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Abstract. Document preparation systems like LATEX offer the ability
to render mathematical expressions as one would write these on paper.
Using LATEX, LATExml, and tools generated for use in the National Insti-
tute of Standards (NIST) Digital Library of Mathematical Functions,
semantically enhanced mathematical LATEX markup (semantic LATEX)
is achieved by using a semantic macro set. Computer algebra systems
(CAS) such as Maple and Mathematica use alternative markup to repre-
sent mathematical expressions. By taking advantage of Youssef’s Part-of-
Math tagger and CAS internal representations, we develop algorithms to
translate mathematical expressions represented in semantic LATEX to cor-
responding CAS representations and vice versa. We have also developed
tools for translating the entire Wolfram Encoding Continued Fraction
Knowledge and University of Antwerp Continued Fractions for Special
Functions datasets, for use in the NIST Digital Repository of Mathe-
matical Formulae. The overall goal of these efforts is to provide seman-
tically enriched standard conforming MathML representations to the
public for formulae in digital mathematics libraries. These representa-
tions include presentation MathML, content MathML, generic LATEX,
semantic LATEX, and now CAS representations as well.
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1 Problem and Current State

Scientists often use document preparation systems (DPS) to write scientific
papers. The well-known DPS LATEX has become a de-facto standard for writ-
ing mathematics papers. On the other hand, scientists working with formulae
which occur in their research often need to evaluate special or numerical values,
create figures, diagrams and tables. One often uses computer algebra systems
(CAS), programs which provide tools for symbolic and numerical computation
of mathematical expressions. DPS such as LATEX, try to render mathematical
expressions as accurately as possible and give the opportunity for customization
of the layout of mathematical expressions. Alternatively, CAS represent expres-
sions for use in symbolic computation with secondary focus on the layout of
the expressions. This difference in format is a common obstacle for scientific
workflows.

For example, consider the Euler-Mascheroni (Euler) constant represented
by γ. Since generic LATEX [3] does not provide any semantic information, the
LATEX representation of this mathematical constant is just the command for the
Greek letter \gamma. Maple1 and Mathematica, well-known CAS, represent the
Euler constant γ with gamma and EulerGamma respectively. Scientists writing
scientific papers, who use CAS often need to be aware of representations in both
DPS and CAS. Often different CAS have different capabilities, which implies
that scientists might need to know several CAS representations for mathematical
symbols, functions, operators, etc. One also needs to be aware when CAS do not
support direct translation. We refer to CAS translation as either the forward or
backward translation respectively as DPS source to CAS source or vise-versa.
For instance, the CAS representation of the number e ≈ 2.71828 (the base of
the natural logarithm) in Mathematica is E, whereas in Maple there is no directly
translated symbol. In Maple, one needs to evaluate the exponential function at
one via exp(1) to reproduce its value.

For a scientist, γ and e might represent something altogether different from
these constants, such as a variable, function, distribution, vector, etc. In these
cases, it would need to be translated in a different way. In order to avoid these
kinds of semantic ambiguities (as well as for other reasons), Bruce Miller at NIST,
developing for the Digital Library of Mathematical Functions (DLMF) (special
functions and orthogonal polynomials of classical analysis) project, has created a
set of semantic LATEX macros [11,13]. Extensions and ‘simplifications’ have been
provided by the Digital Repository of Mathematical Formulae (DRMF) project.
We refer to this extended set of semantic LATEX macros as the DLMF/DRMF
macro set, and the mathematical LATEX which uses this semantic macro set as
semantic LATEX.
1 The mention of specific products, trademarks, or brand names is for purposes of iden-

tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards
and Technology, nor does it imply that the products so identified are necessarily
the best available for the purpose. All trademarks mentioned herein belong to their
respective owners.
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Existing tools which attempt to achieve CAS translations include import/
export for LATEX expressions (such as [10,15]), as well as for MathML. CAS
functions such as these, mostly provide only presentation translation in LATEX
and do not provide semantic solutions or workarounds to hidden problems such
as subtle differences in CAS function definitions. These differences may also
include differences in domains or complex branch cuts of multivalued functions.
To fill this lack of knowledge in the CAS translation process, one needs to pro-
vide additional information in the DPS source itself and to create interactive
documents with references to definitions, theorems and other representations of
mathematical expressions. Our approach in this paper, is to develop independent
tools for translation between different CAS and semantic LATEX representations
for mathematical expressions. We provide detailed information about CAS trans-
lation and warn about the existence of known differences in definitions, domains
and branch cuts. For the DRMF, we have decided to focus on CAS translation
between the semantic LATEX representations of classical analysis and internal
CAS representations for Maple and Mathematica.

