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In this paper, we explore the symmetric nature of the terminating basic hypergeo-
metric series representations of the Askey–Wilson polynomials and the correspond-
ing terminating basic hypergeometric transformations that these polynomials 
satisfy. In particular we identify and classify the set of 4 and 7 equivalence 
classes of terminating balanced 4φ3 and terminating very-well-poised 8W7 basic 
hypergeometric series which are connected with the Askey–Wilson polynomials. 
We study the inversion properties of these equivalence classes and also identify 
the connection of both sets of equivalence classes with the symmetric group S6, 
the symmetry group of the terminating balanced 4φ3. We then use terminating 
balanced 4φ3 and terminating very-well poised 8W7 transformations to give a 
broader interpretation of Watson’s q-analog of Whipple’s theorem and its converse.

Published by Elsevier Inc.

1. Introduction

The Askey–Wilson polynomials pn(x; a|q) [11, §14.1], symmetric in four free parameters, are at the 
top of the q-Askey scheme and all polynomials within the q-Askey scheme can be written as either a 
specialization or limit of the Askey–Wilson polynomials. The Askey–Wilson polynomials have terminating 
basic hypergeometric representations. From these representations, one can derive transformation formulas 
for terminating basic hypergeometric functions.

In order to study the symmetry properties of the terminating basic hypergeometric functions which 
appear in the series representations of the Askey–Wilson polynomials, a detailed parametric connection 
between them was provided in [4, Corollary 3]. However, there were some typographical errors in that result 
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and some representations which arise by inversion were inadvertently left off. An attempt to remedy this 
was executed in [3].

The results presented in this paper provide a framework for future work on a symmetry analysis of 
terminating basic hypergeometric functions. The terminating symmetry analysis is more complicated than 
that for the nonterminating case [18]. Therefore, it is not surprising that the symmetry classes for terminating 
basic hypergeometric functions are not connected by the known nonterminating transformations (see Figs. 1, 
2, 3). In this paper, for the first time, we present the full symmetry structure of the terminating 8W7
representations for the Askey–Wilson polynomials and a detailed connection with the terminating balanced 

4φ3 representations.

2. Preliminaries

We adopt the following set notations: N0 := {0} ∪N = {0, 1, 2, ...}, and we use the sets Z, R, C which 
represent the integers, real numbers and complex numbers respectively, C∗ := C \ {0}, and C† := C∗ \ {z ∈
C : |z| = 1}. We also adopt the following notation and conventions. Let a := {a1, a2, a3, a4}, b, ak ∈ C, 
k = 1, 2, 3, 4. Define a + b := {a1 + b, a2 + b, a3 + b, a4 + b}, a12 := a1a2, a13 := a1a3, a23 := a2a3, 
a123 := a1a2a3, a1234 := a1a2a3a4, etc. Throughout the paper, we assume that the empty sum vanishes and 
the empty product is unity.

Definition 1. Throughout this paper we adopt the following conventions for succinctly writing elements of 
lists. To indicate sequential positive and negative elements, we write

±a := {a,−a}.

We also adopt an analogous notation

e±iθ := {eiθ, e−iθ}.

In the same vein, consider the numbers fs ∈ C with s ∈ S ⊂ N, with S finite. Then, the notation {fs}
represents the set of all complex numbers fs such that s ∈ S. Furthermore, consider some p ∈ S, then the 
notation {fs}s �=p represents the sequence of all complex numbers fs such that s ∈ S\{p}. In addition, for 
the empty list, n = 0, we take

{a1, ..., an} := ∅.

