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Dedicated to Dick Askey whose favorite function was the Jacobi polynomial.

Abstract. In this paper, we review and derive hyperbolic and trigonomet-
ric double summation addition theorems for Jacobi functions of the first and
second kind. In connection with these addition theorems, we perform a full
analysis of the relation between (i) Jacobi functions with symmetric, antisym-
metric, and half odd integer parameter values, and (ii) certain Gauss hyperge-
ometric functions that satisfy a quadratic transformation, including associated
Legendre, Gegenbauer and Ferrers functions of the first and second kind. We
also introduce Olver normalizations of the Jacobi functions, which are par-
ticularly useful in the derivation of expansion formulas when the parameters
are integers. We apply the addition theorems for Jacobi functions of the sec-
ond kind to separated eigenfunction expansions of fundamental solutions of
Laplace–Beltrami operators on compact and noncompact rank-one symmetric

spaces.

1. Introduction

Jacobi polynomials (hypergeometric polynomials) were introduced by the Ger-
man mathematician Carl Gustav Jacob Jacobi (1804–1851). These polynomials
first appear in an article by Jacobi, which was published posthumously in 1859 by

Heinrich Eduard Heine [29]. Jacobi polynomials, P
(α,β)
n , which for �α,�β > −1

are orthogonal on the real segment [−1, 1] [30, (9.8.2)], and can be defined in terms
of a terminating sum by

(1.1)

P (α,β)
n (cos θ) :=

Γ(α+ 1 + n)

Γ(n+ 1) Γ(α+ β + 1 + n)

×
n∑

k=0

(−1)k
(
n

k

)
Γ(α+ β + 1 + n+ k)

Γ(α+ 1 + k)
sin2k( 12θ),
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where Γ(·) is the gamma function [11, (5.2.1)] and
(
n
k

)
is the binomial coefficient

[11, (1.2.1)]. This definition of the Jacobi polynomial is equivalent to the Gauss
hypergeometric representation [11, (18.5.7)]

(1.2) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
,

where x = cos θ. We will return to the notations used in (1.2) in the following
section.

Ultraspherical polynomials, traditionally defined by [11, (18.7.1)]

(1.3) Cμ
n(cos θ) :=

Γ(μ+ 1
2 )Γ(2μ+ n)

Γ(2μ)Γ(μ+ 1
2 + n)

P
(μ− 1

2 ,μ−
1
2 )

n (cos θ),

are symmetric (α = β) Jacobi polynomials. These polynomials are commonly re-
ferred to as Gegenbauer polynomials after the Austrian mathematician Leopold
Gegenbauer (1849–1903). However the Czech (Austrian) astronomer and mathe-
matician Moriz Allé discovered and used many of their fundamental properties in-
cluding their generating function and addition theorems [1] almost a decade prior to
Gegenbauer [19,20] and Heine [24, p. 455]. See the nice discussion of the history of
the addition theorem for ultraspherical polynomials by Koornwinder in [39, p. 383].
The addition theorem for ultraspherical polynomials is [11, (18.18.8)]

(1.4)

Cμ
n(cos θ1 cos θ2 ± sin θ1 sin θ2 cosφ)

=
n!

(2μ)n

n∑
k=0

(∓1)k(μ)k(2μ)2k

(−n)k(μ− 1
2 )k(2μ+ n)k

× (sin θ1 sin θ2)
kCμ+k

n−k (cos θ1)C
μ+k
n−k(cos θ2)C

μ− 1
2

k (cosφ).

This result is quite important by itself. In the special case μ = 1
2 , it becomes one

way of writing the addition theorem for spherical harmonics on the two-dimensional
sphere (Legendre polynomials), namely

(1.5)

Pn(cos θ1 cos θ2 ± sin θ1 sin θ2 cosφ)

=

n∑
k=−n

(±1)k
(n− k)!

(n+ k)!
Pk
n(cos θ1)P

k
n(cos θ2) cos(kφ),

where the Pk
n are Ferrers functions of the first kind [11, (14.3.1)]. See the foreword

of Willard Miller (1977) [45] written by Richard Askey for a beautiful discussion
(on pp. xix–xx) of addition theorems (see also [28, §2.7]).

Given the addition theorem for ultraspherical polynomials (1.4), it was a nat-
ural problem to extend it to Jacobi polynomials for α �= β. It was a good match
when Richard Askey, on sabbatical at the Mathematical Centre in Amsterdam
during 1969–1970, met Tom Koornwinder there, who had some experience with
group-theoretical methods and was looking for a good subject for a Ph.D. thesis.
Askey suggested to Koornwinder the problem of finding an addition theorem for
Jacobi polynomials, and he also arranged that Koornwinder could attend a special
year at the Mittag-Leffler Institute in Sweden. There Koornwinder obtained the
desired result [35–38]. He later found that his group-theoretic method and the
resulting addition theorem in a special case had been anticipated by two papers in
Russian. Vilenkin and Šapiro [51] had realized that disk polynomials [11, (18.37.1)]

and in particular the Jacobi polynomials P
(α,0)
n , for α an integer, can be interpreted

http://dlmf.nist.gov/5.2.E1
http://dlmf.nist.gov/1.2.E1
http://dlmf.nist.gov/18.5.E7
http://dlmf.nist.gov/18.7.E1
http://dlmf.nist.gov/18.18.E8
http://dlmf.nist.gov/14.3.E1
http://dlmf.nist.gov/18.37.E1
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as spherical functions on the complex projective space SU(α + 2)/U(α + 1) [5,6],
or as spherical functions on the complex unit sphere U(α + 2)/U(α + 1) in Cα+2,
a homogeneous space of the unitary group U(α + 2). (See references by Ikeda,
Kayama and Seto in [35,36].) Šapiro obtained from that observation the addition
theorem for Jacobi polynomials in the β = 0 case [52].

Koornwinder initially presented his addition theorem for Jacobi polynomials
in a series of three papers in 1972 [35, 37, 38]. Koornwinder gave four different
proofs of the addition formula for Jacobi polynomials. His first proof focused on
the spherical functions of the Lie group U(d)/U(d − 1), d � 2 an integer, and
appeared in [37, 38]; his second proof, which used ordinary spherical harmonics,
appeared in [31]; his third proof was an analytic proof and appeared in [3,32,33];
and a short fourth proof using orthogonal polynomials in three variables appeared
in [34].

Let us consider the trigonometric context of Koornwinder’s addition theorem
for the Jacobi polynomials. Let n ∈ N0, α > β > − 1

2 , cos θ1 = 1
2 (e

iθ1 + e−iθ1),

cos θ2 = 1
2 (e

iθ2 + e−iθ2), and w ∈ (−1, 1), φ ∈ [0, π]. Then Koornwinder’s addition
theorem for Jacobi polynomials is

(1.6)

P (α,β)
n

(
2|cos θ1 cos θ2 ± eiφw sin θ1 sin θ1|2 − 1

)
=

n! Γ(α+ 1)

Γ(α+ n+ 1)

n∑
k=0

(α+ 1)k(α+ β + n+ 1)k
(α+ k)(β + 1)k(−n)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − n)l
(α+ n+ 1)l

(cos θ1 cos θ2)
k−l (sin θ1 sin θ2)

k+l

× P
(α+k+l,β+k−l)
n−k (cos(2θ1))P

(α+k+l,β+k−l)
n−k (cos(2θ2))

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(cosφ).

As we will see in Section 3 below, this addition theorem and its various counterparts
for Jacobi functions of the first and second kind are deeply connected to a system
of 2-variable orthogonal polynomials, sometimes referred to as parabolic biangle

polynomials and denoted by P(α,β)
k,l (w, φ).

In the case of ultraspherical and Jacobi polynomials, the sum is terminating, as
one would expect since the object of study is a polynomial. However, as Flensted-
Jensen and Koornwinder realized [17], the addition theorem for Jacobi polynomials
can be extended to Jacobi functions of the first kind by formally taking the outer

sum limit to infinity. While Jacobi polynomials P
(α,β)
n have n discrete, the Jacobi

functions ϕ
(α,β)
λ have λ continuous (see (3.6) below). When one starts to consider

Jacobi functions, many new questions arise which must be understood for a full
theory of separated eigenfunction expansions. First of all, one must consider two
separate contexts: the trigonometric context, where the arguments of the functions
are analytically continued from the segment (−1, 1); and the hyperbolic context,
where the arguments of the functions are analytically continued from the segment
(1,∞). On top of that, one must consider the expansions of Jacobi functions of
the second kind. Gegenbauer and Jacobi functions are solutions of second-order
ordinary differential equations. Therefore there are two linearly independent so-
lutions, namely the functions of the first kind and those of the second kind. The
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separated eigenfunction expansions of the Gegenbauer functions of the first and
second kind were treated quite extensively in a paper by Durand, Fishbane and
Simmons (1976) [14]. Since one should refer to ultraspherical polynomials as op-
posed to Gegenbauer polynomials, it would be prudent in future publications to
refer instead to ultraspherical functions. Durand extended Koornwinder’s addition
theorem to Jacobi (and other) functions of the second kind in [13].

The study of multi-summation addition theorems for Jacobi functions of the
first and second kind seems not to have moved forward since the advances by
Durand and by Flensted-Jensen and Koornwinder. In the remainder of this paper,
we give the full multi-summation expansions of Jacobi functions of the second kind
and bring the full theory of the expansions of Jacobi functions to a circle.

Addition theorems, such as the ones for Jacobi polynomials, are intimately
related to separated eigenfunction expansions of spherical functions (reproducing
kernels) on Riemannian symmetric spaces. For instance, the argument on the left-
hand side of Gegenbauer’s addition theorem (1.4) is easily expressible in terms of
the geodesic distance between two arbitrary points on the d-dimensional real hy-
persphere. One is often interested in eigenfunction expansions of a fundamental
solution of Laplace’s or Poisson’s equation, because this allows one to perform a
multipole expansion of arbitrarily shaped mass distributions. When one performs
a global analysis of the Laplacian (Laplace–Beltrami operator) on rank-one sym-
metric spaces, one finds that a fundamental solution is given in terms of radial
solutions of a second-order differential equation, and since the solutions are singu-
lar at the origin, the solutions are given in terms of functions of the second kind.
For rank-one symmetric spaces beyond the real case (complex, quaternionic, and
octonionic), the fundamental solutions are given in terms of Jacobi functions of the
second kind. This is the motivation for the work in the present paper. We were
originally motivated by the symmetric spaces. They show up in the solution to
the problem we were trying to solve, and the project evolved from a study of the
singular part which arises within the function of the second kind.

2. Preliminaries

Throughout this paper we adopt the following set notations: N0 := {0} ∪ N =
{0, 1, 2, 3, . . .}, and C represents the complex numbers. Jacobi functions (and their
special cases such as Gegenbauer, associated Legendre and Ferrers functions) have
representations given in terms of Gauss hypergeometric functions, which can be
defined as infinite series of ratios of shifted factorials (Pochhammer symbols). The
shifted factorial can be defined for a ∈ C, n ∈ N0 by (a)n := (a)(a+1) · · · (a+n−1)
[11, (5.2.4), (5.2.5)]. For a ∈ C\−N0, it is related to a ratio of two gamma functions
by [11, Chapter 5]

(2.1) (a)n =
Γ(a+ n)

Γ(a)
,

which allows one to extend the definition to non-positive integer values of n. Some
other properties of shifted factorial which we will use are (for n, k ∈ N0, n � k)

Γ(a− n) =
(−1)nΓ(a)

(1− a)n
,(2.2)

http://dlmf.nist.gov/5.2.E4
http://dlmf.nist.gov/5.2.E5
http://dlmf.nist.gov/5
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and

(−n)k =
(−1)kn!

(n− k)!
.(2.3)

One also has an expression for the generalized binomial coefficient for z ∈ C, n ∈ N0

[11, (1.2.6)],

(2.4)

(
z

n

)
=

(−1)n(−z)n
n!

.

Define the multisets a := {a1, . . . , ar}, b := {b1, . . . , bs}. We will adhere to the
common notational product convention that when al ∈ C, l ∈ N, r, k ∈ N0,

(a)k := (a1, . . . , ar)k := (a1)k(a2)k · · · (ar)k,(2.5)

Γ(a) := Γ(a1, . . . , ar) := Γ(a1) · · ·Γ(ar).(2.6)

Also, in the multiset notation a+ t := {a1 + t, . . . , ar + t}.
For any expression of the form (z2−1)α, we fix the branch of the power functions

so that

(z2 − 1)α := (z + 1)α(z − 1)α,

for any fixed α ∈ C and z ∈ C \ {−1, 1}. The generalized hypergeometric function
[11, Chapter 16] is defined as the infinite series [11, (16.2.1)]

(2.7) rFs(a;b; z) := rFs

(a

b
; z
)
:=

∞∑
k=0

(a)k
(b)k

zk

k!
,

where |z| < 1, bj �∈ −N0, for j ∈ {1, . . . , s}; and elsewhere by analytic contin-
uation. The Olver-normalized (scaled or regularized) generalized hypergeometric
series rFs(a;b; z) is defined by

(2.8) rFs(a;b; z) := rFs

(a

b
; z
)
:=

1

Γ(b)
rFs

(a

b
; z
)
=

∞∑
k=0

(a1, . . . , ar)k
Γ(b+ k)

zk

k!
,

which is entire for all al, bj ∈ C, l ∈ {1, . . . , r}, j ∈ {1, . . . , s}. Both the gener-
alized and Olver-normalized generalized hypergeometric series, if nonterminating,
are entire if r � s, convergent for |z| < 1 if r = s+ 1, and divergent if r � s+ 1.

The special case of the generalized hypergeometric function with r = 2, s = 1
is referred to as the Gauss hypergeometric function [11, Chapter 15], or simply the
hypergeometric function. It has many interesting properties, including linear trans-
formations which were discovered by Euler and Pfaff. Euler’s linear transformation
is [11, (15.8.1)]

(2.9) 2F1

(
a, b

c
; z

)
= (1− z)c−a−b

2F1

(
c− a, c− b

c
; z

)
,

and Pfaff’s linear transformation is [11, (15.8.1)]
(2.10)

2F1

(
a, b

c
; z

)
= (1− z)−a

2F1

(
a, c− b

c
;

z

z − 1

)
= (1− z)−b

2F1

(
b, c− a

c
;

z

z − 1

)
.

http://dlmf.nist.gov/1.2.E6
http://dlmf.nist.gov/16
http://dlmf.nist.gov/16.2.E1
http://dlmf.nist.gov/15
http://dlmf.nist.gov/15.8.E1
http://dlmf.nist.gov/15.8.E1
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2.1. The Gegenbauer and associated Legendre functions. The Gauss
hypergeometric functions which satisfy quadratic transformations are Gegenbauer
and associated Legendre functions of the first and second kind. As we will see,
these functions correspond to Jacobi functions of the first and second kind with
parameters satisfying certain relations. We now describe some of the properties of
these functions, which have a deep and long history.

Let n ∈ N0. The Gegenbauer (ultraspherical) polynomial, which is an impor-
tant specialization of the Jacobi polynomial for symmetric parameters values, is
given in terms of a terminating Gauss hypergeometric series by [11, (18.7.1)]

(2.11) Cμ
n(z) =

(2μ)n

(μ+ 1
2 )n

P
(μ− 1

2 ,μ−
1
2 )

n (z) =
(2μ)n
n!

2F1

(
−n, 2μ+ n

μ+ 1
2

;
1− z

2

)
.

Note that the ultraspherical polynomials satisfy the parity relation [11]

(2.12) Cμ
n(−z) = (−1)nCμ

n(z).

Gegenbauer functions, which generalize ultraspherical polynomials in having ar-
bitrary degrees n = λ ∈ C, are solutions w = w(z) = wμ

λ(z) of the Gegenbauer
differential equation [11, Table 18.8.1]

(2.13) (z2 − 1)
d2w(z)

dz2
+ (2λ+ 1) z

dw(z)

dz
− λ(λ+ 2μ)w(z) = 0.

There are two linearly independent solutions of this second-order ordinary differen-
tial equation which are referred to as Gegenbauer functions of the first and second
kind: Cμ

λ , D
μ
λ . A differential equation closely connected to the Gegenbauer dif-

ferential equation (2.13) is the associated Legendre differential equation, which is
[11, (14.2.2)]

(2.14) (1− z2)
d2w(z)

dz2
− 2z

dw(z)

dz
+

(
ν(ν + 1)− μ2

1− z2

)
w(z) = 0.

