,Cl,02,03,04 
PARAMETER (ERRT0L=.000025,TINY=1.5e-38,BIG=3.E37,THIRD=1./3., 

*01=1./24.,C2=.l,C3=3./44.,C4=1./14.)
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REAL alamb, ave,delx,dely, delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt ,zt 
if(min(x ,y , z ).I t .0 ..or.min(x+y, x+z,y+z).It.TINY.or.max(x,y,

*z).gt.BIG)pause ’ invalid arguments in r f ’ 
xt=x
yt=y
zt=z

1 continue
sqrtx=sqrt(xt) 
sqrty=sqrt(yt) 
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)) .gt.ERRT0L)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(l.+(Cl*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

C (C) Copr. 1986-92 Numerical Recipes Software .

subroutine sm(isyma,shx,shy,pj,pk,jmax2,kmax2,mmax, xrhf,xzhf,smz)

include ’/usr/local/pgi/t3e/include/pglocal.f’

parameter(irmax = 111)
integer n,m,mm,nprocs,myproc
integer isyma,shx,shy,pj,pk
integer jmax2,kmax2,mmax
integer jstart,kstart,jfinish,kfinish
integer loc(shx*shy,2)
real xrhf(jmax2),xzhf(kmax2)
real smz(pj,pk,kmax2,mmax)
real qp(mmax),qm(mmax)
real RB,e llf , elle ,pi,pi2,coef
real b,c,ap,am,xp,xm,mup,mum,lap,lam
real Kmup,Kmum,Emup,Emum
real nu
real coefh,dcoefh,gamma,factorial 
real aa,bb,cc,yy,alpha,sum,diff,Fabcy 

cjc I added these arrays to speed this process up! 
real myalpha(mmax),mycoefh(mmax) 
real mydcoefh(irmax,mmax) 
real gmlhf

RB=xrhf(jmax2-1) 
c=RB

myproc = pghpf_myprocnum() 
nprocs = pghpf_nprocs()



I l l

c pi = 3.14159265358979324e0
pi = 3.1415926535897932384626433832795028841971693993751058209749446 
pi2 = 0.5*pi

n=l
do j=l,shy 

do i=l,shx 
loc(n,l)=i-l 
loc(n,2)=j-1 
n=n+l 

enddo 
enddo

if (loc(myproc+1,1).eq.0) then 
jstart=2 

else
jstart=l

endif
if  (loc(myproc+1,2).eq.0) then 

kstart=2 
else

kstart=l
endif

if  (loc(myproc+1,1).eq.shx-1) then 
jfinish=pj-2 

else
jfinish=pj 

endif
if  (loc(myproc+1,2).eq.shy-1) then 

kfinish=pk-2 
else

kfinish=pk
endif

cjc ARRAY SETUP
gmlhf = gammln(0.5) 
do m=l,mmax 

mm=m-l
if  (isyma.eq.3) mm=2*(m-l)

mycoefh(m)=exp(gmlhf+gammln(mm+.5))/factrl(mm) 
aa=(mm+l.5)/2. 
bb=(mm+.5)/2. 
cc=mm+l
myalpha(m)=exp(gammln(cc)-gammln(aa)-gammln(bb)) 
do ir=l, irmax

fr=factrl(ir-1)
mydcoefh(ir,m)=exp(gammln(aa+ir-l)+gammln(bb+ir-l)-gammln(cc+ir-l))/fr 

enddo 
enddo

c Equatorial Symmetry
if  (isyma.eq.2) then 

do jj= jstart,jfinish
b=xrhf(loc(myproc+1,1)*pj+jj) 
coef=sqrt(b/c)/pi 
do kk=kstart,kfinish
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do kkk=2,kmax2-l

if  (loc(myproc+1,2)*pk+kk.I t .kkk) then 
ap=xzhf(kkk)+xzhf(loc(myproc+1, 2)*pk+kk) 
am=xzhf(kkk)-xzhf(loc(myproc+1, 2)*pk+kk) 

else
ap=xzhf(loc(myproc+1,2)*pk+kk)+xzhf(kkk) 
am=xzhf(loc(myproc+1,2)*pk+kk)-xzhf(kkk) 

endif

xp=0.5*(ap**2+b**2+c**2)/(b*c) 
if  (xp.I t .1.025) then 

mup=sqrt(2.0/(1.0+xp)) 
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup) 
qp(1)=Kmup*mup 
qp(2)=xp*mup*Kmup-lap*Emup 
do m=3,mmax