Consider q ∈ C†. Define the sets Ωn
q := {q−k : n, k ∈ N0, 0 ≤ k ≤ n − 1}, Ωq := Ω∞

q = {q−k : k ∈ N0}. 
In order to obtain our derived identities, we rely on properties of the q-Pochhammer symbol (q-shifted 
factorial). For any n ∈ N0, a, q ∈ C, the q-Pochhammer symbol is defined as

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), n ∈ N0. (1)

One may also define

(a; q)∞ :=
∞∏

n=0
(1 − aqn), (2)

where |q| < 1. We will also use the common notational product conventions

(a1, ..., ak; q)b := (a1; q)b · · · (ak; q)b.
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The following properties for the q-Pochhammer symbol can be found in Koekoek et al. [11, (1.8.7), 
(1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)], namely for appropriate values of q, a ∈ C∗ and n, k ∈ N0:

(a; q−1)n = (a−1; q)n(−a)nq−(n2). (3)

The basic hypergeometric series, which we will often use, is defined for q, z ∈ C∗, such that |q|, |z| < 1, 
s, r ∈ N0, bj /∈ Ωq, j = 1, ..., s, as [11, (1.10.1)]

rφs

(
a1, ..., ar
b1, ..., bs

; q, z
)

:=
∞∑
k=0

(a1, ..., ar; q)k
(q, b1, ..., bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk. (4)

Note that we refer to a basic hypergeometric series as �-balanced if q�a1 · · · ar = b1 · · · bs, and balanced 
(Saalschützian) if � = 1. A basic hypergeometric series r+1φr is well-poised if the parameters satisfy the 
relations

qa1 = b1a2 = b2a3 = · · · = brar+1.

It is very-well-poised if in addition, {a2, a3} = ±q
√
a1.

Similarly for terminating basic hypergeometric series which appear in basic hypergeometric orthogonal 
polynomials, one has

rφs

(
q−n, a1, ..., ar−1

b1, ..., bs
; q, z

)
:=

n∑
k=0

(q−n, a1, ..., ar−1; q)k
(q, b1, ..., bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk, (5)

where bj /∈ Ωn
q , j = 1, ..., s. Define the very-well-poised basic hypergeometric series r+1Wr [7, (2.1.11)]

r+1Wr(b; a4, ..., ar+1; q, z) := r+1φr

(
b,±q

√
b, a4, ..., ar+1

±
√
b, qb

a4
, ..., qb

ar+1

; q, z
)
, (6)

where 
√
b, qba4

, ..., qb
ar+1

/∈ Ωq.
The following notation r+1φ

m
s , m ∈ Z (originally due to van de Bult & Rains [17, p. 4]), for basic 

hypergeometric series with zero parameter entries. Consider p ∈ N0. Then define

r+1φ
−p
s

(
a1, . . . , ar+1
b1, . . . , bs

; q, z
)

:= r+p+1φs

⎛
⎝ a1, a2, . . . , ar+1,

p︷ ︸︸ ︷
0, . . . , 0

b1, b2, . . . , bs

; q, z

⎞
⎠ , (7)

r+1φ
p
s

(
a1, . . . , ar+1
b1, . . . , bs

; q, z
)

:= r+1φs+p

⎛
⎜⎝ a1, a2, . . . , ar+1

b1, b2, . . . , bs, 0, . . . , 0︸ ︷︷ ︸
p

; q, z

⎞
⎟⎠ , (8)

where b1, . . . , bs /∈ Ωq ∪ {0}, and r+1φ
0
s = r+1φs. The terminating basic hypergeometric series 

r+1φ
m
s (q−n, a; b; q, z), for some n ∈ N0, a := {a1, . . . , ar}, b := {b1, . . . , bs}, is well-defined for all r, s ∈ N0, 

m ∈ Z. In [7, Exercise 1.4ii] one finds the inversion formula for terminating basic hypergeometric series.