Two linearly independent solutions of this equation are referred to as associated
Legendre functions of the first and second kind: Pμ

ν , Q
μ
ν . In the following sub-

section we present the definitions of these important functions, which are Gauss
hypergeometric functions that satisfy a quadratic transformation.

2.1.1. Hypergeometric representations of the Gegenbauer and associated Le-
gendre functions. The Gegenbauer function of the first kind is defined by [11,
(15.9.15)]

(2.15) Cμ
λ (z) :=

√
π Γ(λ+ 2μ)

22μ−1Γ(μ)Γ(λ+ 1)
2F1

(
−λ, 2μ+ λ

μ+ 1
2

;
1− z

2

)
,

where λ+2μ �∈ −N0. It is a clear extension of the Gegenbauer polynomial, with the
index allowed to be a complex number as well as a non-negative integer. Gegenbauer
functions of the second kind, which will be useful to us in comparing to Jacobi
functions of the second kind, are the following. They have two hypergeometric

http://dlmf.nist.gov/18.7.E1
http://dlmf.nist.gov/18.8.T1
http://dlmf.nist.gov/14.2.E2
http://dlmf.nist.gov/15.9.E15
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representations: for λ+ 2μ �∈ −N0 [14, (2.3)]

Dμ
λ(z) :=

eiπμΓ(λ+ 2μ)

Γ(μ)(2z)λ+2μ 2F1

( 1
2λ+ μ, 12λ+ μ+ 1

2

λ+ μ+ 1
;
1

z2

)(2.16)

=
eiπμ2λΓ(λ+ μ+ 1

2 )Γ(λ+ 2μ)
√
π Γ(μ)(z − 1)λ+μ+ 1

2 (z + 1)μ−
1
2

2F1

(
λ+ 1, λ+ μ+ 1

2

2λ+ 2μ+ 1
;

2

1− z

)
,(2.17)

and in the second representation λ + μ + 1
2 �∈ −N0. The equality of these rep-

resentations follows from a quadratic transformation of the Gauss hypergeometric
function from Group 3 to Group 1 in [11, Table 15.8.1].

The associated Legendre function of the first kind is defined as [11, (14.3.6)
and §14.21(i)]

(2.18) Pμ
ν (z) :=

(
z + 1

z − 1

) 1
2μ

2F1

(
−ν, ν + 1

1− μ
;
1− z

2

)
,

for |1−z| < 2, and elsewhere in z by analytic continuation. The associated Legendre
function of the second kind Qμ

ν : C \ (−∞, 1] → C, ν + μ /∈ −N, has the two
single Gauss hypergeometric function representations (see [11, (14.3.7) and §14.21],
[44, entry 24, p. 161])

Qμ
ν (z) :=

√
π eiπμΓ(ν + μ+ 1)(z2 − 1)

1
2μ

2ν+1zν+μ+1 2F1

(
ν+μ+1

2 , ν+μ+2
2

ν + 3
2

;
1

z2

)(2.19)

=
2νeiπμΓ(ν + 1)Γ(ν + μ+ 1)(z + 1)

1
2μ

(z − 1)
1
2μ+ν+1 2F1

(
ν + 1, ν + μ+ 1

2ν + 2
;

2

1− z

)
,(2.20)

where for the second representation, ν �∈ −N. These representations are convergent
as a Gauss hypergeometric series for |z| > 1, respectively |z−1| > 2, and elsewhere
in z ∈ C \ (−∞, 1] by analytic continuation of the Gauss hypergeometric function.

Remark 2.1. The associated Legendre functions of the first and second kind
are related to the Gegenbauer functions of the first and second kind by [11, (14.3.22)]

Pμ
ν (z) =

Γ( 12 − μ)Γ(ν + μ+ 1)

2μ
√
π Γ(ν − μ+ 1)(z2 − 1)

1
2μ

C
1
2−μ
ν+μ (z),(2.21)

Qμ
ν (z) =

e2πi(μ−
1
4 )
√
π Γ( 12 − μ)Γ(ν + μ+ 1)

2μΓ(ν − μ+ 1)(z2 − 1)
1
2μ

D
1
2−μ
ν+μ (z),(2.22)

which are valid for μ ∈ C \ { 1
2 ,

3
2 , . . .}, ν + μ ∈ C \ −N. Equivalently, the inverse

relationships are

Cμ
λ (z) =

√
π Γ(λ+ 2μ)

2μ−
1
2Γ(μ)Γ(λ+ 1)(z2 − 1)

μ
2 − 1

4

P
1
2−μ

λ+μ− 1
2

(z),(2.23)

Dμ
λ(z) =

e2πi(μ−
1
4 )Γ(λ+ 2μ)

√
π 2μ−

1
2Γ(μ)Γ(λ+ 1)(z2 − 1)

1
2μ−

1
4

Q
1
2−μ

λ+μ− 1
2

(z),(2.24)

which are valid for λ+ 2μ ∈ C \ −N0.

http://dlmf.nist.gov/15.8.T1
http://dlmf.nist.gov/14.3.E6
http://dlmf.nist.gov/14.21.i
http://dlmf.nist.gov/14.3.E7
http://dlmf.nist.gov/14.21
http://dlmf.nist.gov/14.3.E22
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Remark 2.2. By comparing the Gauss hypergeometric representations of the
various functions, one may express 2F1(a, a+

1
2 ; c; z) in terms of associated Legendre

functions of the first and second kind Pμ
ν , Q

μ
ν , and the Gegenbauer functions of the

first and second kind Cμ
λ , D

μ
λ , by using the following very useful formulas. Let

z ∈ C \ [1,∞). Then

(2.25)

2F1

(
a, a+ 1

2

c
; z

)
= 2c−1z

1
2 (1−c)(1− z)

1
2 c−a− 1

2P 1−c
2a−c

(
1√
1− z

)

=
22c−2Γ(c− 1

2 )Γ(2(a− c+ 1))√
π Γ(2a)(1− z)a

C
c− 1

2
2a−2c+1

(
1√
1− z

)
,

where 2c �∈ {1,−1,−3, . . .}, 2a− 2c �∈ {−2,−3, . . .}, and
(2.26)

2F1

(
a, a+ 1

2

c
; z

)
=

eiπ(c−2a− 1
2 )2c−

1
2 (1− z)

1
2 c−a− 1

4

√
π Γ(2a)z

1
2 c−

1
4

Q
2a−c+ 1

2

c− 3
2

(
1√
z

)

=
eiπ(2a−c)22c−2a−1Γ(c− 2a)(1− z)c−2a− 1

2

Γ(2c− 2a− 1)zc−a− 1
2

Dc−2a
2a−1

(
1√
z

)
,

where c, c− 2a �∈ −N0.

2.1.2. The Gegenbauer functions on the cut (−1, 1) and the Ferrers functions.
We will consider Jacobi functions of the second kind on-the-cut in Section 2.2.3.
As we will see, for certain combinations of the parameters which we will describe
below, the Jacobi functions of the first and second kind on-the-cut are related to the
the Gegenbauer functions of the first and second kind on-the-cut and the associated
Legendre functions of the first and second kind on-the-cut (Ferrers functions).

The Gegenbauer functions of the first and second kind on-the-cut are defined
in terms of the Gegenbauer functions immediately above and below the segment
(−1, 1) in the complex plane. These definition are [12, (3.3), (3.4)]

Cμ
λ(x) := Dμ

λ(x+ i0) + e−2πiμDμ
λ(x− i0) = Cμ

λ (x± i0), x ∈ (−1, 1],(2.27)

Dμ
λ(x) := −iDμ

λ(x+ i0) + ie−2πiμDμ
λ(x− i0), x ∈ (−1, 1).(2.28)

Note that Cμ
λ(x) and Dμ

λ are real for real values of λ and μ.
The Ferrers functions of the first and second kind are defined as [11, (14.23.1),

(14.23.2)]

Pμ
ν (x) := e±iπμPμ

ν (x± i0)

=
ie−iπμ

π

(
e−

1
2 iπμQμ

ν (x+ i0)− e
1
2 iπμQμ

ν (x− i0)
)
,

(2.29)

Qμ
ν (x) :=

e−iπμ

2

(
e−

1
2 iπμQμ

ν (x+ i0) + e
1
2 iπμQμ

ν (x− i0)
)
.(2.30)

Using the above definition one can readily obtain a single hypergeometric rep-
resentation of the Gegenbauer function of the first kind on-the-cut, namely

(2.31) Cμ
λ(x) =

√
π Γ(2μ+ λ)

22μ−1Γ(μ)Γ(λ+ 1)
2F1

(
−λ, 2μ+ λ

μ+ 1
2

;
1− x

2

)
,

which is identical to the Gegenbauer function of the first kind defined by (2.15),
because this function analytically continues to the segment (−1, 1); see (2.27). For
the Gegenbauer function of the second kind on-the-cut, one can readily obtain
a double hypergeometric representation by using the definition (2.28), using the
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interrelation between the Gegenbauer function of the second kind and the Legendre
function of the second kind, and then comparing to the Ferrers function of the
second kind through its definition (2.30).

However, first we will give hypergeometric representations of the Ferrers func-
tion of the first and second kind, which are easily found in the literature. The
first author recently co-authored a paper with Park and Volkmer where all dou-
ble hypergeometric representations of the Ferrers function of the second kind were
computed [10]. Using (2.29) one can derive hypergeometric representations of the
Ferrers function of the first kind (associated Legendre function of the first kind
on-the-cut) Pμ

ν : (−1, 1) → C. For instance, one has a single hypergeometric repre-
sentation [11, (14.3.1)]

(2.32) Pμ
ν (x) =

(
1 + x

1− x

) 1
2μ

2F1

(
−ν, ν + 1

1− μ
;
1−x

2

)
.

Let ν ∈ C, μ ∈ C \ Z, ν + μ �∈ −N; then a double hypergeometric representation of
the Ferrers function of the second kind is [11, (14.3.2)]

(2.33)

Qμ
ν (x) =

π

2 sin(πμ)

(
cos(πμ)

(
1 + x

1− x

) 1
2μ

2F1

(
−ν, ν + 1

1− μ
;
1− x

2

)

− Γ(ν + μ+ 1)

Γ(ν − μ+ 1)

(
1− x

1 + x

) 1
2μ

2F1

(
−ν, ν + 1

1 + μ
;
1− x

2

))
.

Lemma 2.3. Let x ∈ C \ ((−∞,−1] ∪ [1,∞)), λ, ν, μ ∈ C. Then

(2.34) Dμ
λ(x) =

Γ(λ+ 2μ)

2μ−
3
2
√
π Γ(μ)Γ(λ+ 1)(1− x2)

1
2μ−

1
4

Q
1
2−μ

λ+μ− 1
2

(x)

when λ+ 2μ �∈ −N0, and

(2.35) Qμ
ν (x) =

√
π Γ( 12 − μ)Γ(ν + μ+ 1)

2μ+1Γ(ν − μ+ 1)(1− x2)
1
2μ

D
1
2−μ
ν+μ (x)

when μ �∈ { 1
2 ,

3
2 , . . .} and ν + μ �∈ −N.

Proof. Start with the definition (2.28) and use the interrelation between the
Gegenbauer function of the second kind on-the-cut and the Ferrers function of the
second kind, given by (2.24). Applying this relation to the double hypergeometric
representation completes the proof. �

Theorem 2.4. Let x ∈ C \ ((−∞,−1] ∪ [1,∞)), and λ, μ ∈ C, such that
λ+ 2μ �∈ −N0. Then

(2.36)

Dμ
λ(x) =

√
π

cos(πμ)2μ−
1
2Γ(μ)

×
(

sin(πμ)Γ(λ+ 2μ)

Γ(λ+ 1)(1 + x)μ−
1
2

2F1

(
λ+ μ+ 1

2 ,
1
2 − λ− μ

1
2 + μ

;
1− x

2

)

− 1

(1− x)μ−
1
2

2F1

(
λ+ μ+ 1

2 ,
1
2 − λ− μ

3
2 − μ

;
1− x

2

))
.
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Proof. Start with the definition (2.28) and use the interrelation between the
Gegenbauer function of the second kind and the Legendre function of the second
kind, given by (2.24). Then comparing with the double hypergeometric represen-
tation (2.33) completes the proof. �

Note that we also have an interrelation between the Ferrers function of the first
kind and the Gegenbauer function of the first kind on-the-cut [11, (14.3.21)]:

(2.37) Pμ
ν (x) =

Γ( 12 − μ)Γ(ν + μ+ 1)

2μ
√
π Γ(ν − μ+ 1)(1− x2)

1
2μ

C
1
2−μ
ν+μ (x),

where μ �∈ { 1
2 ,

3
2 , . . .}, ν + μ �∈ −N; or equivalently

(2.38) Cμ
λ(x) =

√
π Γ(λ+ 2μ)

2μ−
1
2Γ(μ)Γ(λ+ 1)(1− x2)

1
2μ−

1
4

P
1
2−μ

λ+μ− 1
2

(x).

Finally we should add that the Legendre polynomial (the associated Legendre func-
tion of the first kind Pμ

ν and the Ferrers function of the first kind Pμ
ν with μ = 0

and ν = n ∈ Z) is given by [11, (18.7.9)]

Pn(x) := P 0
n(x) = P0

n(x) = C
1
2
n (x) = P (0,0)

n (x),

which vanishes for n negative.

2.2. Brief introduction to Jacobi functions of the first and second
kind. Now we will discuss fundamental properties and special values and limits for

the Jacobi functions. Jacobi functions are complex solutions w = w(z) = w
(α,β)
γ (z)

of the Jacobi differential equation [11, Table 18.8.1]

(2.39) (1− z2)
d2w

dz2
+ (β − α− z(α+ β + 2))

dw

dz
+ γ(α+ β + γ + 1)w = 0

which is a second-order linear homogeneous differential equation. Solutions of this
equation satisfy the three-term recurrence relation [15, (10.8.11), p. 169]

B(α,β)
γ w(α,β)

γ (z) +A(α,β)
γ (z)w

(α,β)
γ+1 (z) + w

(α,β)
γ+2 (z) = 0,(2.40)

where

A(α,β)
γ (z) = −

(α+ β + 2γ + 3)
(
α2 − β2 + (α+ β + 2γ + 2)(α+ β + 2γ + 4)z

)
2(γ + 2)(α+ β + γ + 2)(α+ β + 2γ + 2)

,

(2.41)

B(α,β)
γ =

(α+ γ + 1)(β + γ + 1)(α+ β + 2γ + 4)

(γ + 2)(α+ β + γ + 2)(α+ β + 2γ + 2)
.(2.42)

This three-term recurrence relation is very useful for deriving various solutions of
(2.39) when solutions are known for values which have integer separations.

2.2.1. The Jacobi function of the first kind. The Jacobi function of the first kind
is a generalization of the Jacobi polynomial (as given by (1.2)) when the degree is
no longer restricted to be an integer. In the following material we derive properties
of the Jacobi function of the first kind. In the following result we present the four
single Gauss hypergeometric function representations of the Jacobi function of the
first kind.
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Theorem 2.5. Let α, β, γ ∈ C such that α+γ �∈ −N. Then, the Jacobi function

of the first kind P
(α,β)
γ : C \ (−∞,−1] → C can be defined by

P (α,β)
γ (z) :=

Γ(α+ γ + 1)

Γ(γ + 1)
2F1

(
−γ, α+ β + γ + 1

α+ 1
;
1− z

2

)(2.43)

=
Γ(α+ γ + 1)

Γ(γ + 1)

(
2

z + 1

)β

2F1

(
−β − γ, α+ γ + 1

α+ 1
;
1− z

2

)(2.44)

=
Γ(α+ γ + 1)

Γ(γ + 1)

(
z + 1

2

)γ

2F1

(
−γ,−β − γ

α+ 1
;
z − 1

z + 1

)(2.45)

=
Γ(α+ γ + 1)

Γ(γ + 1)

(
2

z + 1

)α+β+γ+1

2F1

(
α+ γ + 1, α+ β + γ + 1

α+ 1
;
z − 1

z + 1

)
.