nu=(2.*m-5. )/2.
qp(m)=(2.*nu+l.)/(nu+l.)*xp*qp(m-l)-nu/(nu+l.)*qp(m-2) 

enddo 
else

do m=l,mmax 
mm=m-l
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qp(m)=coefh*Fabcy 

enddo 
endif

xm=0.5*(am**2+b**2+c**2)/(b*c) 
if  (xm.I t .1.025) then 

mum=sqrt(2.0/(1.0+xm)) 
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum) 
qm(1)=Kmum*mum 
qm(2)=xm*mum*Kmum-lam*Emum 
do m=3,mmax

nu=(2.*m-5. )/2.
qm(m)=(2.*nu+l.)/(nu+l.)*xm*qm(m-l)-nu/(nu+l.)*qm(m-2) 

enddo 
else

do m=l,mmax 
mm=m-l
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff
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enddo
Fabcy=alpha*sum 
qm(m)=coefh*Fabcy 

enddo 
endif

do m=l,mmax
smz(jj,k k , kkk,m)=coef*(qp(m)+qm(m)) 

enddo

enddo
enddo

enddo
c Pi-symmetry

else if  (isyma.eq.3) then 
do jj= jstart,jfinish

if (myproc.eq.l) write(6,*)jj,jfinish 
b=xrhf(loc(myproc+1,1)*pj+jj) 
coef=sqrt(b/c)/pi 
do kk=kstart,kfinish 

do kkk=2,kmax2-l

if  (loc(myproc+1,2)*pk+kk.I t .kkk) then 
ap=xzhf(kkk)+xzhf(loc(myproc+1,2)*pk+kk) 
am=xzhf(kkk)-xzhf(loc(myproc+1, 2)*pk+kk) 

else
ap=xzhf(loc(myproc+1,2)*pk+kk)+xzhf(kkk) 
am=xzhf(loc(myproc+1,2)*pk+kk)-xzhf(kkk) 

endif

xp=0.5*(ap**2+b**2+c**2)/(b*c) 
if  (xp.I t .1.025) then 

mup=sqrt(2.0/(1.0+xp)) 
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup) 
qp(1)=Kmup*mup
qp(2)=(4/3.*xp**2-l/3.)*mup*Kmup-4/3.*xp*lap*Emup 
do m=3,mmax

nu=(4.*m-9. )/2.
qp(m)=qp(m-l)*((2*nu+3)*(2*nu+l)*xp**2/((nu+2)*(nu+l))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qp(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+l))

enddo 
else

do m=l,mmax 
mm=2*(m-l)
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qp(m)=coefh*Fabcy 

enddo 
endif
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xm=0.5*(am**2+b**2+c**2)/(b*c) 
if  (xm.I t .1.025) then 

mum=sqrt(2.0/(1.0+xm)) 
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum) 
qm(1)=Kmum*mum
qm(2)=(4/3.*xm**2-l/3.)*mum*Kmum-4/3.*xm*lam*Emum 
do m=3,mmax

nu=(4.*m-9. )/2.
qm(m)=qm(m-l)*((2*nu+3)+(2*nu+l)*xm**2/((nu+2)*(nu+1))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qm(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+1))

enddo 
else

do m=l,mmax 
mm=2*(m-l)
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qm(m)=coefh*Fabcy 

enddo 
endif

do m=l,mmax
smz(jj,kk,kkk,m)=coef*(qp(m)+qm(m)) 

enddo

enddo
enddo

enddo
endif

return
end

subroutine tm(isyma,shx,shy,pj,pk,jmax2,kmax2,mmax,xrhf,xzhf,tmr)

include ’/usr/local/pgi/t3e/include/pglocal.f’

parameter(irmax = 111)
integer n,m,mm,nprocs,myproc
integer isyma,shx,shy,pj,pk
integer jmax2,kmax2,mmax
integer jstart,kstart,jfinish,kfinish
integer loc(shx*shy,2)
real xrhf(jmax2),xzhf(kmax2)
real tmr(pj,pk,jmax2,mmax)
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real qp(mmax),qm(mmax)
real zB,e l l f ,elle,pi,pi2,coef
real b,c,ap, am,xp,xm,mup,mum, lap,lam
real Kmup,Kmum,Emup,Emum
real nu
real coefh,dcoefh,gamma,factorial 
real aa,bb,cc,yy,alpha,sum,diff,Fabcy

cjc I added these arrays to speed this process up! 
real myalpha(mmax),mycoefh(mmax) 
real mydcoefh(irmax,mmax) 
real gmlhf

zB=xzhf(kmax2-l)