1.1 A CAS, Generic and Semantic LATEX Representation Example

An example of a mathematical expression is P
(α,β)
n (cos(aΘ)) where P

(α,β)
n is

the Jacobi polynomial [5, (18.5.7)]. Table 1 illustrates several DPS and CAS
representations for this mathematical expression. Translating the generic LATEX
representation is difficult (see [3]) since the semantic context of the P is obscured.
If it represents a special function, one needs to ascertain which function it repre-
sents, because there are many examples of standard functions in classical analysis
which are given by a P . The semantic LATEX representation of this mathemat-
ical expression encapsulates the mostly-unambiguous semantic meaning of the
mathematical expression. This facilitates translation between it and CAS rep-
resentations. We use the first scan of the Part-of-Math (POM) tagger [19] to
facilitate translation between semantic LATEX and CAS representations.

Table 1. DPS and CAS representations for Jacobi polynomial expression

Different Systems Different Representations

Generic LATEX P_n^{(\alpha,\beta)}(\cos(a\Theta))

semantic LATEX \JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

Maple JacobiP(n,alpha,beta,cos(a*Theta))

Mathematica JacobiP[n,\[Alpha],\[Beta],Cos[a \[CapitalTheta]]]

2 The Part-of-Math Tagger

There are different approaches for interpreting LATEX. There exist several parsers
for LATEX, for instance texvcjs, which is a part of Mathoid [18]. There is also
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LATEXML [12,13] which processes LATEX. There is also an alternative grammar
developed by Ginev [7]. A new approach has been developed [19] which is not a
fully fledged grammar but only extracts POM from math LATEX. The purpose
of the POM is to extract semantic information from mathematics in LATEX. The
tagger works in several stages (termed scans) and interacts with several machine
learning (ML) based algorithms.

Given an input LATEX math document, the first scan of the tagger exam-
ines terms and groups them into sub-expressions when indicated. For instance
\frac{1}{2} is a sub-expression of numerator and denominator. A term is, in
the sense of Backus-Naur form, a pre-defined non-terminal expression and can
represent LATEX macros, environments, reserved symbols (such as the LATEX line
break command \\) or numerical or alphanumerical expressions. Sub-expressions
and terms get tagged due the first scan of the tagger, with two separate tag cat-
egories: (1) definite tags (such as operation, function, exponent, etc.) that the
tagger is certain of; and tags which consist of alternative and tentative features
which include alternative roles and meanings. These second category of tags are
drawn from a specific knowledge base which has been collected for the tagger.
Tagged terms are called math terms. Math terms are rarely distinct at this stage
and often have multiple features.

Scans 2 and 3 are expected to be completed in the next 2 years. These involve
some natural language processing (NLP) algorithms as well as ML-based algo-
rithms [14,17]. Those scans will: (1) select the right features from among the
alternative features identified in the first scan; (2) disambiguate the terms; and
(3) group subsequences of terms into unambiguous sub-expressions and tag them,
thus deriving definite mostly-unambiguous semantics of math terms and expres-
sions. The NLP/ML algorithms include math topic modeling, math context mod-
eling, math document classification (into various standard areas of math), and
definition-harvesting algorithms.

Specifically, to narrow down the role/meaning of a math term, it helps to
know which area of mathematics the input document is in. This calls for a math-
document classifier. Furthermore, knowing the topic, which is more specific than
the area of the document, will shed even more light on the math terms. Even
more targeted is the notion of context which, if properly formulated, will take
the POM tagger a long way in narrowing down the tag choices.