(2.46)

Proof. Start with (1.2) and replace the shifted factorial by a ratio of gamma
functions using (2.1) and n! = Γ(n+1), and substitute n 
→ γ ∈ C, x 
→ z. Applica-
tion of Euler’s transformation (2.9) and Pfaff’s transformation (2.10) provides the
other three single hypergeometric representations. This completes the proof. �

There exist double Gauss hypergeometric representations of the Jacobi function
of the first kind which can be obtained by using the linear transformation formulas
for the Gauss hypergeometric function based on z 
→ (1 − z−1)−1, z 
→ z−1, z 
→
(1 − z)−1, z 
→ 1 − z, z 
→ 1 − z−1 [11, (15.8.1)–(15.8.5)], respectively. However,
these in general will involve a sum of two Gauss hypergeometric functions. We
will not present the double hypergeometric function representations of the Jacobi
function of the first kind here.

One has the following connection relation for the Jacobi function of the first
kind.

Corollary 2.5.1. Let γ, α, β ∈ C, z ∈ C \ (−∞,−1], γ �∈ −N, β + γ �∈ N0.
Then

(2.47) P
(α,β)
−γ−α−β−1(z) =

Γ(−β − γ)Γ(γ + 1)

Γ(−γ − α− β)Γ(α+ γ + 1)
P (α,β)
γ (z).

Proof. This relation can be derived from (2.43) by making the replacement
γ 
→ −γ−α−β−1, which leaves the parameters and argument of the hypergeometric
function unchanged. Comparing the prefactors completes the proof. �

Remark 2.6. One of the consequences of the definition of the Jacobi function
of the first kind is the special value

(2.48) P (α,β)
γ (1) =

Γ(α+ γ + 1)

Γ(α+ 1)Γ(γ + 1)
,

where α+ γ �∈ −N. For γ = n ∈ Z one has

(2.49) P (α,β)
n (1) =

(α+ 1)n
n!

, P (α,β)
n (−1) = (−1)n

(β + 1)n
n!

,
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which is consistent with (2.48) and the parity relation for Jacobi polynomials (see
[11, Table 18.6.1]). From (2.43) we have

(2.50) P
(α,β)
0 (z) = 1,

and P
(α,β)
k (z) = 0 for all k ∈ −N.

2.2.2. The Jacobi function of the second kind. The Jacobi function of the sec-

ond kind Q
(α,β)
γ , γ ∈ C is a generalization of the Jacobi function of the second

kind Q
(α,β)
n , n ∈ N0 (as given by [15, (10.8.18)]), where the degree is no longer re-

stricted to be an integer. In the following material we derive properties of the Jacobi
function of the second kind. Below we give the four single Gauss hypergeometric
function representations of the Jacobi function of the second kind.

Theorem 2.7. Let γ, α, β, z ∈ C such that z ∈ C \ [−1, 1], α + γ, β + γ /∈
−N. Then, the Jacobi function of the second kind has the Gauss hypergeometric
representations

Q(α,β)
γ (z) :=

2α+β+γΓ(α+ γ + 1)Γ(β + γ + 1)

(z − 1)α+γ+1(z + 1)β
2F1

(
γ + 1, α+ γ + 1

α+ β + 2γ + 2
;

2

1− z

)(2.51)

=
2α+β+γΓ(α+ γ + 1)Γ(β + γ + 1)

(z − 1)α+β+γ+1 2F1

(
β + γ + 1, α+ β + γ + 1

α+ β + 2γ + 2
;

2

1− z

)(2.52)

=
2α+β+γΓ(α+ γ + 1)Γ(β + γ + 1)

(z − 1)α(z + 1)β+γ+1 2F1

(
γ + 1, β + γ + 1

α+ β + 2γ + 2
;

2

1 + z

)(2.53)

=
2α+β+γΓ(α+ γ + 1)Γ(β + γ + 1)

(z + 1)α+β+γ+1 2F1

(
α+ γ + 1, α+ β + γ + 1

α+ β + 2γ + 2
;

2

1 + z

)
.

(2.54)

Proof. Start with [15, (10.8.18)] and let n 
→ γ ∈ C and x 
→ z. Application
of Pfaff’s (z 
→ z/(z − 1)) and Euler’s (z 
→ z) transformations, (2.9) and (2.10),
provides the other three representations. This completes the proof. �

One has the following connection relation between Jacobi functions of the first
kind and Jacobi functions of the second kind.

Corollary 2.7.1. Let γ, α, β ∈ C, z ∈ C \ (−∞, 1], α + γ, β + γ �∈ −N,
α+ β + 2γ �∈ Z. Then

(2.55)

P (α,β)
γ (z) =

−2 sin(π(β + γ))

π sin(π(α+ β + 2γ + 1))

(
sin(πγ)Q(α,β)

γ (z)

− sin(π(α+ γ))
Γ(α+ γ + 1)Γ(β + γ + 1)

Γ(γ + 1)Γ(α+ β + γ + 1)
Q

(α,β)
−α−β−γ−1(z)

)
.

Proof. This can be derived by starting with (2.43), applying the linear trans-
formation based on z 
→ z−1 [11, (15.8.2)], and then comparing twice with
Theorem 2.7. �
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Remark 2.8. Using (2.55) one can see that for γ = n ∈ N0, Q
(α,β)
−α−β−γ−1 is a

Jacobi polynomial, namely
(2.56)

Q
(α,β)
−α−β−1−n(z) =

Γ(−α)Γ(−β)

2Γ(−α− β)

n!(α+ β + 1)n
(α+ 1)n(β + 1)n

P (α,β)
n (z)

= − π

2

sin(π(α+ β))

sin(πα) sin(πβ)

n! Γ(α+ β + 1 + n)

Γ(α+ 1 + n)Γ(β + 1 + n)
P (α,β)
n (z).

Remark 2.9. From Theorem 2.7 one can derive special values for Q
(α,β)
−1 (z)

and Q
(α,β)
0 (z), namely

Q
(α,β)
−1 (z) =

2α+β−1Γ(α)Γ(β)

Γ(α+ β)(z − 1)α(z + 1)β
,(2.57)

Q
(α,β)
0 (z) =

2α+βΓ(α+ 1)Γ(β + 1)

(z + 1)α+β+1 2F1

(
α+ 1, α+ β + 1

α+ β + 2
;

2

1 + z

)
.(2.58)

Using the three-term recurrence relation (2.40) one can derive values of the Jacobi
function of the second kind at all negative integer values of the parameter γ. For
instance, one can derive

(2.59) Q
(α,β)
−2 (z) =

2α+β−2Γ(α− 1)Γ(β − 1)

Γ(α+ β − 1)(z − 1)α(z + 1)β
(
α− β + (α+ β − 2)z

)
,

and expressions for Jacobi functions of the second kind with further negative integer
values of γ.

If one examines the Gauss hypergeometric representations presented in Theo-
rem 2.7 one can see that they are not defined for certain values of γ, α, β, since
one must avoid α+γ and β+γ being a negative integer. In fact, these singularities
are removable and one is able to compute the values of these Jacobi functions. The
Jacobi function of the second kind is evaluated when the parameters α, β and the
degree γ are non-negative integers in the following result, which was inspired by
the work in [53].

Theorem 2.10. Let n, a, b ∈ N0, z ∈ C \ [−1, 1]. Then
(2.60)

Q(a,b)
n (z) =

(−1)a+n

2n+1

a+b+2n∑
k=0
k �=n

(−2)k

(n− k)

(
(z + 1)n−k − (z − 1)n−k

)
P

(a+n−k,b+n−k)
k (z)

+
(−1)a

2
log

(
z + 1

z − 1

)
P (a,b)
n (z).

Proof. Start with the integral representation for the Jacobi function of the
second kind [49, (4.61.1)]

(2.61) Q(α,β)
γ (z) =

1

2γ+1(z − 1)α(z + 1)β

∫ 1

−1

(1− t)α+γ(1 + t)β+γ

(z − t)γ+1
dt,
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where �(α + γ), �(β + γ) > −1 [53, (2.5)], and identify (γ, α, β) = (n, a, b) ∈ N3
0.

Then consider

μ
(a,b)
n,k (z) :=

dk

dzk
(1− z)n+a(1 + z)n+b

= (−1)k2kk!(1− z)a+n−k(1 + z)b+n−kP
(a+n−k,b+n−k)
k (z),

where we have used the Rodrigues-type formula for Jacobi polynomials (see [11,
Table 18.5.1]). It is easy to show that

(2.62) (1− t)n+a(1 + t)n+b =

2n+a+b∑
k=0

μ
(a,b)
n,k (z)

(t− z)k

k!
,

and the right-hand side is valid for all z ∈ C. Now start with (2.61) and insert
(2.62) into the integrand and perform the integration over t ∈ (−1, 1), using

∫ 1

−1

(z − t)k−n−1 dt =

⎧⎪⎪⎨
⎪⎪⎩

(z + 1)k−n − (z − 1)k−n

k − n
if k �= n,

log

(
z + 1

z − 1

)
if k = n,

which completes the proof. �

By using (2.53) we find that if |z| ∼ 1+ ε, then as ε → 0+ one has the behavior
of the Jacobi function of the second kind near the singularity at z = 1, as follows:

(2.63) Q(α,β)
γ (1 + ε) ∼ 2α−1Γ(α)Γ(β + γ + 1)

Γ(α+ β + γ + 1)εα
,

where �α > 0, β + γ �∈ −N. By using (2.53) we see that as |z| → ∞ one has

(2.64) Q(α,β)
γ (z) ∼ 2α+β+γΓ(α+ γ + 1)Γ(β + γ + 1)

Γ(α+ β + 2γ + 2)zα+β+γ+1
,

where α+ γ + 1, β + γ �∈ −N.
2.2.3. Jacobi functions of the first and second kind on-the-cut. We now refer to

the real segment (−1, 1) as the cut and the Jacobi functions of the first and second

kind on-the-cut as P
(α,β)
γ ,Q

(α,β)
γ . The natural definitions of these Jacobi functions

are due to Durand and can be found in [12, (2.3), (2.4)] (see also [4]). They are

P(α,β)
γ (x) :=

i

π

(
eiπαQ(α,β)

γ (x+ i0)− e−iπαQ(α,β)
γ (x− i0)

)
= P (α,β)

γ (x± i0)
(2.65)

and

Q(α,β)
γ (x) :=

1

2

(
eiπαQ(α,β)

γ (x+ i0) + e−iπαQ(α,β)
γ (x− i0)

)
.(2.66)

Note that the Jacobi function of the first kind on-the-cut (2.65) is simply an ana-
lytic continuation of the Jacobi function of the first kind (see Theorem 2.5) since
the complex-valued function is continuous across the real interval (−1, 1]. On the
other hand, the Jacobi function of the second kind on-the-cut is not an analytic
continuation of the Jacobi function of the second kind (see Theorem 2.7). This is

because Q
(α,β)
γ is not continuous across the real interval (−1, 1). Hence, an ‘average’

as shown in (2.66) must be taken of the function values with infinitesimal positive
and negative arguments, to define it. Originally, in Szegő’s book [49, §4.62.9]
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(see also [15, (10.8.22)]) the definition of the Jacobi function of the second kind

on-the-cut was Q
(α,β)
γ (x) := 1

2

(
Q

(α,β)
γ (x + i0) + Q

(α,β)
γ (x − i0)

)
, but as is pointed

out by Durand [12], Szegő’s definition destroys the analogy between P
(α,β)
γ (cos θ),

Q
(α,β)
γ (cos θ) and the trigonometric functions. Hence with the updated Durand

definitions for the Jacobi functions of the first and second kind on-the-cut, namely
(2.65) and (2.66), one has the asymptotics as n → ∞ [12, p. 77]

Q(α,β)
n (cos θ ± i0) ∼ 1

2

(π
n

) 1
2 (

sin( 12θ)
)−α− 1

2
(
cos( 12θ)

)−β− 1
2 e∓iNθ∓iπ

2 (α+ 1
2 ),

where N := n+ 1
2α+ 1

2β + 1
2 .

There are many double hypergeometric representations of the Jacobi function

of the second kind on-the-cut Q
(α,β)
γ : C \ ((−∞,−1] ∪ [1,∞)) → C. These repre-

sentations follow by applying the definition (2.66) to Theorem 2.7, which provides
Gauss hypergeometric representations for the Jacobi function of the second kind.
Applying (2.66) causes the argument of each Gauss hypergeometric function to
be just above or below the ray (1,∞), on which it is known that the Gauss hy-
pergeometric function is discontinuous. The values above and below this ray may
be transformed into values in a region where the function is continuous, by uti-
lizing the transformations which one can find in [10, Appendix B]. Each of these
transformations expresses a Gauss hypergeometric function with argument x ± i0
as a sum of two such functions, with a common argument which is one of x−1,
1− x, 1− x−1 or (1− x)−1. Eight Gauss hypergeometric function representations
of the Jacobi function of the second kind on-the-cut can be obtained by starting
with (2.51)–(2.54), applying the transformation [10, Theorem B.1] z 
→ z−1, and
utilizing the Euler (2.9) or the Pfaff (2.10) transformations as needed. There are
certainly more Gauss hypergeometric representations that can be obtained for the
Jacobi function of the second kind on-the-cut by applying [10, Theorems B.2–B.4],
but the derivation of these representations must be left to a later publication. We
will give two of these here for γ, α, β ∈ C with α, β �∈ Z, α+ γ, β+ γ �∈ −N, namely
(2.67)

Q(α,β)
γ (x) =

π

2 sin(πα)

(
− cos(πα)

Γ(α+ γ + 1)

Γ(γ + 1)
2F1

(
−γ, α+ β + γ + 1

1 + α
;
1− x

2

)

+
Γ(β + γ + 1)

Γ(α+ β + γ + 1)

(
2

1− x

)α (
2

1 + x

)β

2F1

(
−α− β − γ, γ + 1

1− α
;
1− x

2

))
,

=
π

2γ+1 sin(πα)

(
− cos(πα)

Γ(α+ γ + 1)

Γ(γ + 1)
(1 + x)γ 2F1

(
−γ,−β − γ

1 + α
;
x− 1

x+ 1

)

+
Γ(β + γ + 1)

Γ(α+ β + γ + 1)

(1 + x)α+γ

(1− x)α
2F1

(
−α− β − γ,−α− γ

1− α
;
x− 1

x+ 1

))
.

Just as we were able to compute the values of the Jacobi function of the second
kind with non-negative integer parameters and degree, the same evaluation can
be accomplished for the Jacobi function of the second kind on-the-cut, which we
present now.
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Theorem 2.11. Let n, a, b ∈ N0, x ∈ C \ ((−∞,−1] ∪ [1,∞)). Then
(2.68)

Q(a,b)
n (x) =

(−1)n

2n+1

a+b+2n∑
k=0
k �=n

(−2)k

(n− k)

(
(1 + x)n−k − (x− 1)n−k

)
P

(a+n−k,b+n−k)
k (x)

+
1

2
log

(
1 + x

1− x

)
P (a,b)
n (x).

Proof. Start with Theorem 2.10 and use the definition (2.66), which completes
the proof. �

Note that by setting a = b in the above result we can obtain an interesting
finite sum expression for the Ferrers functions of the second kind with non-negative
integer degree and order, as a sum over ultraspherical polynomials.

Corollary 2.11.1. Let n, a ∈ N0, Let n, a ∈ N0, x ∈ C \ ((−∞,−1] ∪ [1,∞)).
Then
(2.69)

Qa
n(x) =

(−1)a(1− x2)
1
2a

2
√
π

(
(−1)n+a2n(n+ a)!

×
2n∑
k=0

k �=n−a

(−1)kΓ(n− k + 1
2 )

2k(2n− k)!(n− a− k)

(
(1 + x)n−a−k − (x− 1)n−a−k

)
C

n−k+ 1
2

k (x)

+ 2aΓ(a+ 1
2 ) log

(
1 + x

1− x

)
C

a+ 1
2

n−a (x)

)
.

Proof. Start with (2.11) and set a = b. Then utilizing (2.91) below with
(2.71) completes the proof. �

By using (2.67) with x = 1− ε one has that

(2.70) Q(α,β)
γ (1− ε) ∼ 2α−1Γ(α)Γ(β + γ + 1)

Γ(α+ β + γ + 1)εα
as ε → 0+,

where β + γ + 1 �∈ −N0 and �α > 0.

2.3. Specializations to Gegenbauer, associated Legendre, and Ferrers
functions. Here we discuss some limiting cases where the Jacobi functions reduce
to more elementary functions such as Gegenbauer, associated Legendre, and Ferrers
functions.

The following identities involve symmetric and antisymmetric Jacobi functions
of the first kind. The relation between the symmetric Jacobi function of the first
kind and the Gegenbauer function of the first kind for z ∈ C \ (−∞,−1] is

(2.71) P (α,α)
γ (z) =

Γ(2α+ 1)Γ(α+ γ + 1)

Γ(α+ 1)Γ(2α+ γ + 1)
C

α+ 1
2

γ (z).