Theorem 2 (Gasper and Rahman’s (2004) Inversion Theorem). Let m, n, k, r, s ∈ N0, ak ∈ C, 1 ≤ k ≤ r, 
bm /∈ Ωn

q , 1 ≤ m ≤ s, q ∈ C†. Then,
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r+1φs

(
q−n, a1, ..., ar

b1, ..., bs
; q, z

)
= (a1, ..., ar; q)n

(b1, ..., bs; q)n

(
z

q

)n (
(−1)nq(

n
2)
)s−r−1

× s+1φ
s−r
r

⎛
⎝q−n, q1−n

b1
, ..., q1−n

bs
q1−n

a1
, ..., q1−n

ar

; q, q
n+1

z

b1 · · · bs
a1 · · · ar

⎞
⎠ . (9)

Corollary 3. Let n, r ∈ N0, q ∈ C†, ak, bk /∈ Ωn
q ∪ {0}, 1 ≤ k ≤ r. Then,

r+1φr

(
q−n, a1, ..., ar

b1, ..., br
; q, z

)

= q−(n2)
(
−z

q

)n (a1, ..., ar; q)n
(b1, ..., br; q)n r+1φr

⎛
⎝q−n, q1−n

b1
, ..., q1−n

br
q1−n

a1
, ..., q1−n

ar

; q, q
n+1

z

b1 · · · br
a1 · · · ar

⎞
⎠ . (10)

Proof. Take r = s, in (9) and using the definition (4) completes the proof. �
Note that in Corollary 3 if the terminating basic hypergeometric series on the left-hand side is balanced 

then the argument of the terminating basic hypergeometric series on the right-hand side is q2/z.
Applying Corollary 3 to the definition of r+1Wr, we obtain the following result for a terminating very-

well-poised basic hypergeometric series r+1Wr.

Corollary 4. Let n ∈ N0, b, ak, q, z ∈ C∗, 
√
b, qn+1b, qbak

, q
1−n

b , q
1−n

ak
/∈ Ωn

q , k = 5, ..., r + 1. Then, one has the 
following transformation formula for a very-well-poised terminating basic hypergeometric series:

r+1Wr

(
b; q−n, a5, ..., ar+1; q, z

)
= q−(n2)

(
−z

q

)n (±q
√
b, b, a5, ..., ar+1; q)n(

±
√
b, qn+1b, qb

a5
, ..., qb

ar+1
; q
)
n

× r+1Wr

(
q−2n

b
; q−n,

q−na5

b
, ...,

q−nar+1

b
; q, q2n+r−3br−3

(a5 · · · ar+1)2z

)
. (11)

Proof. Use Corollary 3 and (6). �
An interesting and useful consequence of this formula is the r = 7 special case,

8W7
(
b; q−n, c, d, e, f ; q, z

)
= q−(n2)

(
−z

q

)n

(
±q

√
b, b, c, d, e, f ; q

)
n(

±
√
b, qn+1b, qb

c ,
qb
d ,

qb
e ,

qb
f ; q

)
n

× 8W7

(
q−2n

b
; q−n,

q−nc

b
,
q−nd

b
,
q−ne

b
,
q−nf

b
; q, q2n+4b4

z(cdef)2

)
. (12)

Note that when one obtains an 8W7 from a balanced 4φ3 using Watson’s q-analogue of Whipple’s theorem 
[6, (17.9.15)] with (11), then q2n+4b4/(z(cdef)2) = z.

We will obtain new transformations for basic hypergeometric orthogonal polynomials by taking advantage 
of the following remark.

Remark 5. Since x = cos θ is an even function of θ, all polynomials in cos θ will be invariant under the map 
θ �→ −θ.

Remark 6. Observe in the following discussion we will often be referring to a collection of constants 
a, b, c, d, e, f . In such cases, which will be clear from context, then the constant e should not be confused 
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with Euler’s number e, the base of the natural logarithm, i.e., log e = 1. Observe the different (roman) 
typography for Euler’s number.