In [19], Youssef defines a new notion of a math-term’s context, which involves
several components, such as (1) the area and topic of the term’s document; (2)
the document-provided definitions; (3) the topic model and theme class of the
term’s neighborhood in the document; (4) the actual mathematical expression
containing the term; as well as (5) a small number of natural language sentences
surrounding the mathematical expression. Parts of this context are the textual
definitions and explanations of terms and notations which can be present or
absent from the input document. These can also be near the target terms or far
and distributed from them. The NLP/ML-based algorithms for the 2nd and 3rd

scans of the tagger will model and track the term’s contexts, and will harvest
definitions and explanations and associate them with the target terms.
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3 Semantic LATEX to CAS Translation

We have used a mathematical language parser (MLP) as an interface for
the above-described first scan of the POM tagger to build syntax trees of
mathematical expressions in LATEX and provide CAS translations from semantic
LATEX to CAS representations. The MLP provides all functionality to interact
with the results of the POM tagger. We extended the general information of
each term to its CAS representation, links to definitions on the DLMF/DRMF
websites, as well as the corresponding CAS websites. We also add information
about domains, position of branch cuts and further explanations if necessary.
Since the multiple scans of the POM tagger are still a work in progress, our
CAS translation is based on the first scan (see Sect. 2). Figure 1 shows the syn-
tax tree corresponding to the LATEX expression \sqrt[3]{x^3} + \frac{y}{2};
note that ‘x’ and ‘3’ in ‘x^3’ are not treated (in Fig. 1) as siblings (i.e., children
of ‘^’) because the first scan of the tagger does not recognize this hierarchy (but
it will be rectified in POM Scans 2 and 3). The general CAS translation process
translates each node without changing the hierarchy of the tree recursively. With
this approach, we are able to translate nested function calls.

Fig. 1. Syntax tree of
3
√
x3 + y

2
produced by the first scan of the POM tagger.

The syntax tree obtained by the first POM scan depends on the known
terms of the tagger. Although the tagger’s first scan tags macros if those macros’
definition are provided to it, it is currently agnostic of the DLMF/DRMF macros.
Therefore, as it currently stands, the first scan of the tagger extracts, but does
not recognize/tag DLMF/DRMF macros as hierarchical structures, but rather
treats those macros as sequences of terms. The syntax tree in Fig. 2 was created
by the tagger for our Jacobi polynomial example in Sect. 1.1. The tagger extracts
expressions enclosed between open and closed curly braces {...} which we refer
to as delimited balanced expressions. The given argument is a sub-expression and
produces another hierarchical tree structure.
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Fig. 2. Syntax tree for Jacobi polynomial expression generated by the first POM scan.

3.1 Implementation

CAS translations for DLMF/DRMF macros are stored in CSV files, to make them
easy to edit. Besides that, CAS translations for Greek letters and mathematical
constants are stored separately in JSON files. In addition to the DLMF/DRMF
macro set, generic LATEX also provides built-in commands for mathematical func-
tions, such as \frac or \sqrt. CAS translations for these macros are defined in
another JSON file.

Table 2. A lexicon entry.

DLMF \sin@@z
DLMF-Link dlmf.nist.gov/4.14#E1
Maple sin($0)
Mathematica Sin[$0]

Since the POM tagger assumes the
existence of special formatted lexicon
files to extract information for unknown
commands, the CSV files containing CAS
translation information has to be con-
verted into lexicon files. Table 2 shows
a part of the lexicon entry for the
DLMF/DRMF macro \sin@@{z}2. Translations to CAS are realized by pat-
terns with placeholders. The symbol $i indicates the i-th variable or parameter
of the macro.

Our CAS translation process is structured recursively. A CAS transla-
tion of a node will be delegated to a specialized class for certain kinds of
nodes. Even though our CAS translation process assumes semantic LATEX with
DLMF/DRMF macros, we sometimes allow for extra information obtained from

2 The usage of multiple @ symbols in Miller’s LATEX macro set provides capability
for alternative presentations, such as sin(z) and sin z for one and two @ symbols
respectively.

http://dlmf.nist.gov/4.14#E1
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generic LATEX expressions. For instance, we distinguish between the follow-
ing cases: (1) a Latin letter is used for an elementary constant; (2) a generic
LATEX command (such as the LATEX command for a Greek letter) is used for
an elementary constant. In both cases, the program checks if there are known
DLMF/DRMF macros to represent the constant in semantic LATEX. If so, we
inform the user of the DLMF/DRMF macro for the constant, but the Latin
letter or LATEX command is not translated.

There are currently only three known Latin letters where this occurs, the
imaginary unit i, Euler’s number e, and Catalan’s constant C. If one wants to
translate the Latin letter to the constant, then one needs to use the designated
macro. In these three cases they are \iunit, \expe and \CatalansConstant.
Examples of LATEX commands which may represent elementary constants are π
and α which are often used to represent the ratio of a circle’s circumference to
its diameter, and the fine-structure constant respectively which are \cpi and
\finestructure. Hence, Latin and Greek letters will be always translated as
Latin and Greek letters respectively.