This follows by starting with (2.43) and comparing it to the Gauss hypergeometric
representation of the Gegenbauer function of the first kind on the right-hand side,
using (2.15).
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Remark 2.12. The relation between the symmetric Jacobi function of the first
kind and the Ferrers function of the first kind is

(2.72) P (α,α)
γ (x) =

2αΓ(α+ γ + 1)

Γ(γ + 1)(1− x2)
1
2α

P−α
α+γ(x),

where x ∈ C \ ((−∞,−1]∪ [1,∞)), and the relation between the symmetric Jacobi
function of the first kind and the associated Legendre function of the first kind is

(2.73) P (α,α)
γ (z) =

2αΓ(α+ γ + 1)

Γ(γ + 1)(z2 − 1)
1
2α

P−α
α+γ(z),

where z ∈ C \ (−∞, 1]. These are easily obtained through [11, (18.7.2)] and [11,
(14.3.21), (14.3.22)].

Remark 2.13. The relation between the antisymmetric Jacobi function of the
first kind on-the-cut and the Ferrers function of the first kind and the Gegenbauer
function of the first kind on-the-cut is

(2.74)
P(α,−α)
γ (x) =

Γ(α+ γ + 1)

Γ(γ + 1)

(
1 + x

1− x

) 1
2α

P−α
γ (x)

=
Γ(2α+ 1)Γ(γ − α+ 1)

2αΓ(γ + 1)Γ(α+ 1)
(1 + x)αC

α+ 1
2

γ−α (x),

where x ∈ C \ ((−∞,−1]∪ [1,∞)), and the relation between the antisymmetric Ja-
cobi function of the first kind and the associated Legendre and Gegenbauer function
of the first kind is

(2.75)
P (α,−α)
γ (z) =

Γ(α+ γ + 1)

Γ(γ + 1)

(
z + 1

z − 1

) 1
2α

P−α
γ (z)

=
Γ(2α+ 1)Γ(γ − α+ 1)

2αΓ(γ + 1)Γ(α+ 1)
(z + 1)αC

α+ 1
2

γ−α (z),

where z ∈ C \ (−∞,−1]. These are obtained by comparing (2.43) with (2.32) and
(2.18).

Remark 2.14. One has the following quadratic transformations of the sym-
metric Jacobi functions of the first kind, which can be found in [49, Theorem 4.1].
Let z ∈ C \ (−∞,−1], γ, α ∈ C, α+ γ �∈ −N. Then

(2.76) P
(α,α)
2γ (z) =

√
π Γ(α+ 2γ + 1)

22γΓ(γ + 1
2 )Γ(α+ γ + 1)

P
(α,− 1

2 )
γ (2z2 − 1),

where α+ 2γ �∈ −N, γ �∈ −N+ 1
2 , and

(2.77) P
(α,α)
2γ+1 (z) =

√
π Γ(α+ 2γ + 2)z

22γ+1Γ(γ + 3
2 )Γ(α+ γ + 1)

P
(α, 12 )
γ (2z2 − 1),

where α + 2γ + 1 �∈ −N, γ �∈ −N − 1
2 . The restrictions on the parameters come

directly by applying the restrictions on the parameters in Theorem 2.5 to the Jacobi
functions of the first kind on both sides of the relations.

Below we present some identities which involve symmetric and antisymmetric
Jacobi functions of the second kind.

http://dlmf.nist.gov/18.7.E2
http://dlmf.nist.gov/14.3.E21
http://dlmf.nist.gov/14.3.E22
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Theorem 2.15. Two equivalent relations between the symmetric Jacobi func-
tion of the second kind and the associated Legendre function of the second kind
are

Q(α,α)
γ (z) =

2αeiπαΓ(α+ γ + 1)

Γ(γ + 1)(z2 − 1)
1
2α

Q−α
α+γ(z),(2.78)

Q(α,α)
γ (z) =

2αe−iπαΓ(α+ γ + 1)

Γ(2α+ γ + 1)(z2 − 1)
1
2α

Qα
α+γ(z),(2.79)

where α + γ �∈ −N. Also, two equivalent relations between antisymmetric Jacobi
functions of the second kind and the associated Legendre function of the second kind
are

Q(α,−α)
γ (z) =

e−iπαΓ(γ − α+ 1)

Γ(γ + 1)

(
z + 1

z − 1

) 1
2α

Qα
γ (z),(2.80)

Q(−α,α)
γ (z) =

e−iπαΓ(γ − α+ 1)

Γ(γ + 1)

(
z − 1

z + 1

) 1
2α

Qα
γ (z),(2.81)

where γ − α �∈ −N.

Proof. By comparing (2.51) and (2.54) with (2.20) and by using the Legendre
duplication formula [11, (5.5.5)] one can obtain all these formulas in a straightfor-
ward way. �

See [8, Section 3, (A.14)] for an interesting application of the symmetric relation
for associated Legendre functions of the second kind.

Remark 2.16. Observe that by identifying (2.78) and (2.79), for z ∈ C\ [−1, 1]
one has

Q(α,α)
γ (z) =

22α

(z2 − 1)α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(−α,−α)
γ+2α (z) if z ∈ C \ [−1, 1]

such that �z � 0,

e2πiαQ
(−α,−α)
γ+2α (z) if z ∈ C \ [−1, 1]

such that �z < 0 and �z < 0,

e−2πiαQ
(−α,−α)
γ+2α (z) if z ∈ C \ [−1, 1]

such that �z < 0 and �z � 0,

where the principal branches of complex powers are taken.

Theorem 2.17. Let α, γ ∈ C, z ∈ C \ [−1, 1], α+ γ �∈ −N. Then the relations
between the symmetric and antisymmetric Jacobi functions of the second kind to
the Gegenbauer function of the second kind are

(2.82) Q(α,α)
γ (z) = e−iπ(α+ 1

2 )
√
π 22α

Γ(α+ 1
2 )Γ(α+ γ + 1)

Γ(2α+ γ + 1)
D

α+ 1
2

γ (z),

where α ∈ C \ {− 1
2 ,−

3
2 ,−

5
2 , . . .}, and

(2.83)

Q(α,−α)
γ (z) = eiπ(α−

1
2 )22γ−α+1Γ(α+ γ + 1)Γ( 12 − α)Γ(γ + 3

2 )

Γ(2γ + 2)(z − 1)α
D

1
2−α
α+γ (z),

where α ∈ C \ { 1
2 ,

3
2 ,

5
2 , . . .}, γ ∈ C \ {− 3

2 ,−
5
2 ,−

7
2 , . . .}.

http://dlmf.nist.gov/4.4.E5
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Proof. Start with the definition of the Jacobi function of the second kind
(2.51) and take β = α. Then comparing (2.17) using Euler’s (z 
→ z) transforma-
tion (2.9) produces (2.82). In order to produce (2.83), start with (2.51) and take
β = −α. Then compare (2.17) using Euler’s transformation. This completes the
proof. �

One has the following quadratic transformations of symmetric Jacobi functions
of the second kind.

Theorem 2.18. Let z ∈ C \ [−1, 1], γ, α ∈ C, α+ γ �∈ −N. Then

(2.84) Q
(α,α)
2γ (z) =

√
π Γ(α+ 2γ + 1)

22γΓ(γ + 1
2 )Γ(α+ γ + 1)

Q
(α,− 1

2 )
γ (2z2 − 1),

where α+ 2γ �∈ −N, γ �∈ −N+ 1
2 , and

(2.85) Q
(α,α)
2γ+1(z) =

√
π Γ(α+ 2γ + 2)z

22γ+1Γ(γ + 3
2 )Γ(α+ γ + 1)

Q
(α, 12 )
γ (2z2 − 1),

where α+ 2γ + 1 �∈ −N, γ �∈ −N− 1
2 .

Proof. Starting with the left-hand sides of (2.84), (2.85) and using the Gauss
hypergeometric representation (2.51) yields 2F1’s with parameters (a, b; c) satisfying
c = 2b. Then for both equations one uses a quadratic transformation of the Gauss
hypergeometric function [11, (15.8.14)]. This transforms the 2F1’s to forms which
are recognizable as the right-hand sides through (2.54) and (2.51), respectively.
This completes the proof. The restrictions on the parameters come directly by
applying the restrictions on the parameters in Theorem 2.7 to the Jacobi functions
of the second kind on both sides of the relations. �

There is also an interesting alternative quadratic transformation of the Jacobi
function of the second kind with α = ± 1

2 . Note that there does not seem to be
a corresponding transformation formula for the Jacobi function of the first kind
since in this case the left-hand side would be a sum of two Gauss hypergeometric
functions.

Theorem 2.19. Let x ∈ C\((−∞,−1] ∪ [1,∞)), β, γ ∈ C such that β+γ+ 1
2 �∈

−N0. Then

Cβ
2γ+1(x) =

22γ+2Γ(β + γ + 1
2 )(1− x2)−β−γ− 1

2

Γ(−γ − 1
2 )Γ(2γ + 2)Γ(β)

Q
(− 1

2 ,β+2γ+1)
−γ−1

(
1 + x2

1− x2

)
,(2.86)

Cβ
2γ(x) =

22γ+1Γ(β + γ + 1
2 )x(1− x2)−β−γ− 1

2

Γ(−γ + 1
2 )Γ(2γ + 1)Γ(β)

Q
( 1
2 ,β+2γ)

−γ−1

(
1 + x2

1− x2

)
.(2.87)

Proof. These results are easily verified by starting with (2.51), (2.53), substi-
tuting the related values in the Jacobi function of the second kind, comparing with
associated Legendre functions of the first kind with argument

√
(z − 1)/(z + 1), and

utilizing a quadratic transformation of the Gauss hypergeometric function which
relates the two. This completes the proof. �

Remark 2.20. Note that in Theorem 2.19, if the argument of the Jacobi func-
tion of the second kind has modulus greater than unity then the argument of the
Gegenbauer function of the first kind has modulus less than unity.

http://dlmf.nist.gov/15.8.E14
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Corollary 2.20.1. Let z, β, γ ∈ C such that z ∈ C \ [−1, 1]. Then
(2.88)

Q
( 1
2 ,β)

γ (z) =
2β+3γ+ 5

2Γ(−2γ − 1)Γ(γ + 3
2 )Γ(β + 2γ + 2)

Γ(β + γ + 3
2 )(z − 1)

1
2 (z + 1)β+γ+1

Cβ+2γ+2
−2γ−2

(√
z − 1

z + 1

)
,

where −2γ − 1, γ + 3
2 , β + 2γ + 2 �∈ −N0, and

(2.89)

Q
(− 1

2 ,β)
γ (z) =

2β+3γ+ 1
2Γ(−2γ)Γ(γ + 1

2 )Γ(β + 2γ + 1)

Γ(β + γ + 1
2 )(z + 1)β+γ+ 1

2

Cβ+2γ+1
−2γ−1

(√
z − 1

z + 1

)
,

where −2γ, γ + 1
2 , β + 2γ + 1 �∈ −N0.

Proof. Inverting Theorem 2.19 completes the proof. �

Note that the above results imply the following corollary.

Corollary 2.20.2. Let z, β, γ ∈ C such that z ∈ C \ [−1, 1], γ+ 3
2 , β+ γ+1 �∈

−N0. Then

(2.90) Q
( 1
2 ,β)

γ (z) =
Γ(γ + 3

2 )Γ(β + γ + 1)

Γ(γ + 1)Γ(β + γ + 3
2 )

(
2

z − 1

) 1
2

Q
(− 1

2 ,β)

γ+ 1
2

(z).

Proof. Equating the two right-hand sides in Theorem 2.19 completes the
proof. �

Theorem 2.21. Let x ∈ C\((−∞,−1]∪ [1,∞)). Then the relation between the
symmetric and antisymmetric Jacobi functions of the second kind on-the-cut and
the Ferrers function of the second kind are

Q(α,α)
γ (x) =

2αΓ(α+ γ + 1)

Γ(γ + 1)(1− x2)
1
2α

Q−α
γ+α(x),(2.91)

Q(α,−α)
γ (x) =

Γ(α+ γ + 1)

Γ(γ + 1)

(
1 + x

1− x

) 1
2α

Q−α
γ (x),(2.92)

where α+ γ �∈ −N, and

(2.93) Q(−α,α)
γ (x) =

Γ(γ − α+ 1)

Γ(γ + 1)

(
1− x

1 + x

) 1
2α

Qα
γ (x),

where γ − α �∈ −N.

Proof. The results follow by taking into account (2.67). It is the case that
(cf. [10, Theorem 3.2])
(2.94)

Qμ
ν (x) =

π

2 sin(πμ)

(
cos(π(ν + μ))

Γ(ν + μ+ 1)

Γ(ν − μ+ 1)

(
1 + x

1− x

) 1
2μ

2F1

(
−ν, ν + 1

1 + μ
;
1 + x

2

)

− cos(πν)

(
1− x

1 + x

) 1
2μ

2F1

(
−ν, ν + 1

1− μ
;
1 + x

2

))
,

where ν ∈ C, μ ∈ C \ Z, such that ν + μ /∈ −N. The formula (2.91) is obtained by
taking β = α and then comparing (2.67) with (2.94). The other identities follow
by an analogous method, taking β = −α. This completes the proof. �
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3. Addition theorems for the Jacobi function of the first kind

The Flensted-Jensen–Koornwinder addition theorem for Jacobi functions of the
first kind is an extension of the Koornwinder addition theorem for Jacobi polyno-
mials to the case when the degree is allowed to be a complex number. This addition
theorem has two separate contexts and some interesting special cases. We will re-
fer to the contexts as the hyperbolic and trigonometric contexts. The hyperbolic
context arises when the Jacobi function is analytically continued in the complex
plane from the ray [1,∞). The trigonometric context arises when the argument of
the Jacobi function is analytically continued from the real segment (−1, 1). First
we will present the addition theorem for the Jacobi function of the first kind in
the hyperbolic context. As we will see, the Jacobi function in the trigonometric
context can be obtained from the Jacobi function in the hyperbolic context (and
vice versa). We now present the most general form of the addition theorem for
Jacobi functions of the first kind in the hyperbolic and trigonometric contexts.

Remark 3.1. The addition theorem for Jacobi polynomials was originally de-
rived using group-theoretical methods as mentioned in [35], using the representation
theory for SU(α+2)/U(α+1) and U(α+2)/U(α+1) combined with standard meth-
ods discussed, for example, in [50]. The Lie group-theoretic setting (and in much
more detail for SO(p)×SO(q)) is carefully described in [31] and is as follows. Let X
be a compact symmetric group of rank one which is two-point homogeneous for an
isometry group U . Normalize the metric so that the lengths of the closed geodesics
is 2π. The choice of a base point in X gives an identification of X with U/K. The
function space on X decomposes multiplicity-free as ⊕Hn, and if d(x, y) denotes
the geodesic distance between points x, y ∈ X, then the elementary spherical func-

tion on Hn is the Jacobi polynomial P
(α,β)
n (cos d(x, y)) with the parameters α, β

taking suitable ‘group values,’ depending on the choice of X. This observation was
first made by Élie Cartan in 1929 [5]. For an orthonormal basis sk(x) of Hn it
is clear that the real point-pair function (x, y) 
→

∑
k sk(x)sk(y) only depends on

d(x, y), which in turn implies that

(3.1)
∑
k

sk(x)sk(y) = cnP
(α,β)
n (cos d(x, y)),

for suitable constants cn. This identity is the Lie group-theoretic meaning of the
addition formula for Jacobi polynomials. Picking a suitable basis for Hn, this leads
to an explicit summation formula for the Jacobi polynomials with an argument
depending on θ1, θ2, φ, as a sum. Koornwinder rederived the addition theorem an-
alytically in [33] without relying on group theory, and Flensted-Jensen and Koorn-
winder extended it to general n (i.e., λ) and α > β > −1/2 in [17]. In fact, it should
be pointed out that there is no group-theoretic argument which will yield addition
theorems such as for Jacobi functions for general values of the parameters. Group-
theoretic arguments rely on the completeness and orthogonality of the (unitary)
representations of the group in question. However, the case of general parameters
may be obtained by appropriate analytic continuation in the group parameters.
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Theorem 3.2. Let γ, α, β ∈ C, γ �∈ Z, α, β �∈ −N0, z1, z2 ∈ C \ (−∞,−1],
x1, x2 ∈ C \ ((−∞,−1] ∪ [1,∞)), x,w ∈ C, and let

Z± := Z±(z1, z2, w, x)

= 2z21z
2
2 + 2w2(z21 − 1)(z22 − 1)± 4z1z2wx(z

2
1 − 1)

1
2 (z22 − 1)

1
2 − 1

(3.2)

and

X± := X±(x1, x2, w, x)

= 2x2
1x

2
2 + 2w2(1− x2

1)(1− x2
2)± 4x1x2wx(1− x2

1)
1
2 (1− x2

2)
1
2 − 1

(3.3)

with the complex variables γ, α, β, z1, z2, x1, x2, x, w required to be in some yet to
be determined neighborhood of the real line. Then
(3.4)

P (α,β)
γ (Z±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(z1z2)
k−l

(
(z21 − 1)(z22 − 1)

) k+l
2

× P
(α+k+l,β+k−l)
γ−k (2z21 − 1)P

(α+k+l,β+k−l)
γ−k (2z22 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x)

and
(3.5)

P(α,β)
γ (X±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(x1x2)
k−l

(
(1− x2

1)(1− x2
2)
) k+l

2

× P
(α+k+l,β+k−l)
γ−k (2x2

1 − 1)P
(α+k+l,β+k−l)
γ−k (2x2

2 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x).