myproc = pghpf_myprocnum() 
nprocs = pghpf_nprocs()

c pi = 3.14159265358979324
pi = 3.1415926535897932384626433832795028841971693993751058209749446 
pi2 = 0.5*pi

n=l
do j=l,shy 

do i=l,shx 
loc(n,l)=i-l 
loc(n,2)=j-1 
n=n+l 

enddo 
enddo

if (loc(myproc+1,1).eq.0) then 
jstart=2 

else
jstart=l

endif
if  (loc(myproc+1,2).eq.0) then 

kstart=2 
else

kstart=l
endif

if  (loc(myproc+1,1).eq.shx-1) then 
jfinish=pj-2 

else
jfinish=pj 

endif
if  (loc(myproc+1,2).eq.shy-1) then 

kfinish=pk-2 
else

kfinish=pk
endif

cjc array setup
gmlhf = gammln(0.5) 
do m=l,mmax 

mm=m-l
if  (isyma.eq.3) mm=2*(m-l)
mycoefh(m)=exp(gmlhf+gammln(mm+.5))/factrl(mm) 
aa=(mm+l.5)/2.
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bb=(mm+.5)/2. 
cc=mm+l
myalpha(m)=exp(gammln(cc)-gammln(aa)-gammln(bb)) 
do ir=l, irmax

fr=factrl(ir-l)
mydcoefh(ir,m)=exp(gammln(aa+ir-l)+gammln(bb+ir-l)-gammln(cc+ir-l))/f r 

enddo 
enddo

c Equatorial Symmetry
if  (isyma.eq.2) then 

do jj= jstart,jfinish 
do kk=kstart,kfinish 

do jjj=2,jmax2-l

b=xrhf(loc(myproc+l,1)*pj +jj) 
c=xrhf(jjj)
ap=zB+xzhf(loc(myproc+1, 2)*pk+kk) 
am=zB-xzhf(loc(myproc+1, 2)*pk+kk) 
coef=sqrt(b/c)/pi

xp=0.5*(ap**2+b**2+c**2)/(b*c) 
if  (xp.I t .1.025) then 

mup=sqrt(2.0/(1.0+xp)) 
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup) 
qp(1)=Kmup*mup 
qp(2)=xp*mup*Kmup-lap*Emup 
do m=3,mmax

nu=(2.*m-5. )/2.
qp(m)=(2.*nu+l.)/(nu+l.)*xp*qp(m-l)-nu/(nu+l.)*qp(m-2) 

enddo 
else

do m=l,mmax 
mm=m-l
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qp(m)=coefh*Fabcy 

enddo 
endif

xm=0.5*(am**2+b**2+c**2)/(b*c) 
if  (xm.I t .1.025) then 

mum=sqrt(2.0/(1.0+xm)) 
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum) 
qm(1)=Kmum*mum 
qm(2)=xm*mum*Kmum-lam*Emum 
do m=3,mmax

nu=(2.*m-5. )/2.
qm(m)=(2.*nu+l.)/(nu+l.)*xm*qm(m-l)-nu/(nu+l.)*qm(m-2)
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enddo
else

do m=l,mmax 
mm=m-l
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qm(m)=coefh*Fabcy 

enddo 
endif

do m=l,mmax
tmr(j j ,kk,jjj,m)=coef*(qp(m)+qm(m)) 

enddo

enddo
enddo

enddo
c Pi-symmetry

else if  (isyma.eq.3) then 
do jj= jstart,jfinish

if (myproc.eq.l) write(6,*)jj,jfinish 
do kk=kstart,kfinish 

do jjj=2,jmax2-l

b=xrhf(loc(myproc+l,1)*pj+jj) 
c=xrhf(j j j )
ap=zB+xzhf(loc(myproc+1, 2)*pk+kk) 
am=zB-xzhf(loc(myproc+1, 2)*pk+kk) 
coef=sqrt(b/c)/pi

xp=0.5*(ap**2+b**2+c**2)/(b*c) 
if  (xp.I t .1.025) then 

mup=sqrt(2.0/(1.0+xp)) 
lap=sqrt(2.0*(1.0+xp))
Kmup=ellf(pi2,mup)
Emup=elle(pi2,mup) 
qp(1)=Kmup*mup
qp(2)=(4/3.*xp**2-l/3.)*mup*Kmup-4/3.*xp*lap*Emup 
do m=3,mmax

nu=(4.*m-9. )/2.
qp(m)=qp(m-l)*((2*nu+3)*(2*nu+l)*xp**2/((nu+2)*(nu+l))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qp(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+l))