The program consists of two executable JAR files. One organizes the trans-
formation from CSV files to lexicon files, while the other translates the generated
syntax tree to a CAS representation. Figure 3 describes the CAS translation
process. The program currently supports forward CAS translations for Maple
and Mathematica.

Fig. 3. Flow diagram for translation between semantic LATEX and a CAS representa-
tions. The MLP is the only interface to the POM tagger and provides all functionality
for interaction with the results of the POM tagger (such as analyzing the syntax tree
and extracting information from the lexicon.)
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4 Maple to Semantic LATEX Translation

Maple has its own syntax and programming language, and users interact with
Maple by entering commands and expressions in Maple syntax. For example, the

mathematical expression
∫ ∞

0

(π + sin(2x))/x2dx, would be entered in Maple as

int((Pi+sin(2*x))/x^2, x=0..infinity). (1)

In the sequel, we will refer to Maple syntax such as the syntactically correct
format (1) as (i) the 1D Maple representation. Maple also provides a (ii) 2D
representation (whose internal format is similar to MathML), and its display
is similar to the LATEX rendering of the mathematical expression. In addition,
Maple uses two internal representations (iii) Maple DAG, and (iv) Inert Form
representation. Note that, even though DAG commonly refers to the general
graph theoretic/generic data structure, directed acyclic graph, in Maple it has
become synonymous with “Maple internal data structure,” whether it actually
represents a DAG or not.

In our translation from Maple to semantic LATEX, only the Maple 1D and
Inert Fo- rm representations are used. Programmatic access to the Maple ker-
nel (its internal data structures/commands) from other programming languages
such as Java or C is possible through a published application programming inter-
face (API) called OpenMaple [8, Sect. 14.3]. The OpenMaple Java API is used in
this project. Some of the functionality used includes (1) parsing a string in 1D
representation and converting it to its Maple DAG and Inert Form representa-
tions (see below); (2) accessing elements of Maple’s internal data structures; (3)
performing manipulations on Maple data structures in the Maple kernel.

Fig. 4. Example Maple DAG for (1).

Mathematical expressions in Maple
are internally represented as Maple DAG
representations. Figure 4 illustrates
the Maple DAG representation of the
1D Maple expression (1). The vari-
able x is stored only once in mem-
ory, and all three occurrences of
it refer to the same Maple object.
This type of common subexpression
reuse is the reason why Maple data
structures are organized as DAGs and
not as trees. In addition to mathe-
matical expressions, Maple also has
a variety of other data structures
(e.g., sets, lists, arrays, vectors, matri-
ces, tables, procedures, modules).
The structure of a Maple DAG is in
the form Header Data1 · · · Datan .
Header encodes both the type and
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the length n of the Maple DAG and Data1, . . . , Datan are Maple DAGs (see
[8, Appendix A.3]).

For this project, another tree-like representation that closely mirrors the
internal Maple DAG representation (and can be accessed more easily through the
OpenMaple Java API) was chosen, the Inert Form. The Inert Form is given by
nested function calls of the form Inert XXX (Data1, ..., Datan), where XXX is
a type tag (see [8, Appendix A.3]), and Data1, . . . , Datan can themselves be
Inert Forms. In Maple, the Inert Form representation can be obtained via the
command ToInert. For example, the Inert Form representation of the Maple
expression (1) is

Inert FUNCTION( Inert NAME("Int"), Inert EXPSEQ( Inert PROD( Inert SUM( Inert NAME("Pi"),

Inert FUNCTION( Inert NAME("sin"), Inert EXPSEQ( Inert PROD( Inert NAME("x"),

Inert INTPOS(2))))), Inert POWER( Inert NAME("x"), Inert INTNEG(2)))

Inert EQUATION( Inert NAME("x"), Inert RANGE( Inert INTPOS(0), Inert NAME("infinity"))))).

In order to facilitate access to the Inert Form from the OpenMaple Java API,
the Inert Form is converted to a nested list representation (Fig. 5), where
the first element of each (sub)-list is an Inert XXX tag. For example, the Maple
equation x=0..infinity which contains the integration bounds (which is a sub-
Maple DAG of Maple expression (1)), is as follows in the nested list represen-
tation of the Inert Form:
[ Inert EQUATION, [ Inert NAME, "x"], [ Inert RANGE, [ Inert INTPOS, 0], [ Inert NAME, "infinity"]]].