Proof. Start with the form of the Flensted-Jensen–Koornwinder addition
theorem in [17, Theorem 2.1] (see also [41, (24)]). Define the Flensted-Jensen–
Koornwinder–Jacobi function of the first kind [17, (2.1)] (Flensted-Jensen and
Koornwinder refer to this function as the Jacobi function of the first kind)

(3.6) ϕ
(α,β)
λ (t) := 2F1

( 1
2 (α+ β + 1 + iλ), 1

2 (α+ β + 1− iλ)

α+ 1
;− sinh2 t

)
,

and express it in terms of the Jacobi function of the first kind using

(3.7) ϕ
(α,β)
λ (t) =

Γ(α+ 1)Γ(− 1
2 (α+ β − 1 + iλ))

Γ( 12 (α− β + 1− iλ))
P

(α,β)

− 1
2 (α+β+1+iλ)

(cosh(2t)),

which follows by comparing the Gauss hypergeometric representations of the func-
tions. Replacing λ = i(α + β + 2γ + 1) and setting z1 = cosh t1, z2 = cosh t2,
and w = cosψ produces the form of the addition theorem (3.4). Then analyti-
cally continuing (3.4) to X± ∈ (−1, 1) using (2.65) produces (3.5). This completes
the proof. �
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In the limit as γ → n ∈ N0, then Koornwinder’s addition theorem for the Jacobi
function of the first kind becomes the addition theorem for Jacobi polynomials and
the double infinite sum becomes truncated as in (1.6).

Remark 3.3. It is worth mentioning that in the definitions of Z± (3.2) and X±

(3.3), the influence of the ±1 factor on the addition theorems in Theorem 3.2 and
elsewhere in this paper is simply due to the influence of the parity relation (2.12)
for ultraspherical polynomials, based upon the reflection map x 
→ −x.

Remark 3.4. Note that there are various ways of expressing the variables Z±

and X± defined by (3.2) and (3.3), which are useful in different applications. For
instance, we may also write
(3.8)

Z± = 2z21z
2
2(1− x2)− 1 + 2(z21 − 1)(z22 − 1)

(
w ± xz1z2√

(z21 − 1)(z22 − 1)

)2

= 2(z21 − 1)(z22 − 1)

⎛
⎝2z21z

2
2(1− x2)− 1

2(z21 − 1)(z22 − 1)
+

(
w ± xz1z2√

(z21 − 1)(z22 − 1)

)2
⎞
⎠

and
(3.9)

X± = 2x2
1x

2
2(1− x2)− 1 + 2(1− x2

1)(1− x2
2)

(
w ± xx1x2√

(1− x2
1)(1− x2

2)

)2

= 2(1− x2
1)(1− x2

2)

⎛
⎝2x2

1x
2
2(1− x2)− 1

2(1− x2
1)(1− x2

2)
+

(
w ± xx1x2√

(1− x2
1)(1− x2

2)

)2
⎞
⎠ .

First we will develop some tools which will help us prove the correct form
of the double summation addition theorem for the Jacobi function of the second
kind. Consider the orthogonality of the ultraspherical polynomials and the Jacobi
polynomials with the argument 2w2 − 1.

Lemma 3.5. Let m,n, p ∈ N0, μ ∈ (− 1
2 ,∞)\{0}, α > β > −1. Then the

ultraspherical and Jacobi polynomials satisfy the orthogonality relations∫ π

0

Cμ
m(cosφ)Cμ

n(cosφ)(sinφ)
2μ dφ =

π Γ(2μ+ n)

22μ−1(μ+ n)n! Γ(μ)2
δm,n,(3.10)

∫ 1

0

P (α−β−1,β+p)
m (2w2 − 1)P (α−β−1,β+p)

n (2w2 − 1)w2β+2p+1(1− w2)α−β−1 dw

=
Γ(α− β + n)Γ(β + 1 + p+ n)

2(α+ p+ 2n)Γ(α+ p+ n)n!
δm,n.

(3.11)

Proof. These orthogonality relations follow easily from [30, (9.8.20), (9.8.2)]
upon making the straightforward substitutions. �

3.1. The parabolic biangle orthogonal polynomial system. Define a
system of 2-variable orthogonal polynomials, which are sometimes referred to as
parabolic biangle polynomials, by [40]

(3.12) P(α,β)
k,l (w, φ) := wk−lP

(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ),
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where k, l ∈ N0 such that l � k. These 2-variable polynomials are orthogonal over
(w, φ) ∈ (0, 1)× (0, π) with orthogonality measure

(3.13) dm(α,β)(w, φ) := (1− w2)α−β−1w2β+1(sinφ)2β dw dφ.

The orthogonal polynomial system P(α,β)
k,l is deeply connected to the addition the-

orem for Jacobi functions of the first and second kind. Using the orthogonality
relations in Lemma 3.5 we can derive the orthogonality relation for the 2-variable
parabolic biangle polynomials.

Lemma 3.6. Let k, l, k′, l′ ∈ N0 such that l � k, l′ � k′, α > β > −1. Then
the 2-variable parabolic biangle polynomials satisfy the orthogonality relation

(3.14)

∫ 1

0

∫ π

0

P(α,β)
k,l (w, φ)P(α,β)

k′,l′ (w, φ) dm(α,β)(w, φ)

=
π Γ(β + 1 + k)Γ(2β + k − l)Γ(α− β + l)

22βΓ(β)2(α+ k + l)(β + k − l)Γ(α+ k)(k − l)!l!
δk,k′δl,l′ .

Proof. Starting with the definition of the 2-variable parabolic biangle poly-
nomials (3.12), integrating over (w, φ) ∈ (0, 1) × (0, π) with measure (3.13), and
using the orthogonality relations in Lemma 3.5 completes the proof. �

The following result is a Jacobi function of the first kind generalization of
[33, (4.10)] for Jacobi polynomials.

Theorem 3.7. Let k, l ∈ N0 with l � k, γ, α, β ∈ C, z1, z2 ∈ C\ (−∞,−1], Z±

defined in (3.2), such that x = cosφ and the complex variables γ, α, β, z1, z2 are in
some yet to be determined neighborhood of the real line. Then
(3.15)∫ 1

0

∫ π

0

P (α,β)
γ (Z±)wk−lP

(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ) dm
(α,β)(w, φ)

= (∓1)k+l A
(α,β,γ)
k,l (z1z2)

k−l((z21 − 1)(z22 − 1))
1
2 (k+l)

× P
(α+k+l,β+k−l)
γ−k (2z21 − 1)P

(α+k+l,β+k−l)
γ−k (2z22 − 1),

where
(3.16)

A
(α,β,γ)
k,l :=

πΓ(γ + 1)(α+ β + γ + 1)kΓ(2β + k − l)Γ(α− β + l)(−β − γ)l
22βΓ(β)(−γ)k (k − l)! l! Γ(α+ γ + 1 + l)

.

Proof. Start with the addition theorem for the Jacobi function of the first kind
(3.4) and consider the (k, l)-th term in the double series. It involves a product of two
Jacobi functions of the first kind with degree γ−k and parameters (α+k+l, β+k−l).
Replace in (3.4) the summation indices k, l by k′, l′, multiply both sides of (3.4)

by P(α,β)
k,l (w, φ) dm(α,β)(w, φ), and integrate both sides over (w, φ) ∈ (0, 1)× (0, π)

using (3.10), (3.11). This completes the proof. �

We will return to the parabolic biangle polynomials in Section 4.

3.2. Special cases of the addition theorem for the Jacobi function of
the first kind. In the case when z1, z2, x1, x2, w, x = cosφ are real numbers then
the argument of the Jacobi function of the first kind in the addition theorem takes a
simpler form convenient form and was proved in Flensted-Jensen–Koornwinder [17].
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Remark 3.8. In the case where the variables z1, z2, x1, x2, x, w are real then
one may write Z± and X± as follows:

Z± = 2
∣∣∣z1z2 ± eiφw (z21 − 1)

1
2 (z22 − 1)

1
2

∣∣∣2 − 1,(3.17)

X± = 2
∣∣∣x1x2 ± eiφ w (1− x2

1)
1
2 (1− x2

2)
1
2

∣∣∣2 − 1.(3.18)

We now give a result which appears to be identical to Theorem 3.2, but it must
be emphasized that it is only in the real case that we are able to write Z±, X±

using (3.17), (3.18). Otherwise one must use (3.2), (3.3).

Theorem 3.9. Let γ, α, β ∈ C, γ �∈ Z, α, β �∈ −N0, z1, z2 ∈ (1,∞), x1, x2 ∈
(−1, 1), w ∈ R, φ ∈ [0, π], and Z±, X± is defined as in (3.17), (3.18) respectively.
Then
(3.19)

P (α,β)
γ (Z±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(z1z2)
k−l

(
(z21 − 1)(z22 − 1)

) k+l
2

× P
(α+k+l,β+k−l)
γ−k (2z21 − 1)P

(α+k+l,β+k−l)
γ−k (2z22 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(cosφ),

and
(3.20)

P(α,β)
γ (X±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(x1x2)
k−l

(
(1− x2

1)(1− x2
2)
) k+l

2

× P
(α+k+l,β+k−l)
γ−k (2x2

1 − 1)P
(α+k+l,β+k−l)
γ−k (2x2

2 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(cosφ).

Proof. Starting with Theorem 3.2 and restricting such that the variables
z1, z2, x1, x2, w, x = cosφ are real completes the proof. �

As in Theorem 3.2, in the limit when γ → n ∈ N0, Koornwinder’s addition
theorem for the Jacobi function of the first kind becomes the addition theorem
for Jacobi polynomials, and the double infinite sum becomes truncated as in (1.6).
Note that for all results below, the double or single infinite sums on the right-
hand side will always be truncated when the left-hand side is a polynomial (Jacobi
polynomial or ultraspherical polynomial). We will not mention this again. Next we
have a specialization of Theorem 3.9 when w = 1.
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Corollary 3.9.1. Let γ, α, β ∈ C, γ �∈ Z, α, β �∈ −N0, r1, r2 ∈ [0,∞), θ1, θ2 ∈
[0, π2 ], φ ∈ [0, π], and

Z± := 2
∣∣cosh r1 cosh r2 ± eiφ sinh r1 sinh r2

∣∣2 − 1

= cosh(2r1) cosh(2r2)± sinh(2r1) sinh(2r2) cosφ,
(3.21)

and

X± := 2
∣∣cos θ1 cos θ2 ± eiφ sin θ1 sin θ2

∣∣2 − 1

= cos(2θ1) cos(2θ2)± sin(2θ1) sin(2θ2) cosφ.
(3.22)

Then
(3.23)

P (α,β)
γ (Z±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

×
∞∑
k=0

(α)k(
α
2 + 1)k(−β − γ)k(α+ β + γ + 1)k

(α2 )k(β + 1)k(−γ)k(α+ γ + 1)k
(sinh r1 sinh r2)

2k

×
k∑

l=0

(∓1)l(α− β)k−l(−α− γ − k)l(−α− 2k + 1)l
(k − l)!(−α− 2k)l(β + γ + 1)l

(coth r1 coth r2)
l

× P
(α+2k−l,β+l)
γ−k (cosh(2r1))P

(α+2k−l,β+l)
γ−k (cosh(2r2))

β + l

β
Cβ

l (cosφ)

and
(3.24)

P(α,β)
γ (X±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

×
∞∑
k=0

(α)k(
α
2 + 1)k(−β − γ)k(α+ β + γ + 1)k

(α2 )k(β + 1)k(−γ)k(α+ γ + 1)k
(sin θ1 sin θ2)

2k

×
k∑

l=0

(∓1)l(α− β)k−l(−α− γ − k)l(−α− 2k + 1)l
(k − l)!(−α− 2k)l(β + γ + 1)l

(cot θ1 cot θ2)
l

× P
(α+2k−l,β+l)
γ−k (cos(2θ1))P

(α+2k−l,β+l)
γ−k (cos(2θ2))

β + l

β
Cβ

l (cosφ).

Proof. Start with Theorem 3.9 and let w = 1 using (2.48); substituting l 
→
l′ = k − l followed by relabeling l′ 
→ l completes the proof. �

By letting α = β in Corollary 3.9.1 we can relate the above result to associated
Legendre and Gegenbauer functions of the first kind. This is mentioned in [35],
namely that Koornwinder’s addition theorem for Jacobi polynomials generalizes
Gegenbauer’s addition theorem (1.4). Similarly, the extension to the Flensted-
Jensen–Koornwinder addition theorem for Jacobi functions of the first kind gen-
eralizes the addition theorem for Gegenbauer functions of the first kind. First we
define the variables

Z± := Z±(r1, r2, φ) := cosh r1 cosh r2 ± sinh r1 sinh r2 cosφ,(3.25)

X± := X±(θ1, θ2, φ) := cos θ1 cos θ2 ± sin θ1 sin θ2 cosφ.(3.26)
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Corollary 3.9.2. Let γ, α ∈ C, 2α �= 1, 0,−1, . . ., γ �∈ −N, r1, r2 ∈ [0,∞),
θ1, θ2 ∈ [0, π

2 ], φ ∈ [0, π], and Z±, X± defined by (3.25), (3.26), respectively. Then

Cα
γ (Z±) =

Γ(2α)Γ(γ + 1)

Γ(2α+ γ)

∞∑
k=0

(∓1)k 22k(α)k(α)k
(−γ)k(2α+ γ)k

(sinh(2r1) sinh(2r2))
k

× Cα+k
γ−k (cosh(2r1))C

α+k
γ−k (cosh(2r2))

α− 1
2 + k

α− 1
2

C
α− 1

2

k (cosφ)

(3.27)

and

Cα
γ (X±) =

Γ(2α)Γ(γ + 1)

Γ(2α+ γ)

∞∑
k=0

(∓1)k 22k(α)k(α)k
(−γ)k(2α+ γ)k

(sin(2θ1) sin(2θ2))
k

× Cα+k
γ−k (cos(2θ1))C

α+k
γ−k (cos(2θ2))

α− 1
2 + k

α− 1
2

C
α− 1

2

k (cosφ),

(3.28)

or equivalently

P−α
γ (Z±)

(1−Z±2)
1
2α

=
2αΓ(α+ 1)

(sinh(2θ1) sinh(2θ1))α

∞∑
k=0

(±1)k(α− γ)k(α+ γ + 1)k

× P−α−k
γ (cosh(2r1))P

−α−k
γ (cosh(2r2))

α+ k

α
Cα

k (cosφ)

(3.29)

and

P−α
γ (X±)

(1−X±2)
1
2α

=
2αΓ(α+ 1)

(sin(2θ1) sin(2θ1))α

∞∑
k=0

(±1)k(α− γ)k(α+ γ + 1)k

× P−α−k
γ (cos(2θ1))P

−α−k
γ (cos(2θ2))

α+ k

α
Cα

k (cosφ).

(3.30)

Proof. Start with Corollary 3.9.1 and let α = β using (2.71), (2.72) respec-
tively for the Jacobi functions of the first kind on the left-hand side and those on
the right-hand side. Then mapping (2z21−1, 2z22−1) 
→ (z1, z2), (2x

2
1−1, 2x2

2−1) 
→
(x1, x2), where z1 = cosh r1, z2 = cosh r2, x1 = cos θ1, x2 = cos θ2, and simplifying
using (2.71)–(2.73), completes the proof.