3. The Askey–Wilson polynomials

Define the sets 4 := {1, 2, 3, 4}, a := {a1, a2, a3, a4}, ak ∈ C∗, k ∈ 4, and x = cos θ ∈ [−1, 1]. The 
Askey–Wilson polynomials pn(x; a|q) are a family of polynomials symmetric in the four free parameters a1, 
a2, a3 and a4. These polynomials have a long and in-depth history and their properties have been studied in 
detail. The basic hypergeometric series representations of the Askey–Wilson polynomials fall into four main 
categories: (1) terminating 4φ3 representations; (2) terminating 8W7 representations; (3) nonterminating 

8W7 representations; and (4) nonterminating 4φ3 representations. One may obtain the alternative nonter-
minating representations of the Askey–Wilson polynomials using [7, (2.10.7)] and [6, 17.9.16]. However, 
these nonterminating representations will not be further discussed in this paper.

3.1. The Askey–Wilson polynomial terminating series representations and transformations

The terminating series representations of the Askey–Wilson polynomials are given in terms of termi-
nating balanced 4φ3 and terminating very-well-poised 8W7 basic hypergeometric series. The full result was 
presented in [4, Theorem 3]. The symmetric structure of the mapping properties of the terminating basic 
hypergeometric functions which appear in this result are the essential ingredients for the remainder of the 
paper. We will reproduce the following theorem which was originally given in [4, Theorem 3] because we 
will refer to the details of it so often below.

Theorem 7. Let n ∈ N0, p, s, r, t, u ∈ 4, p, r, t, u distinct and fixed, q ∈ C†. Then, the Askey–Wilson 
polynomials have the following terminating basic hypergeometric series representations given by:

pn(x;a|q) := a−n
p ({aps}s �=p; q)n 4φ3

(
q−n, qn−1a1234, ape±iθ

{aps}s �=p
; q, q

)
(13)

= q−(n2)(−ap)−n

(
a1234

q ; q
)

2n

(
ape±iθ; q

)
n(

a1234
q ; q

)
n

4φ3

⎛
⎝q−n,

{
q1−n

aps

}
s �=p

q2−2n

a1234
, q1−ne±iθ

ap

; q, q

⎞
⎠ (14)

= einθ
(
apr, ate−iθ, aue−iθ; q

)
n 4φ3

⎛
⎝q−n, apeiθ, areiθ, q1−n

atu

apr,
q1−neiθ

at
, q1−neiθ

au

; q, q

⎞
⎠ (15)

= einθ

(
a1234

q ; q
)

2n

({
ase−iθ

}
s �=p

, a1234 e−iθ

qap
; q
)
n(

a1234
q ; q

)
n

(
a1234 e−iθ

qap
; q
)

2n

× 8W7

(
q1−2napeiθ

a1234
; q−n,

{
q1−naps
a1234

}
s �=p

, apeiθ; q,
qeiθ

ap

)
(16)

= einθ

(
ape−iθ, {a1234

aps
}s �=p; q

)
n(

a1234 eiθ
ap

; q
)
n

8W7

(
a1234eiθ

qap
; q−n, {aseiθ}s �=p, q

n−1a1234; q,
qe−iθ

ap

)
(17)

= a−n
p

(
apt, apu, are±iθ; q

)
n(

ar ; q
) 8W7

(
q−nap
ar

; q−n,
q1−n

art
,
q1−n

aru
, ape±iθ; q, qnatu

)
(18)
ap n
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= einθ
(
{ase−iθ}; q

)
n

(e−2iθ; q)n
8W7

(
q−ne2iθ; q−n, {aseiθ}; q,

q2−n

a1234

)
. (19)

Proof. See the proof of [4, Theorem 3]. �
Corollary 8. Let n ∈ N0, b, c, d, e, f ∈ C∗, q ∈ C†. Then, one has the following transformation formulas for 
a terminating 8W7 to a terminating 8W7:

8W7

(
b; q−n, c, d, e, f ; q, q

n+2b2

cdef

)
(20)

=q(
n
2)
(
−q2b2

cdef

)n (qb, b, c, d, e, f ; q)n
(b; q)2n

(
qb
c ,

qb
d ,

qb
e ,

qb
f ; q

)
n

8W7

(
q−2n

b
; q−n,

q−nc

b
,
q−nd

b
,
q−ne

b
,
q−nf

b
; q, q

n+2b2

cdef

)
(21)