4.1 Implementation

Our CAS translation engine enters the 1D Maple representation via the Open-
Maple API for Java [9] and converts the previously described Inert Form to a
nested list representation. For Maple expressions, the nested list has a tree
structure. We have organized the backward translation in a similar fashion to
the forward translation (see Sect. 3).

Since Maple automatically tries to simplify input expressions, we imple-
mented some additional changes to prevent such simplifications and changes
to the input expression. We would prefer that the representation of a translated
expression remain as similar as possible to the input expression. This facilitates
user comprehension, as well as the debugging process, of the CAS translation.
Maple’s internal representation presents obstacles when trying to keep an internal
expression in the syntactical form of the input expression. For instance, Maple
performs automatic (1) simplification of input expressions; (2) representation of
radicals as powers with fractional exponents (e.g., \sqrt[5]{x^3} represented as
x^{3/5}); (3) representation of negative terms as positive terms multiplied by -1
(since Maple’s internal structure has no primitives for negation or subtraction);
and (4) representation of division by a term as a multiplication of that term
raised to a negative power (since Maple’s internal structure has no primitives for
division).

To prevent automatic simplifications in Maple, one can enclose input expres-
sions between single quotes '...', also known as unevaluation quotes. This does
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Fig. 5. The program flow diagram explains the translation from Maple to semantic
LATEX. The input string is parsed into a Maple object and Maple procedures create a
new internal form of the object and builds a nested list from this new form. The
CAS translation process assembles the semantic LATEX expression by translating each
element recursively.

not prevent arithmetic simplifications but does prevent all other simplifications
to the input expression. For instance, if we have input sin(Pi)+2-1, then the
output is 1; and if we have input 'sin(Pi)+2-1', then the output is sin(Pi)+1.
By using unevaluation quotes, Maple does not convert a radical to a power with
fractional exponents, and the internal representation remains an unevaluated
sqrt (for square roots) or root (for higher order radicals). Maple automatically
represents a negative term such as -a by a product a*(-1). To resolve this we
first switch the order of the terms so that constants are in front, e.g., (-1)*a,
and then check if the leading constant is positive or negative. If it is negative,
we remove the multiplication and insert a negative sign in front of the term.

Maple’s rendering engine only changes negative powers to fractions if the
power is a ratio of integers, otherwise it keeps the exponent representation.
We only translate terms with negative integer exponents to fractions, and oth-
erwise retain the internal exponent representation. For this purpose, we per-
form a preprocessing step (in Maple) that introduces a new DIVIDE element in
the tree representation. For instance, without the DIVIDE element the input
(1/(x+3))^(-I) produces \left((3+x)^{-1}\right)^{-\iunit}, and with
the DIVIDE element it produces \left(\frac{1}{3+x}\right)^{-\iunit}.

Using the above described manipulations, a typical translated expression is
very similar to the input expression. As an example, without any of the tech-
niques above, the input expression cos(Pi*2)/sqrt((3*beta)/4-3*I) would be
automatically simplified and changed internally, and the resulting semantic LATEX
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would be 2\idot(3\idot\beta+12\idot\iunit\idot(-1))^{-\frac{1}{2}}.3

With unevaluation quotes, the CAS translation produces

\cos@{\cpi\idot2}\idot\left(\sqrt{\beta\idot\frac34+\iunit\idot(-3)}\right)^{-1}.
Furthermore, with our improvements for subtractions, we translate the radi-

cand to \frac{3}{4}\idot\beta-3\idot\iunit, and with the DIVIDE element,
we translate the base with exponent -1 as a fraction, and our translated expres-
sion is

\frac{\cos@{2\idot\cpi}}{\sqrt{\frac{3}{4}\idot\beta-3\idot\iunit}},

which is very similar to the input expression.