Another way to prove this result is to take β = − 1
2 , w = cosψ = 1, γ → 2γ in

(3.19) and use the quadratic transformation (2.76). After using (2.71), this produces
the left-hand side of (3.27) with degree 4γ and order α+ 1

2 . Because we set w = 1,
the sum over l only survives for l = 0, 1. By taking 4γ 
→ γ and expressing the
contribution due to each of these terms, one can identify Gegenbauer’s addition
theorem through repeated application of (2.71) on the right-hand side; and using
the fact that

(3.31)
∞∑
k=0

(f2k + f2k+1) =
∞∑
k=0

fk,

for any sequence {f}k∈N0
, one arrives at (3.27). The proof of (3.28) is similar. �
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4. Addition theorems for the Jacobi function of the second kind

Now we present double summation addition theorems for the Jacobi functions
of the second kind in the hyperbolic and trigonometric contexts.

Remark 4.1. There is no direct group-theoretical derivation of an addition
formula for the Jacobi functions of the second kind. However, those functions
satisfy the same differential recurrence relations as the functions of the first kind,
and the actions of those operators and the Jacobi differential equation (2.39) on
functions of either kind for general parameters give realizations of the Lie algebras
of the groups considered. One would therefore expect the Jacobi functions of the
second kind to satisfy addition formulas with the same structure as those for the
functions of the first kind. This is known to hold, for example, for the Gegenbauer
functions of the first and second kind [14, §8].

4.1. The hyperbolic context for the addition theorem for the Jacobi
function of the second kind. Define

(4.1) z≶ := min
max {z1, z2},

when z1, z2 ∈ (1,∞), and in the case when z1, z2 ∈ C, one takes without loss of
generality z1 = z> to lie on an ellipse with foci at ±1, and z2 = z< to be in the
interior of that ellipse.

Theorem 4.2. Let γ, α, β ∈ C, z1, z2 ∈ C \ (−∞,−1], with x,w ∈ C, Z±

defined by (3.2), such that the complex variables γ, α, β, z1, z2, x, w are in some yet
to be determined neighborhood of the real line. Then

(4.2)

Q(α,β)
γ (Z±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(γ + 1)k
(α+ k)(β + 1)k(1− γ)k

×
k∑

l=0

(±1)k−l(α+ k + l)(z1z2)
k−l

(
(z21 − 1)(z22 − 1)

) k+l
2

× P
(α+k+l,β+k−l)
γ−k (2z2< − 1)Q

(α+k+l,β+k−l)
γ−k (2z2> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x).

Proof. Start with the addition formula (3.4) for the Jacobi functions of the
first kind. The series was shown to converge by Flensted-Jensen and Koornwinder
[17, Theorem 2.1]. Now apply the connection relation (2.55), which relates the
Jacobi function of the first kind to two Jacobi functions of the second kind, to both
sides of (3.4): to the function of the first kind on the left and to the function of the
first kind on the right with argument 2z22 − 1, assuming without loss of generality
that z2 = z>. This yields an equation in which the asymptotic behavior of the
two terms on the left as z2 → ∞ matches the term-by-term asymptotic behavior of
the two corresponding series on the right, suggesting that they should be identified
and that the series converge separately. To exploit this, project the left and right-
hand sides by the parabolic biangle polynomials, as in Theorem 3.7, with the same
application of the connection formula to the Jacobi functions of the first and second
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kind. This results in the equation
(4.3)

B(α,β)
γ

∫ 1

0

∫ π

0

Q(α,β)
γ (Z±)wk−lP

(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ) dm
(α,β)(w, φ)

+ C
(α,β)
γ,k,l (z1z2)

k−l((z21 − 1)(z22 − 1))
1
2
(k+l)

× P
(α+k+l,α+k−l)
γ−k (2z2< − 1)Q

(α+k+l,α+k−l)
γ−k (2z2> − 1)

= D(α,β)
γ

∫ 1

0

∫ π

0

Q
(α,β)
−α−β−γ−1(Z

±)wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ) dm
(α,β)(w, φ)

+ E
(α,β)
γ,k,l (z1z2)

k−l((z21 − 1)(z22 − 1))
1
2
(k+l)

× P
(α+k+l,α+k−l)
−α−β−γ−k−1 (2z2< − 1)Q

(α+k+l,α+k−l)
−α−β−γ−k−1 (2z2> − 1),

where

B(α,β)
γ :=

−2 sin(πγ) sin(π(β + γ))

π sin(π(α+ β + 2γ + 1))
,(4.4)

C
(α,β)
γ,k,l :=

sin(πγ) sin(π(β + γ))

22β−1 sin(π(α+ β + 2γ + 1))

× Γ(γ + 1)(α+ β + γ + 1)kΓ(2β + k − l)Γ(α− β + l)(−β − γ)l
Γ(β)(−γ)k(k − l)! l! Γ(α+ γ + 1 + l)

,

(4.5)

and

D(α,β)
γ :=

−2 sin(π(α+ γ)) sin(π(β + γ))Γ(α+ γ + 1)Γ(β + γ + 1)

π sin(π(α+ β + 2γ + 1))Γ(γ + 1)Γ(α+ β + γ + 1)
,

(4.6)

E
(α,β)
γ,k,l :=

sin(π(α+ γ)) sin(π(β + γ))Γ(β + γ + 1)Γ(2β + k − l)Γ(α− β + l)

22β−1 sin(π(α+ β + 2γ + 1))Γ(β)Γ(α+ β + γ + 1)(k − l)! l!
.

(4.7)

Now consider the asymptotics of all four terms of (4.3) as z2 → ∞. The asymptotic
behavior of Z± as z2 → ∞ is Z± ∼ z22 . The behavior of the Jacobi function of the
second kind as |z| → ∞, by (2.64), is

Q(α,β)
γ (z) ∼ 1

zα+β+γ+1
.

Therefore, one has the following asymptotic behaviors as ζ → ∞, where ζ = z>
with z< fixed:

Q(α,β)
γ (Z±) ∼ (Z±)

−γ−α−β−1 ∼ ζ−2γ−2α−2β−2,(4.8)

Q
(α,β)
−α−β−γ−1(Z

±) ∼ (Z±)γ ∼ ζ2γ ,(4.9)

and

Q
(α+k+l,β+k−l)
γ−k (ζ) ∼ ζ−γ−α−β−k−1,(4.10)

Q
(α+k+l,β+k−l)
−α−β−γ−1−k (ζ) ∼ ζγ−k.(4.11)
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The equation (4.3) with leading order asymptotic contribution as z2 → ∞ taken
out can be written in terms of two analytic functions

f(z−1
2 ) := f

(α,β)
γ,k,l (z1, z

−1
2 ),

g(z−1
2 ) := g

(α,β)
γ,k,l (z1, z

−1
2 ),

as

(4.12) z
−2(γ+α+β+1)
2 f(z−1

2 ) = z2γ2 g(z−1
2 ).

For 4�γ �∈ −2(α + β + 1) + Z, the only way the equation can be true is if f and
g vanish identically. The case of general γ then follows by analytic continuation
in γ. Therefore we have now verified separately all terms in the double series
expansion of the Jacobi function of the second kind appearing in (4.2), and the

corresponding series for Q
(α,β)
−α−β−γ−1(Z

±). The two series do not mix, have different
asymptotic behaviors for z2 = z> → ∞, and must converge separately given the
overall convergence proved by Flensted-Jensen and Koornwinder [17, Theorem 2.1].
This completes the proof. �

Remark 4.3. If one applies (2.56) to the Jacobi functions of the second kind
on the left-hand side and right-hand side of (4.2), then it becomes the addition
theorem for Jacobi polynomials in the hyperbolic context.

Corollary 4.3.1. Let k, l ∈ N0 with l � k, γ, α, β ∈ C, z1, z2 ∈ C \ (−∞, 1],
with Z± defined by (3.2), such that x = cosφ and the complex variables γ, α, β, z1, z2
are in some yet to be determined neighborhood of the real line. Then
(4.13)∫ 1

0

∫ π

0

Q(α,β)
γ (Z±)wk−lP

(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ) dm
(α,β)(w, φ),

= (±1)k+l A
(α,β,γ)
k,l (z1z2)

k−l((z21 − 1)(z22 − 1))
1
2 (k+l)

× P
(α+k+l,β+k−l)
γ−k (2z2< − 1)Q

(α+k+l,β+k−l)
γ−k (2z2> − 1),

where A
(α,β,γ)
k,l is defined in (3.16).

Proof. This follows directly from (4.12) since in the proof of Theorem 4.2,
we showed that f = 0. The result g = 0 is equivalent to this result under the
transformation γ 
→ −γ − α− β − 1. �

Remark 4.4. The integral representations Theorem 3.7 and Corollary 4.3.1
are equivalent to the double summation addition theorems for the Jacobi function
of the first kind (3.4) and second kind, Theorem 4.2.

Remark 4.5. One has the following well-known product representations which
are the k = l = 0 cases of the integral representations in Theorem 3.7 and Corollary
4.3.1. Let x = cosφ, γ, α, β ∈ C, z1, z2 ∈ C \ (−∞,−1], with Z± defined by (3.2),
such that the complex variables γ, α, β, z1, z2 are in some yet to be determined
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neighborhood of the real line. Then

P (α,β)
γ (2z21 − 1)P (α,β)

γ (2z22 − 1)

=
2Γ(α+ γ + 1)√

π Γ(γ + 1)Γ(β + 1
2 )Γ(α− β)

∫ 1

0

∫ π

0

P (α,β)
γ (Z±) dm(α,β)(w, φ),

(4.14)

P (α,β)
γ (2z2< − 1)Q(α,β)

γ (2z2> − 1)

=
2Γ(α+ γ + 1)√

π Γ(γ + 1)Γ(β + 1
2 )Γ(α− β)

∫ 1

0

∫ π

0

Q(α,β)
γ (Z±) dm(α,β)(w, φ).

(4.15)

For independent verification of these product representations, see [16, Theorem
4.1] for the product formula (4.14) and [16, p. 255] for the product formula (4.15).

Remark 4.6. As pointed out by one of the referees, our proof of the addition
theorem for the Jacobi function of the second kind was chosen so that it was the
most economical, following as it does from the role of Jacobi functions as spherical
functions on symmetric spaces [35], extended to general parameters as in [17].
However, this does not mean that our chosen method is the most insightful method
of proof overall. In fact, Flensted-Jensen and Koornwinder (1979) [17] derived the
addition theorem for the Jacobi function of the first kind from the product formula
(4.14), which the same authors had obtained earlier in [16, Theorem 4.1]. Inspection
of the proof of the product formula (4.14) in [16] shows that it really comes from
the product formula (4.15) for Jacobi functions of the second kind [16, Proof of
Theorem 4.1, p. 252]. In this proof, the authors expand the Jacobi function of the
first kind using [16, (4.6)], which is simply the connection formula (2.55) which
expresses the Jacobi function of the first kind as a linear combination of two Jacobi
functions of the second kind with different degrees. So, as the referee pointed out,
a more informative proof of the addition theorem for the Jacobi function of the
second kind, Theorem 4.2, would be to derive it from the product formula (4.15)
in the same way as Theorem 3.2 is derived in [17] from the product formula (4.14).

In the case when z1, z2, w, x = cosφ are real numbers, the argument of the
Jacobi function of the second kind in the addition theorem for the Jacobi function
of the second kind takes a simpler and more convenient form. This is analogous
to the Flensted-Jensen–Koornwinder addition theorem of the first kind, (3.19). We
present this result now.

Theorem 4.7. Let γ, α, β, w ∈ R, such that γ �∈ Z, α �∈ −N, β ∈ (− 1
2 ,∞)\{0},

α+ γ, β + γ �∈ −N, φ ∈ [0, π], z1, z2 ∈ (1,∞), and Z±, z≶, defined by (3.17), (4.1),
respectively. Then
(4.16)

Q(α,β)
γ (Z±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(±1)k+l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(z1z2)
k−l

(
(z21 − 1)(z22 − 1)

) k+l
2

× P
(α+k+l,β+k−l)
γ−k (2z2< − 1)Q

(α+k+l,β+k−l)
γ−k (2z2> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(cosφ).
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Proof. This follows from Theorem 4.2 by setting the variables γ, α, β, z1, z2, w,
x = cosφ to real numbers. �

4.2. The trigonometric context of the addition theorem for the Ja-
cobi function of the second kind. In the trigonometric context for the addition
theorem for Jacobi functions of the second kind, one must use the Jacobi function of

the second kind on-the-cut Q
(α,β)
γ (2.66), which is defined in Section 2.2.3 and has

a hypergeometric representation given by (2.67). Note that this representation is
not unique and there are many other double Gauss hypergeometric representations
of this function. For more about this see the discussion immediately above (2.67).
Define

(4.17) x≶ := min
max {x1, x2},

where x1, x2 ∈ (−1, 1), and in the case where x1, x2 ∈ C, then if one takes without
loss of generality x1 = x> to lie on an ellipse with foci at ±1, then x2 = x< must
be chosen to be in the interior of that ellipse.

Theorem 4.8. Let k, l ∈ N0, l � k, γ, α, β ∈ C, x1, x2 ∈ C\((−∞,−1]∪[1,∞)),
α �∈ Z, α+γ, β+γ �∈ −N, with X±, x≶ defined by (3.3), (4.17) respectively, such that
the complex variables γ, α, β, x1, x2 are in some yet to be determined neighborhood
of the real line. Then
(4.18)∫ 1

0

∫ π

0

Q(α,β)
γ (X±)wk−lP

(α−β−1,β+k−l)
l (2w2 − 1)Cβ

k−l(cosφ) dm
(α,β)(w, φ)

= (∓1)k+lA
(α,β,γ)
k,l (x1x2)

k−l((1− x2
1)(1− x2

2))
1
2 (k+l)

× Q
(α+k+l,β+k−l)
γ−k (2x2

< − 1)P
(α+k+l,β+k−l)
γ−k (2x2

> − 1),

where A
(α,β,γ)
k,l is defined in (3.16).

Proof. Starting with Corollary 4.3.1 and applying the definition (2.66) com-
pletes the proof. �

Corollary 4.8.1. Let γ, α, β ∈ C, x1, x2 ∈ C \ ((−∞,−1] ∪ [1,∞)), α �∈ Z,
α+ γ, β + γ �∈ −N, with X±, x≶ defined by (3.3), (4.17) respectively, such that the
complex variables γ, α, β, x1, x2 are in some yet to be determined neighborhood of
the real line. Then

(4.19)

∫ 1

0

∫ π

0

Q(α,β)
γ (X±) dm(α,β)(w, φ)

=

√
π Γ(γ + 1)Γ(β + 1

2 )Γ(α− β)

2Γ(α+ γ + 1)
Q(α,β)

γ (2x2
< − 1)P(α,β)

γ (2x2
> − 1).

Proof. Starting with Theorem 4.8 and setting k = l = 0 completes the
proof. �

Theorem 4.9. Let γ, α, β ∈ C, x1, x2 ∈ C \ ((−∞,−1] ∪ [1,∞)), α �∈ Z,
α + γ, β + γ �∈ −N, x,w ∈ C with X±, x≶ defined by (3.3), (4.17) respectively,
such that the complex variables γ, α, β, x1, x2, x, w are in some yet to be determined
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neighborhood of the real line. Then
(4.20)

Q(α,β)
γ (X±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(x1x2)
k−l

(
(1− x2

1)(1− x2
2)
) k+l

2

× Q
(α+k+l,β+k−l)
γ−k (2x2

< − 1)P
(α+k+l,β+k−l)
γ−k (2x2

> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x).

Proof. The result follows by starting with the addition theorem for Jacobi
functions of the second kind (4.16) and applying the definition (2.66) completes the
proof. �

In the case when z1, z2, w, x = cosφ are real numbers, then the argument of
the Jacobi function of the second kind on-the-cut in the addition theorem for the
Jacobi function of the second kind takes a simpler and more convenient form. This
is analogous to the addition theorem (3.19). We present this result now.