enddo 
else

do m=l,mmax 
mm=2*(m-l)
coefh=mycoefh(m)/(2*xp)**(mm+.5)
yy=l./xp**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax
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diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qp(m)=coefh*Fabcy 

enddo 
endif

xm=0.5*(am**2+b**2+c**2)/(b*c) 
if  (xm.I t .1.025) then 

mum=sqrt(2.0/(1.0+xm)) 
lam=sqrt(2.0*(1.0+xm))
Kmum=ellf(pi2,mum)
Emum=elle(pi2,mum) 
qm(1)=Kmum*mum
qm(2)=(4/3.*xm**2-l/3.)*mum*Kmum-4/3.*xm*lam*Emum 
do m=3,mmax

nu=(4.*m-9. )/2.
qm(m)=qm(m-l)*((2*nu+3)+(2*nu+l)*xm**2/((nu+2)*(nu+1))

& - (2*nu+3)*nu**2/((2*nu-l)*(nu+2)*(nu+1))
& -(nu+l)/(nu+2))
& -qm(m-2)*(2*nu+3)*(nu-l)*nu/((2*nu-l)*(nu+2)*(nu+1))

enddo 
else

do m=l,mmax 
mm=2*(m-l)
coefh=mycoefh(m)/(2*xm)**(mm+.5)
yy=l./xm**2
alpha=myalpha(m)
sum=0.0
do ir=l,irmax

diff=mydcoefh(ir,m)*yy**(ir-l) 
sum=sum+diff 

enddo
Fabcy=alpha*sum 
qm(m)=coefh*Fabcy 

enddo 
endif

do m=l,mmax
tmr(j j ,kk,jjj,m)=coef*(qp(m)+qm(m)) 

enddo

enddo
enddo

enddo
endif

return
end



Appendix E: GRID.H

c-----------------------------------------------------------------------------------
C GRID.H
C---------------------------------------------------------------------------

c This f ile  contains a load of common blocks. Many of these should be 
c removed from commons and confined to the subroutines where they are 
c used so as to limit the use of memory.

integer, parameter :: jmax2 = 512, kmax2 = 32, lmax = 128
integer, parameter :: jmaxl = jmax2 - 1, jmax = jmax2 - 2
integer, parameter :: kmaxl = kmax2 - 1, kmax = kmax2 - 2

include ’proc.h’

real, dimension (jmax2, kmax2, lmax) :: r,z,rhf,zhf 
!hpf$ distribute r(block,block,*) onto p2 
!hpf$ align z (i,j,k ) with r ( i,j,k )
!hpf$ align rh f(i,j,k ) with r ( i,j,k )
!hpf$ align zhf(i,j,k) with r ( i,j,k ) 

common /grid/ r,z,rhf,zhf

real, dimension (jmax2, kmax2, lmax) :: rplus , zplus , rhfminus,zhfminus 
!hpf$ align rplus(i,j,k) with r ( i,j,k )
!hpf$ align zplus(i,j,k) with r ( i,j,k )
!hpf$ align rhfminus(i,j ,k) with r ( i,j,k )
!hpf$ align zhfminus(i , j ,k) with r ( i,j,k )

common /jgrid/ rplus, zplus, rhfminus, zhfminus

real, dimension (jmax2, kmax2, lmax) :: phi, rho 
!hpf$ align phi(i,j,k) with r ( i,j,k )
!hpf$ align rho(i,j,k) with r ( i,j,k ) 

common /pois/ phi,rho

integer :: itstep 
common /timst/ itstep

real :: deltar, deltaz,dtheta 
common /jgrid2/ deltar, deltaz,dtheta

real :: p i, grav 
common /blok6b/ pi,grav

!hpf$ processors p2(8,4)
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Appendix F: Makefile

OFILE_DIR= obj

HPFFILES= main.hpf setup.hpf

FFILES= tm.f sm.f e lle .f e llf .f  rd.f rf .f  gammln.f factrl.f

.SUFFIXES : .hpf

0FILES1= $(HPFFILES:.hpf=.o)

0FILES2= $(FFILES: .f=.o)

0FILES= $(0FILES1) $(0FILES2) 

main:$(OFILES)
pghpf -03 -o /home/hcohl/isymal/main $(0FILES) ;

.hpf.o: $(HPFFILES)
pghpf -03 -Mextend -Mreplicate=dims:3 -Moverlap=size:1 -c $<

.f.o: $(FFILES)
f90 -c -dp -03 -N 132 $<

cleanall:
/bin/rm -f * .o *.f
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