5 Translation of theMaple/Mathematica CFSF/eCF datasets

Table 3. Example CFSF statement

create( ’contfrac’,

label = "EF.exp.sfrac.01",

booklabel = "11.1.2",

dlmflabel = "4.9.3",

front = 1,

begin = [[2*z, 2-z], [z^2/6, 1]],

general = [[(1/(4*(2*m-3)*(2*m-1)))*z^2,1]],

function = exp,

lhs = exp(z),

category = "S-fraction"

):

We have developed Python
tools to convert the Maple
Continued Fractions for Spe-
cial Functions (CFSF) formu-
lae dataset [2]. This dataset
is connected with the book
Handbook of Continued Frac-
tions for Special Functions
(2008) [4] into semantic LATEX.
Using this semantic LATEX we
generate MediaWiki Wikitext
for seeding in the DRMF. The
Maple source for CFSF for-
mulae is distributed in many
.mpl files which are stored in a hierarchical directory substructure. The
Maple source for CFSF formulae consists of create statements (e.g., Table 3)
which contain a sequence of fields describing the details of the formula. The
fields are: type, category, constraints, begin, factor, front, parameters,
booklabel, dlmflabel, function, lhs, even, odd, and general.

For the example create statement in Table 3, we generate the semantic LATEX:

\expe^{z}=1+\frac{2z}{2-z}\subplus\frac{\frac{z^{2}}{6}}{1}\subplus
\CFK{m}{3}{\infty}@@{\frac{1}{4\left(2m-3\right)\left(2m-1\right)}z^{2}}{1},

which when rendered by pdflatex produces the formula

ez = 1 +
2z

2 − z +

z2

6

1 +

∞

K
m=3

(
1

4(2m−3)(2m−1)z
2

1
.

)
(2)

3 \idot is our semantic LATEX macro which represents multiplication without any cor-
responding presentation appearance.
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The type field, which is the first argument of the create statement, repre-
sents its 0th field. (For the example in Table 3, type=contfrac). All fields except
category, parameters, and function are used for conversion (although they con-
tain potentially useful semantic information). After each field has been translated
to semantic LATEX, they are assembled together. For instance, front is joined with
begin, which based on type, is determined to be a list of fractions joined together
by subplus symbols. Finally general is merged with a subplus.

We operate on two external dictionaries. Dict. 1 stores every unique Maple
symbol/function occurring in the CFSF dataset as well as their semantic LATEX
representations. These are stored as string arrays to denote positions of function
arguments. Dict. 2 provides necessary information to convert our substructure of
directories which contain the .mlp files, as well as their contents to generate sec-
tions and subsections in the produced LATEX file.

Our translation starts with a tokenization process which searches for occur-
rences of key symbols/characters (e.g., mathematical operators, parentheses,
spaces) within a given Maple representation and splits the string on those terms.
This produces a list of tokens. We categorize into three types of tokens: (1) normal
(operands, numbers, variables, etc.); (2) operator (addition, subtraction, nega-
tive sign, etc.); and (3) function call (those functions which are called). After
tokenization, each token is parsed and translated to semantic LATEX, and then
re-assembled as follows. When encountering a normal token, we check that it is
defined as having a translation in Dict. 1. If so, the token is swapped with the cor-
responding LATEX macro. When encoutering an operator token, it is identified as
either unary/binary, or as enclosure (i.e., parenthesis, square bracket, or curly
brace). If operator is unary, the token after operator is used to generate the
LATEX representation. Binary operator is handled similarly, but instead uses pre-
ceding and following terms. If left enclosure is found, a flag is set until a match-
ing enclosure is caught, and then the contents between matching enclosures
are rebuilt (following the order of operations). If function call is encountered
(listed in the Dict. 1), then we search for the corresponding delimiter. Function
arguments are extracted by comparing with the Maple function (in Dict. 1), and
then translated and used to replace dummy arguments. Finally, the newly built
expression replaces the tokens from the original function call for the discovered
delimiter. We translate 252 CFSF formulae from 55 files located in 10 subdirecto-
ries. This corresponds to an output semantic LATEX file with 10 sections and 55
subsections.

We have also developed code to translate the Wolfram Encoding Continued
Fraction Knowledge (eCF) dataset [6,16] to semantic LATEX. We create Dict. 3,
which contains a list of corresponding Mathematica functions/semantic LATEX. An
example statement from the eCF dataset is

ConditionalExpression[E^z==1+(2*z)/(2-z+z^2/(6*(1+Inactive[ContinuedFractionK]

[z^2/(4*(1+2*k)*(3+2*k)),1,{k,1,Infinity}]))),Element[z,Complexes]].

Our code produces the following semantic LATEX
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\expe^{z}=1+\frac{2z}{2-z+\frac{z^{2}}{6\left(1+\CFK{k}{1}{\infty}

@@{\frac{z^{2}}{4\left(1+2k\right)\left(3+2k\right)}}{1}\right)}}.