Corollary 4.9.1. Let γ, α, β, w ∈ R, such that γ �∈ Z, α, α + γ, β + γ �∈ −N,
x1, x2 ∈ (−1, 1), φ ∈ [0, π], with X±, x≶ defined by (3.18), (4.17) respectively. Then
(4.21)

Q(α,β)
γ (X±) =

Γ(α+ 1)Γ(γ + 1)

Γ(α+ γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k(−γ)k

×
k∑

l=0

(∓1)k−l (α+ k + l)(−β − γ)l
(α+ γ + 1)l

(x1x2)
k−l

(
(1− x2

1)(1− x2
2)
) k+l

2

× Q
(α+k+l,β+k−l)
γ−k (2x2

< − 1)P
(α+k+l,β+k−l)
γ−k (2x2

> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(cosφ).

Proof. This follows from Theorem 4.7 by setting the complex variables to be
real. �

4.3. Olver-normalized Jacobi functions and their addition theorems.
Koornwinder’s addition theorem (1.6) for Jacobi polynomials of degree n ∈ N0

involves a terminating sum. One can attribute this to the infinite sum appear-
ing in the generalizations (3.19), (3.20), first recognizing that Jacobi polynomials

P
(α+k+l,β+k−l)
γ−k vanish for both γ = n ∈ N0 and k � n + 1. Considering the limit

as γ → n for all values of k ∈ N0 in Koornwinder’s addition theorem, one sees
that the factor 1/(−γ)k blows up for k � n+ 1. On the other hand, this factor is
multiplied in the limit by the Jacobi function of the first kind prefactor containing
1/Γ(γ − k + 1), and considering the residues of the gamma function, one sees that
the product will be finite, namely

(4.22) lim
γ→n

1

(−γ)kΓ(γ − k + 1)
= lim

γ→n

Γ(−γ)

Γ(−γ + k)Γ(γ − k + 1)
=

(−1)k

n!
,
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for k � n+1. When this finite factor is multiplied by the second Jacobi polynomial

P
(α+β+k+l,β+k−l)
γ−k , which vanishes for k � n + 1, the resulting expression vanishes

for all these k values, which yields a terminating sum over k ∈ {0, . . . , n}.
Unlike Koornwinder’s addition theorem for Jacobi polynomials, the addition

theorem for the Jacobi functions of the second kind (see §4) involves a nontermi-
nating sum. One can see this by examining (4.20), first recognizing that the Jacobi

polynomials P
(α+k+l,β+k−l)
γ−k vanish for γ = n ∈ N0 and k � n+ 1. Considering the

limit as γ → n for all values of k ∈ N0 in Koornwinder’s addition theorem, one sees
that the factor 1/(−γ)k blows up for k � n+ 1. On the other hand, this factor in
the limit is multiplied by the Jacobi function of the first kind prefactor containing
1/Γ(γ − k + 1), and considering the residues of the gamma function, one sees that
the product will be finite, as shown in (4.22), for k � n+1. This finite factor is then

multiplied by the Jacobi function of the second kind Q
(α+β+k+l,β+k−l)
γ−k (2z2> − 1),

which does not vanish for k � n + 1 for α, β �∈ Z, unlike the case for Jacobi poly-
nomials.

4.4. Olver-normalized Jacobi functions. In (2.8), we introduced Olver’s
normalization of the Gauss [11, (15.2.2)] and generalized hypergeometric function
(see also [11, (16.2.5)]), which results in these functions being entire functions of all
their parameters, including the denominator parameters. Olver applied this concept
of a special normalization to the associated Legendre function of the second kind
[11, (14.3.10)] (see also [46, pp. 170 and 178]). We now demonstrate how to apply
it to the Jacobi functions of the first and second kind.

In the above description, instead of carefully determining the limits of the rel-
evant functions when there are removable singularities due to the appearance of
various gamma function prefactors, an alternative is to use appropriately defined
Olver-normalized Jacobi functions and recast the addition theorems correspond-
ingly. The benefit of using Olver-normalized definitions of the Jacobi functions is
that one avoids complications due to gamma functions with removable singularities.
Typical examples occur in often appearing examples when one has degrees γ and
parameters α, β given by integers. In these cases, if the standard definitions such as
those which appear in Theorems 2.5, 2.7 are used, the functions that appear are not
defined and careful limits must be taken. However, if one adopts carefully chosen
Olver-normalized definitions in which only Olver-normalized Gauss hypergeometric
functions appear, then these functions will be entire in all their parameters. As we
will see, by using these definitions, we arrive at formulas for the addition theorems
which are elegant and highly useful! First we give our new choice of the Olver
normalization, and then relate the Olver-normalized definitions to the usual defini-
tions. Our definitions of Olver-normalized Jacobi functions of the first and second
kind in the hyperbolic and trigonometric contexts are given by

(4.23) P (α,β)
γ (z) := 2F1

(
−γ, α+ β + γ + 1

α+ 1
;
1− z

2

)
,

(4.24) Q(α,β)
γ (z) :=

2α+β+γ

(z − 1)α+γ+1(z + 1)β
2F1

(
γ + 1, α+ γ + 1

α+ β + 2γ + 2
;

2

1− z

)
,

and

(4.25) P(α,β)
γ (x) := 2F1

(
−γ, α+ β + γ + 1

α+ 1
;
1− x

2

)
,

http://dlmf.nist.gov/15.2.E2
http://dlmf.nist.gov/16.2.E5
http://dlmf.nist.gov/14.3.E10


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DOUBLE SUMMATION ADDITION THEOREMS FOR JACOBI FUNCTIONS 59

Q(α,β)
γ (x) := 1

2Γ(α+ 1)

(
1 + x

2

)γ
(4.26)

×
(
cos(πα)Γ(α+ γ + 1)

Γ(γ + 1)
2F1

(
−γ,−β − γ

1 + α
;
x− 1

x+ 1

)

− Γ(β + γ + 1)

Γ(α+ β + γ + 1)

(
1 + x

1− x

)α

2F1

(
−α− γ,−α− β − γ

1− α
;
x− 1

x+ 1

))
.

Therefore one has connection relations between the Jacobi functions of the first
and second kinds and their Olver-normalized counterparts, namely

P (α,β)
γ (z) =

Γ(α+ γ + 1)

Γ(γ + 1)
P (α,β)

γ (z),(4.27)

Q(α,β)
γ (z) = Γ(α+ γ + 1)Γ(β + γ + 1)Q(α,β)

γ (z),(4.28)

P(α,β)
γ (x) =

Γ(α+ γ + 1)

Γ(γ + 1)
P(α,β)
γ (x).(4.29)

Note that

(4.30) P(α,β)
γ (x) = P (α,β)

γ (x± i0),

as in (2.65). Furthermore in the special case γ = 0 one has

(4.31) Q
(α,β)
0 (z) :=

2α+β

(z − 1)α+1(z + 1)β
2F1

(
1, α+ 1

α+ β + 2
;

2

1− z

)
.

Remark 4.10. As of the date of publication of this manuscript, we have been
unable to find an Olver-normalized version of the Jacobi function of the second kind
on-the-cut Q(α,β)

γ . However we have found a special normalization of this function
which works well when γ = 0 and the β parameter takes an integer value, which is
of particular importance because this case appears in a very important application
(see Section 5 below). Let b ∈ N0. Define

(4.32) Q(α+k+l,b+k−l)
−k (x) := lim

γ→0,β→b
(−β − γ)lQ

(α+k+l,β+k−l)
γ−k (x),

which is a well-defined function for all α, b, x, k, l in its domain.

4.5. Addition theorems for the Olver-normalized Jacobi functions.
Now that we have introduced the Olver-normalized Jacobi functions of the first
and second kind in the hyperbolic and trigonometric contexts, we are in a position
to perform the straightforward derivation of the corresponding addition theorems
for these functions.

Theorem 4.11. Let γ, α, β ∈ C, z1, z2 ∈ C\(−∞,−1], x1, x2 ∈ C\((−∞,−1]∪
[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such that
the complex variables γ, α, β, z1, z2, x1, x2, x, w are in some yet to be determined



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

60 COHL ET AL.

neighborhood of the real line. Then

P (α,β)
γ (Z±) =

Γ(α+ 1)Γ(α+ γ + 1)

Γ(γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k(−γ)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(α+ γ + 1)l(−β − γ)l(z1z2)
k−l

× ((z21 − 1)(z22 − 1))
k+l
2 P

(α+k+l,β+k−l)
γ−k (2z21 − 1)P

(α+k+l,β+k−l)
γ−k (2z22 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x),

(4.33)

Q(α,β)
γ (Z±) = Γ(α+ 1)Γ(α+ γ + 1)Γ(β + γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(α+ γ + 1)l(z1z2)
k−l((z21 − 1)(z22 − 1))

k+l
2

×Q
(α+k+l,β+k−l)
γ−k (2z2> − 1)P

(α+k+l,β+k−l)
γ−k (2z2< − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x),

(4.34)

and

P(α,β)
γ (X±) =

Γ(α+ 1)Γ(α+ γ + 1)

Γ(γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k(−γ)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(α+ γ + 1)l(−β − γ)l(x1x2)
k−l

× ((1− x2
1)(1− x2

2))
k+l
2 P

(α+k+l,β+k−l)
γ−k (2x2

1 − 1)P
(α+k+l,β+k−l)
γ−k (2x2

2 − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x),

(4.35)

Q(α,β)
γ (X±) = Γ(α+ 1)

∞∑
k=0

(−1)k(α+ β + γ + 1)k(α+ 1)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(−β − γ)l(x1x2)
k−l((1− x2

1)(1− x2
2))

k+l
2

×Q
(α+k+l,β+k−l)
γ−k (2x2

< − 1)P
(α+k+l,β+k−l)
γ−k (2x2

> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x).

(4.36)

Proof. Substituting (4.27)–(4.29) into (3.4), (3.5), (4.2), (4.20) as necessary
completes the proof. �

There are corresponding expansions that are sometimes useful in which the
l sum is reversed, obtained by making the replacements l′ = k − l and then l′ 
→ l
in Theorem 4.2. These are as follows.

Corollary 4.11.1. Let γ, α, β ∈ C, z1, z2 ∈ C \ (−∞,−1], x1, x2 ∈ C \
((−∞,−1]∪[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such
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that the complex variables γ, α, β, z1, z2, x1, x2, x, w are in some yet to be determined
neighborhood of the real line. Then

P (α,β)
γ (Z±) = x

Γ(α+ 1)Γ(α+ γ + 1)

Γ(γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k(−γ)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)l(α+2k−l)(α+γ + 1)k−l(−β − γ)k−l(z1z2)
l((z21 − 1)(z22 − 1))

2k−l
2

× P
(α+2k−l,β+l)
γ−k (2z21 − 1)P

(α+2k−l,β+l)
γ−k (2z22 − 1)

× wlP
(α−β−1,β+l)
k−l (2w2 − 1)

β + l

β
Cβ

l (x),

(4.37)

Q(α,β)
γ (Z±) = Γ(α+ 1)Γ(α+ γ + 1)Γ(β + γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)l(α+ 2k − l)(α+ γ + 1)k−l(z1z2)
l((z21 − 1)(z22 − 1))

2k−l
2

×Q
(α+2k−l,β+l)
γ−k (2z2> − 1)P

(α+2k−l,β+l)
γ−k (2z2< − 1)

× wlP
(α−β−1,β+l)
l (2w2 − 1)

β + l

β
Cβ

l (x),

(4.38)

and

P(α,β)
γ (X±) =

Γ(α+ 1)Γ(α+ γ + 1)

Γ(γ + 1)

∞∑
k=0

(α+ 1)k(α+ β + γ + 1)k(−γ)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)l(α+ 2k − l)(α+ γ + 1)k−l(−β − γ)k−l(x1x2)
l

× ((x2
1 − 1)(x2

2 − 1))
2k−l

2 P(α+2k−l,β+l)
γ−k (2x2

1 − 1)P(α+2k−l,β+l)
γ−k (2x2

2 − 1)

× wlP
(α−β−1,β+l)
k−l (2w2 − 1)

β + l

β
Cβ

l (x),

(4.39)

Q(α,β)
γ (X±) = Γ(α+ 1)

∞∑
k=0

(−1)k
(α+ 1)k(α+ β + γ + 1)k

(α+ k)(β + 1)k

×
k∑

l=0

(∓1)l(α+ 2k − l)(−β − γ)k−l(x1x2)
l((x2

1 − 1)(x2
2 − 1))

2k−l
2

×Q
(α+2k−l,β+l)
γ−k (2x2

< − 1)P(α+2k−l,β+l)
γ−k (2x2

> − 1)

× wlP
(α−β−1,β+l)
k−l (2w2 − 1)

β + l

β
Cβ

l (x).

(4.40)

Proof. Making the replacement l 
→ k − l in Theorem 4.11 completes the
proof. �

Remark 4.12. It should be noted that removing the factors Γ(α+γ+1)/Γ(γ+1)
from the P series and Γ(α + γ + 1)Γ(β + γ + 1) from the Q series would convert
the P and Q on the left-hand sides to P and Q, so that all expansions would be in
terms of Olver-normalized functions.
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By examining the expansion of the Jacobi function of the first kind, one can see
that the (−γ)k shifted factorial in the above alternative expansion is moved from the
denominator to the numerator, which is more natural for Jacobi polynomials where
the sum is terminating. One can see the benefit: all the functions involved in the
expansions are well-defined for all values of the parameters, including integer values.
These expansions are extremely useful for expansions of fundamental solutions on
rank-one symmetric spaces, where the degrees and parameters are given by integers.
One no longer has any difficulties with various functions not being defined for certain
parameter values. This is completely resolved. One example is that in the integer
context of the Jacobi function of the second kind, the functions appear with degree
equal to γ − k for all k ∈ N0. They quickly become undefined for negative values
of the degree. However, since the Olver-normalized Jacobi functions are entire
functions, there is no longer any problem here. These alternative expansions are
highly desirable!

5. Eigenfunction expansions of a fundamental solution of the
Laplace–Beltrami operator on non-compact and compact

symmetric spaces of rank one

As an application of the addition theorem for the Jacobi function of the second
kind, we now give an introduction to the motivation for the material which has
been presented in the previous sections. It is a study of the global analysis of the
Laplace–Beltrami operator and the solutions of inhomogeneous elliptic equations:
Poisson’s equation on the Riemannian symmetric spaces of rank one.

Let d = dimR K, where K is equal to the real numbers R, the complex num-
bers C, the quaternions H, or the octonions O. For d = 1, namely the real case, the
corresponding spaces are Riemannian manifolds of constant curvature, including
Euclidean space Rn, real hyperbolic geometry RHn

R (noncompact), and real hyper-
spherical geometry RSn

R (compact), in various models. For d = 2, 4, 8, it is well
known that there are corresponding isotropic Riemannian manifolds of both non-
compact and compact type which are referred to as rank-one symmetric spaces (see
for instance [27]). They include the complex hyperbolic space CHn

R, the quatern-
ionic hyperbolic space HHn

H , the octonionic hyperbolic plane OH2
R, the complex

projective space CPn
R, the quaternionic projective space HPn

R, and the octonionic
projective (Cayley) plane OP2

R. In each of the preceding, R > 0 is the radius of
curvature. The complex, quaternionic, and octonionic rank-one symmetric spaces
have respective real dimensions 2n, 4n, 16. For a description of the Riemannian
manifolds given by the rank-one symmetric spaces, see for instance [25–27] and
the references therein.

Riemannian symmetric spaces, compact and non-compact, come in infinite se-
ries (four corresponding to complex simple groups and seven to real simple groups),
together with a finite class of exceptional spaces (see [25, p. 516, 518]). Each
symmetric space comes with a commutative algebra of invariant differential op-
erators and correspondingly a class of eigenfunctions, its spherical functions. In
the case of the rank-one symmetric spaces, these are just hypergeometric (Jacobi)
functions with specified parameters. This has been used as motivation for several
generalizations of the classical Gauss hypergeometric functions that are beyond the
scope of this paper, for example the Heckman–Opdam functions on root systems
[22,23,47,48] and the work of Macdonald [42,43].
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Due to the isotropy of the symmetric spaces of rank one, a fundamental solu-
tion of the Laplace–Beltrami operator on any of these manifolds can be obtained
by solving an inhomogeneous ordinary differential equation, given in terms of the
geodesic distance. Laplace’s equation is satisfied on the manifold when the Laplace–
Beltrami operator acts on an unknown function and the result is zero. In geodesic
polar coordinates the Laplace–Beltrami operator is given on the rank-one noncom-
pact (hyperbolic) symmetric spaces by

Δ =
1

R2

{
∂2

∂r2
+ [d(n− 1) coth r + 2(d− 1) coth(2r)]

∂

∂r
+

1

sinh2 r
ΔK/M

}
(5.1)

=
1

R2

{
∂2

∂r2
+ [(dn− 1) coth r + (d− 1) tanh r]

∂

∂r
+

1

sinh2 r
ΔK/M

}
(5.2)

=:
1

R2

(
Δr +

1

sinh2 r
ΔK/M

)
,(5.3)

and on the rank-one compact (projective) spaces by

Δ =
1

R2

{
∂2

∂θ2
+ [d(n− 1) cot θ + 2(d− 1) cot(2θ)]

∂

∂θ
+

1

sin2 θ
ΔK/M

}
(5.4)

=
1

R2

{
∂2

∂θ2
+ [(dn− 1) cot θ + (d− 1) tan θ]

∂

∂θ
+

1

sin2 θ
ΔK/M

}
(5.5)

=:
1

R2

(
Δθ +

1

sin2 θ
ΔK/M

)
,(5.6)

where r and θ are the geodesic distance coordinates on the noncompact and compact
spaces respectively (see [25, Lemma 21]). For a spherically symmetric solution
such as a fundamental solution, the contribution from ΔK/M vanishes and the
corresponding homogeneous equation becomes relatively simple, namely the radial
form of Laplace’s equation, which is

(5.7) Δr u(r) = 0 or Δθ v(θ) = 0.

The solutions of this second-order ordinary differential equation are given by Ja-
cobi/hypergeometric functions (see [27, p. 484]). It can be easily verified that
‘radial’ solutions, homogeneous or fundamental, are of the form

u(r) = aP
(α,β)
0 (cosh(2r)) + bQ

(α,β)
0 (cosh(2r)),(5.8)

v(θ) = cP
(α,β)
0 (cos(2θ)) + dQ

(α,β)
0 (cos(2θ)),(5.9)

where for the complex, quaternionic, and octonionic rank-one symmetric spaces
one has α = n − 1, 2n − 1, 7 and β = 0, 1, 3 respectively [18, Table 1, p. 265].
Furthermore, a fundamental solution, which by definition is not a homogeneous
solution, must be singular at the origin (i.e., at r = 0 or θ = 0) and locally match
to a Euclidean fundamental solution. This implies that any fundamental solution
must be irregular at the origin. Therefore fundamental solutions must correspond
to Jacobi functions of the second kind. For a fundamental solution, it is the case
that a = c = 0; and we must determine b and d, which will depend on n and R.

Remark 5.1. Note that the general solution as a function of the geodesic
distance includes contributions from both the function of the first kind and the
function of the second kind. However, the function of the first kind with γ = 0

simply contributes a constant a or c, since P
(α,β)
0 (z) = 1 as stated in (2.50) (and the
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same for the function on-the-cut). On the other hand, in the case of non-spherically
symmetric solutions there will be a contribution from the function of the first kind
because then the contribution of the ΔK/M term in (5.3) or (5.6) will be non-zero.

Let x,x′ ∈ R
s. Then a Euclidean fundamental solution of Laplace’s equation

is (see for instance [21, p. 202])

(5.10) Gs(x,x′) =

⎧⎪⎨
⎪⎩

Γ(s/2)

2πs/2(s− 2)
‖x− x′‖2−s if s = 1 or s � 3,

1

2π
log ‖x− x′‖−1 if s = 2.

For a description of opposite antipodal fundamental solutions on the real hyper-
sphere, see [7]. The above analysis leads to the following.

Theorem 5.2. A fundamental solution and an opposite antipodal fundamental
solution, for the Laplace–Beltrami operators on the rank-one n � 1 noncompact
and compact symmetric spaces respectively, given in terms of the respective geodesic
distance coordinates r ∈ [0,∞) and θ ∈ [0, π/2], are

GCHn
R(r) =

(n− 1)!

2πnR2n−2
Q

(n−1,0)
0 (cosh(2r)),(5.11)

GHHn
R(r) =

(2n)!

2π2nR4n−2
Q

(2n−1,1)
0 (cosh(2r)),(5.12)

GOH2
R(r) =

302 400

π8R14
Q

(7,3)
0 (cosh(2r)),(5.13)

and

GCPn
R(θ) =

(n− 1)!

2πnR2n−2
Q

(n−1,0)
0 (cos(2θ)),(5.14)

GHPn
R(θ) =

(2n)!

2π2nR4n−2
Q

(2n−1,1)
0 (cos(2θ)),(5.15)

GOP2
R(θ) =

302 400

π8R14
Q

(7,3)
0 (cos(2θ)).(5.16)

Proof. The complex, quaternionic, and octonionic rank-one symmetric spaces
all have even dimension: s = 2n, 4n, 16, respectively. It is easy to verify that the
spherically symmetric solutions of Laplace’s equation on these spaces are Jacobi
functions of the first and second kind in the noncompact case, and Jacobi functions
of the first and second kind on-the-cut in the compact case, having parameter γ = 0
and parameters α = n−1, 2n−1, 7 and β = 0, 1, 3, respectively. Furthermore, each
of the corresponding fundamental solutions must match to a Euclidean fundamental
solution. Using (2.63) and (2.70), assuming that γ = 0, α = a, β = b, a ∈ N, b ∈ N0,
one has that near the singularity at unity, the Jacobi function of the second kind
and the Jacobi function of the second kind on-the-cut have the behaviors

(5.17) Q
(a,b)
0 (1 + ε) ∼ Q

(a,b)
0 (1− ε) ∼ 2a−1(a− 1)!b!

(a+ b)! εa
as ε → 0+.

Referring to the geodesic distance coordinate of the hyperbolic manifolds as r ∈
[0,∞) and that of the compact manifolds as θ ∈ [0, π/2], one has

cosh(2r) ∼ cosh(2 ρ
R ) ∼ 1 + 2ρ2

R2 as r → 0,(5.18)

cos(2θ) ∼ cos( 2ρR ) ∼ 1− 2ρ2

R2 as θ → 0,(5.19)
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where ρ is the Euclidean geodesic distance. Matching locally to the Euclidean
fundamental solution (5.10) in the R → ∞ flat-space limit (see for instance [9,
§2.4]), one can determine the constant of proportionality which multiplies the Jacobi
functions of the second kind. This completes the proof. �

Since fundamental solutions on the rank-one symmetric spaces all have γ = 0,
we first present the expansions in this case. The γ = 0 case of any Jacobi function
of the first kind equals unity. However, for the Jacobi functions of the second
kind, the γ = 0 functions are quite rich, and expansions involving them are quite
useful in that they allow one to produce separated eigenfunction expansions of a
fundamental solution of Laplace’s equation.

Remark 5.3. The reader should be aware that the addition theorems presented
below for the Jacobi functions of the second kind with γ = 0 are well-defined except
in the case where the α and β parameters on the left-hand sides are non-negative
integers. Then, special care must be taken (refer to Theorems 2.10, 2.11), though
the functions at these parameter values may be obtained by taking an appropriate
limit.

Corollary 5.3.1. Let α, β ∈ C, β �∈ Z, z1, z2 ∈ C \ (−∞, 1], x1, x2 ∈ C \
((−∞,−1]∪[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such
that the complex variables α, β, z1, z2, x1, x2, x, w are in some yet to be determined
neighborhood of the real line. Then

Q
(α,β)
0 (Z±) = Γ(α+ 1)Γ(α+ 1)Γ(β + 1)

∞∑
k=0

(α+ 1)k(α+ β + 1)k
(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(α+ 1)l(z1z2)
k−l((z21 − 1)(z22 − 1))

k+l
2

×Q
(α+k+l,β+k−l)
−k (2z2> − 1)P

(α+k+l,β+k−l)
−k (2z2< − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2 − 1)

β + k − l

β
Cβ

k−l(x),

(5.20)

Q
(α,β)
0 (X±) = Γ(α+ 1)

∞∑
k=0

(−1)k
(α+ 1)k(α+ β + 1)k

(α+ k)(β + 1)k

×
k∑

l=0

(∓1)k−l(α+ k + l)(−β)l(x1x2)
k−l((1− x2

1)(1− x2
2))

k+l
2

×Q
(α+k+l,β+k−l)
−k (2x2

< − 1)P
(α+k+l,β+k−l)
−k (2x2

> − 1)

× wk−lP
(α−β−1,β+k−l)
l (2w2−1)

β+k−l

β
Cβ

k−l(x).

(5.21)

Proof. Substituting γ = 0 in Theorem 4.11 for the Jacobi functions of the
second kind completes the proof. �

Next we give examples of the expansions for complex and quaternionic hyper-
bolic spaces, where β = 0, 1, respectively. First we treat the complex case, which
corresponds to complex hyperbolic and projective space. In order to do this we
start with Theorem 4.11 and take the limit as β → 0 using [2, (6.4.13)]

(5.22) lim
μ→0

n+ μ

μ
Cμ

n(x) = εnTn(x),
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where εn := 2− δn,0 is the Neumann factor commonly appearing in Fourier series.

Corollary 5.3.2. Let α ∈ C, z1, z2 ∈ C \ (−∞, 1], x1, x2 ∈ C \ ((−∞,−1] ∪
[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such that the
complex variables α, z1, z2, x1, x2, x, w are in some yet to be determined neighbor-
hood of the real line. Then

Q
(α,0)
0 (Z±) = Γ(α+ 1)Γ(α+ 1)

∞∑
k=0

(α+ 1)k(α+ 1)k
(α+ k)k!

×
k∑

l=0

(∓1)k−l(α+ k + l)(α+ 1)l(z1z2)
k−l((z21 − 1)(z22 − 1))

k+l
2

×Q
(α+k+l,k−l)
−k (2z2> − 1)P

(α+k+l,k−l)
−k (2z2< − 1)

× wk−lP
(α−1,k−l)
l (2w2 − 1)εk−lTk−l(x),

(5.23)

Q
(α,0)
0 (X±) = Γ(α+ 1)

∞∑
k=0

(−1)k
(α+ 1)k(α+ 1)k

(α+ k)k!

×
k∑

l=0

(∓1)k−l(α+ k + l)(x1x2)
k−l((1− x2

1)(1− x2
2))

k+l
2

×Q(α+k+l,k−l)
−k (2x2

< − 1)P(α+k+l,k−l)
−k (2x2

> − 1)

× wk−lP
(α−1,k−l)
l (2w2 − 1)εk−lTk−l(x).

(5.24)

Proof. Taking the limit as β → 0 in Theorem 4.11 using (5.22) completes the
proof. �

Now we treat the case of the quaternionic hyperbolic and projective spaces,
which correspond to β = 1.

Corollary 5.3.3. Let α ∈ C, z1, z2 ∈ C \ (−∞, 1], x1, x2 ∈ C \ ((−∞,−1] ∪
[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such that the
complex variables α, z1, z2, x1, x2, x, w are in some yet to be determined neighbor-
hood of the real line. Then

Q
(α,1)
0 (Z±) = Γ(α+ 1)Γ(α+ 1)

∞∑
k=0

(α+ 1)k(α+ 2)k
(α+ k)(2)k

×
k∑

l=0

(∓1)k−l(1 + k − l)(α+ k + l)(α+ 1)l(z1z2)
k−l((z21 − 1)(z22 − 1))

k+l
2

×Q
(α+k+l,1+k−l)
−k (2z2> − 1)P

(α+k+l,1+k−l)
−k (2z2< − 1)

× wk−lP
(α−2,1+k−l)
l (2w2 − 1)Uk−l(x),

(5.25)

Q
(α,1)
0 (X±) = Γ(α+ 1)

∞∑
k=0

(−1)k
(α+ 1)k(α+ 2)k

(α+ k)(2)k

×
k∑

l=0

(∓1)k−l(1 + k − l)(α+ k + l)(x1x2)
k−l((1− x2

1)(1− x2
2))

k+l
2

×Q(α+k+l,1+k−l)
−k (2x2

< − 1)P
(α+k+l,1+k−l)
−k (2x2

> − 1)

× wk−lP
(α−2,1+k−l)
l (2w2 − 1)Uk−l(x).

(5.26)
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Proof. Take the limit as β → 1 in Theorem 4.11 using [11, (18.7.4)], which
connects the Chebyshev polynomial of the second kind to the Gegenbauer polyno-
mial with parameter equal to unity, namely C1

n(x) = Un(x). This completes the
proof. �

Now we treat the case of the octonionic hyperbolic and projective spaces, which
correspond to β = 3.

Corollary 5.3.4. Let α ∈ C, z1, z2 ∈ C \ (−∞, 1], x1, x2 ∈ C \ ((−∞,−1] ∪
[1,∞)), x,w ∈ C, with Z±, X± defined by (3.2), (3.3), respectively, such that the
complex variables α, z1, z2, x1, x2, x, w are in some yet to be determined neighbor-
hood of the real line. Then

Q
(α,3)
0 (Z±) = 2Γ(α+ 1)Γ(α+ 1)

∞∑
k=0

(α+ 1)k(α+ 4)k
(α+ k)(4)k

×
k∑

l=0

(∓1)k−l(3 + k − l)(α+ k + l)(α+ 1)l(z1z2)
k−l((z21 − 1)(z22 − 1))

k+l
2

×Q
(α+k+l,3+k−l)
−k (2z2> − 1)P

(α+k+l,3+k−l)
−k (2z2< − 1)

× wk−lP
(α−4,3+k−l)
l (2w2 − 1)C3

k−l(x),

(5.27)

Q
(α,3)
0 (X±) =

1

3
Γ(α+ 1)

∞∑
k=0

(−1)k
(α+ 1)k(α+ 4)k

(α+ k)(4)k

×
k∑

l=0

(∓1)k−l(3 + k − l)(α+ k + l)(x1x2)
k−l((1− x2

1)(1− x2
2))

k+l
2

×Q(α+k+l,3+k−l)
−k (2x2

< − 1)P
(α+k+l,3+k−l)
−k (2x2

> − 1)

× wk−lP
(α−4,3+k−l)
l (2w2 − 1)C3

k−l(x).

(5.28)

Proof. Setting β = 3 in Theorem 4.11 completes the proof. �
The above calculations look almost trivial in that they are simply substitutions

of the values β = 0, 1, 3 and γ = 0 into the addition theorems of Theorem 4.11.
However, it should be understood that ordinarily these computations would be
extremely difficult, particularly if one were to use the standard normalizations of the
Jacobi functions. With standard normalizations, the Jacobi functions of the second
kind at these parameter values, and in fact at arbitrary integer values of α, β and
the degree γ, are not even defined. It is only because of the particular normalization
that we have chosen that evaluations at these parameter values become quite easy.
We will further take advantage of these expansions in later publications.

http://dlmf.nist.gov/18.7.E4
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[6] É. Cartan, Leçons sur la géométrie projective complexe (French), Gauthier-Villars, Paris,
1950. 2d ed. MR41456

[7] H. S. Cohl, Fundamental solution of Laplace’s equation in hyperspherical geometry,
SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011), Paper 108, 14, DOI
10.3842/SIGMA.2011.108. MR2861168

[8] H. S. Cohl, Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solu-
tion of the polyharmonic equation and polyspherical addition theorems, SIGMA Symmetry
Integrability Geom. Methods Appl. 9 (2013), Paper 042, 26, DOI 10.3842/SIGMA.2013.042.

MR3116178
[9] H. S. Cohl and R. M. Palmer, Fourier and Gegenbauer expansions for a fundamental solution

of Laplace’s equation in hyperspherical geometry, SIGMA Symmetry Integrability Geom.
Methods Appl. 11 (2015), Paper 015, 23, DOI 10.3842/SIGMA.2015.015. MR3313691

[10] H. S. Cohl, J. Park, and H. Volkmer, Gauss hypergeometric representations of the Ferrers
function of the second kind, SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021),
Paper No. 053, 33, DOI 10.3842/SIGMA.2021.053. MR4261851

[11] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.3 of
2024-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[12] L. Durand, Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary
of results, SIAM J. Math. Anal. 9 (1978), no. 1, 76–86, DOI 10.1137/0509007. MR466666

[13] L. Durand, Addition formulas for Jacobi, Gegenbauer, Laguerre, and hyperbolic Bessel
functions of the second kind, SIAM J. Math. Anal. 10 (1979), no. 2, 425–437, DOI
10.1137/0510039. MR523856

[14] L. Durand, P. M. Fishbane, and L. M. Simmons Jr., Expansion formulas and addition the-
orems for Gegenbauer functions, J. Mathematical Phys. 17 (1976), no. 11, 1933–1948, DOI
10.1063/1.522831. MR422726
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