This produces the following rendered formula

ez = 1 +
2z

2 − z + z2

6

⎛
⎝1+

∞

K
k=1

(
z2

4(1+2k)(3+2k)
1

)⎞
⎠

.

We input the eCF Mathematica dataset from a single Identities.m file and
process every Mathematica expression as follows. For each Mathematica expres-
sion, (1) we identify all Mathematica function occurences; (2) extract its argu-
ments; (3) and rebuild the corresponding semantic LATEX expression from Dict. 3.
During extraction, the program identifies the location of the function within a
formula and searches until it finds a left bracket, indicating the beginning of a
Mathematica function. Our splitting process is able to recognize recursive macro
calls (matching fence symbols). We translate 1365 Mathematica eCF formulae.

6 Evaluation

Here, we describe our approach for validating the correctness of our mappings, as
well as discuss the performance of our system obtained on a hand crafted test set.

One validation approach is to take advantage of numerical evaluation using
software tools such as the DLMF Standard Reference Tables (DLMF Tables) [1],
CAS, and software libraries4. These tools provide numerical evaluation for special
functions with their own unique features. One can validate forward CAS transla-
tions by comparing numerical values in CAS to ground truth values.

Another validation approach is to use mathematical relations between dif-
ferent functions. For instance, if we forward translate two functions separately,
one could determine if the relation between the two translated functions remains
valid. One example relation is for the Jacobi elliptic functions sn, cn, dn, and
the complete elliptic integral K [5, Table 22.4.3], namely sn(z + K(k), k) =
cn(z, k)/dn(z, k), where z ∈ C, and k ∈ (0, 1). In the limit as k → 0, this
relation produces sin

(
z + π

2

)
= cos z, where z ∈ C. The DLMF provides rela-

tions such as these for many special functions. An alternative relation is particu-
larly helpful to validate CAS translations with different positions of branch cuts,
namely the relation between the parabolic cylinder function U and the modified
Bessel function of the second kind [5, (12.7.10)] U(0, z) =

√
z/(2π)K1/4( 14z2),

where z ∈ C. Note that z2 is no longer on the principal branch of the mod-
ified Bessel function of the second kind when ph(z) ∈ (π

2 , π), but a CAS
would still compute values on the principal branch. Therefore, a CAS translation
from \BesselK{\frac{1}{4}}@{\frac{1}{4}z^2} to BesselK(1/4,(1/4)*z^2)
is incorrect if ph(z) ∈ (π

2 , π), even though the equation is true in that domain. In
order for the CAS to verify the formula in that domain, it must use [5, (10.34.4)]

4 See for instance: http://dlmf.nist.gov/software.

http://dlmf.nist.gov/software/
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for the function on the right-hand side. Other validation tests may not be able to
identify a problem with this CAS translation.

One obstacle for such relations are the limitations of ever-improving CAS sim-
plification functions. Define the formula difference, as the difference between the
left- and right-hand sides of a mathematical formula. CAS simplify for the Jacobi
elliptic/trigonometric relation should produce 0, but might have more difficulties
with the parabolic cylinder function relation. However, CAS simplify functions
work more effectively on round trip tests.

6.1 Round Trip Tests

One of the main techniques we use to validate CAS translations are round trip
tests which take advantage of CAS simplification functions. Since we have devel-
oped CAS translations between semantic LATEX ↔Maple, round trip tests are eval-
uated in Maple. Maple’s simplification function is called simplify. Two expres-
sions are symbolically equivalent, if simplify returns zero for the formula dif-
ference. On the other hand, it is not possible to disprove the equivalence of the
expressions when the function returns something different to zero.

Our round trip tests start either from a valid semantic LATEX expression or
from a valid Maple expression. A CAS translation from the start representation
to the other representation and back again is called one cycle. A round trip reaches
a fixed point, when the string representation is identical to its previous string rep-
resentation. The round trip test concludes when it reaches a fixed point in both
representations. Additionally, we test if the fixed point representation in Maple is
symbolically equivalent to the input representation by simplifying the differences
between both of these with the Maple simplify function. Since there is no math-
ematical equivalence tester for LATEX expressions (neither generic nor semantic
LATEX), we manually verify LATEX representations for our test cases by rendering
the LATEX.

Table 4. A round trip test reach a fixed point.

step semantic LATEX/Maple representations
0 \frac{\cos@{a\Theta}}{2}
1 (cos(a*Theta))/(2)
2 \frac{1}{2}\idot\cos@{a\idot\Theta}
3 (1)/(2)*cos(a*Theta)

As shown in Sect. 4.1, prior
to backward translation, in round
trip testing, there will be dif-
ferences between input and out-
put Maple representations. After
adapting these changes, and
assuming the functions exist in
both semantic LATEX and CAS,
the round trip test should reach a fixed point. In fact, we reached a fixed point
in semantic LATEX after one cycle and in Maple after 11

2 cycles (see Table 4 for an
example) for most of the cases we tried. If the input representation is already iden-
tical to Maple’s representation, then the fixed point will be reached after at most
a half cycle.

One example exception is for CAS translations which introduce additional
function compositions on arguments. For instance, Legendre’s incomplete ellip-
tic integrals [5, (19.2.4–7)] are defined with the amplitude φ in the first argument,
while Maple’s implementation takes the trigonometric sine of the amplitude as the
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first argument. For instance, one has the CAS translations \EllIntF@{\phi}{k}
�→ EllipticF(sin(phi),k), and \EllIntF@{\asin@{z}}{k} ← �

EllipticF(z,k). These CAS translations produce an infinite chain of sine and
inverse sine function calls. Because round trip tests prevent simplification during
the translation process (see Sect. 4.1), Maple is not used to simplify the chain until
the round trip test is concluded.

6.2 Summary of Evaluation Techniques

Equivalence tests for special function relations are able to verify relations in CAS
as well as identify hidden problems such as differences in branch cuts and CAS
limitations. We use the simplify method to test equivalences. For the relations in
Sect. 6, CAS simplify for the Jacobi elliptic function example yields 0. Further-
more, a spectrum of real, complex, and complex conjugate numerical values for
z and k ∈ (0, 1) the formula difference converges to zero for an increasing preci-
sion. If simplification returns something other than zero, we can test the equiva-
lence for specific values. For the Bessel function relation, the formula difference for
z = 1+i converges to zero for increasing precision, but does not converge to zero if
z = −1 + i. However, using analytic continuation [5, (10.34.4)], it does converges
to zero. Clearly, the numerical evaluation test is also able to locate branch cut
issues in the CAS translation. Furthermore, this provides a very powerful debug-
ging method for our translation as well as for CAS functionality. This was demon-
strated by discovering an overall sign error in DLMF equation [5, (14.5.14)].

Round trip tests are also useful for identifying syntax errors in the seman-
tic LATEX since the CAS translation then fails. The simplification procedure is
improved for round trip tests, because it only needs to simplify similar expressions
with identical function calls. However, this approach is not able to identify hidden
problems that a CAS translation might need to resolve in order to be correct, if the
round trip test has not reached a fixed point. Other than with the round trip test
approach, we have not discovered any automated tests for backward CAS trans-
lations. We have evaluated 37 round trip test cases which produce a fixed point,
similar to that given in Table 4. These use formulae from the DLMF/DRMF and
produce a difference of the left- and right-hand sides equaling 0.

We have created a test dataset5 of 4,165 semantic LATEX formulae, extracted
from the DLMF. We translated each test case to a representation in Maple
and used Maple’s simplify function on the formula difference to verify that
the translated formulae remain valid. Our forward translation tool (Sect. 3) was
able to translate 2,232 (approx. 53.59%) test cases and verify 477 of these. Pre-
conversion improved the effectiveness of simplify and were used to convert
the translated expression to a different form before simplification of the for-
mula difference. We used conversions to exponential and hypergeometric form
and expanded the translated expression. Pre-conversion increased the number
of formulae verified to 662 and 1,570 test cases were translated but not veri-
fied. The remaining 1,933 test cases were not translated, because they contain

5 We are planning to make the dataset available from http://drmf.wmflabs.org.

http://drmf.wmflabs.org/
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DLMF/DRMF macros without a known translation to Maple (987 cases), such
as the q-hypergeometric function [5, (17.4.1)] (in 58 cases), or an error appeared
during the translation or verification process (639 cases). Furthermore, 316 cases
were ignored, because they did not contain enough semantic information to pro-
vide a translation or the test case was not a relation. It is interesting to note
that we were able to enhance the semantics of 74 Wronskian relations by rewrit-
ing the macro so that it included the variable that derivatives are taken with
respect to as a parameter. A similar semantic enhancement is possible for another
186 formulae where the potentially ambiguous prime notation ‘'’ is used for
derivatives.
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