=

(
qb
ce ,

qb
cf , qb, d; q

)
n(

qb
c ,

qb
e ,

qb
f , d

c ; q
)
n

8W7

(
q−nc

d
; q−n,

q−nc

b
,
qb

de
,
qb

df
, c; q, ef

b

)
(22)

=

(
qb
de ,

qb
df ,

qb
ef , qb; q

)
n(

qb
def ,

qb
d ,

qb
e ,

qb
f ; q

)
n

8W7

(
q−n−1def

b
; q−n, d, e, f,

q−n−1cdef

b2
; q, q

c

)
(23)

=

(
q2b2

cdef , qb, d, e, f ; q
)
n(

def
qb , qb

c ,
qb
d ,

qb
e ,

qb
f ; q

)
n

8W7

(
q1−nb

def
; q−n,

q−nc

b
,
qb

de
,
qb

df
,
qb

ef
; q, q

c

)
(24)

=

(
q2b2

cdef , qb; q
)
n(

qb
c ,

q2b2

def ; q
)
n

8W7

(
qb2

def
; q−n,

qb

de
,
qb

df
,
qb

ef
, c; q, q

n+1b

c

)
(25)

= q(
n
2)
(
−qb

c

)n

(
qb2

def ,
qb
ef ,

qb
de ,

qb
df , qb, c; q

)
n(

qb2

def ; q
)

2n

(
qb
c ,

qb
d ,

qb
e ,

qb
f ; q

)
n

× 8W7

(
q−2n−1def

b2
; q−n,

q−nd

b
,
q−ne

b
,
q−nf

b
,
q−n−1cdef

b2
; q, q

n+1b

c

)
. (26)

Proof. This corollary was presented in [4, Corollary 3], but some of the representations were missing, so 
we present the full result here. Start with [4, Theorem 3] and set e2iθ = qnb, ap = q−

n
2 c√

b
, ar = q−

n
2 d√

b
, 

at = q−
n
2 e√

b
, au = q−

n
2 f√

b
, setting θ �→ −θ where necessary. Then, multiply every formula by the factor

An(b, c, d, e, f |q) :=
q2(n2)(−1)n(qb) 5n

2 (qb; q)n
(cdef)n

(
qb
c ,

qb
d ,

qb
e ,

qb
f ; q

)
n

.

With simplification, this completes the proof. �
The above corollary relates a terminating very-well-poised 8W7 to six other representations of termi-

nating very-well-poised 8W7s. The following corollary which results from comparing the symmetric 8W7
representation of the Askey–Wilson polynomials to the 4φ3 representations of the Askey–Wilson polyno-
mials is directly connected to Watson’s q-analog of Whipple’s theorem [6, (17.9.15)]. However, beyond the 
single representation which is usually displayed, we are able to extend this to a total of four representations 
of terminating balanced 4φ3s.
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Corollary 9. (Watson’s q-analog of Whipple’s theorem [6, (17.9.15)]). Let n ∈ N0, b, c, d, e, f ∈ C∗, q ∈ C†. 
Then

8W7

(
b; q−n, c, d, e, f ; q, q

n+2b2

cdef

)
=

(qb, qb
ef ; q)n

( qbe ,
qb
f ; q)n

4φ3

(
q−n, qb

cd , e, f
q−nef

b , qb
c ,

qb
d

; q, q
)

(27)

=
(
qb

cd

)n ( qb
ef , qb, c, d; q)n

( qbc ,
qb
d ,

qb
e ,

qb
f ; q)n

4φ3

(
q−n, q−ne

b , q−nf
b , qb

cd
q−nef

b , q1−n

c , q1−n

d

; q, q
)

(28)

=

(
q2b2

cdef , qb, e; q
)
n(

qb
c ,

qb
d ,

qb
f ; q

)
n

4φ3

(
q−n, qb

ec ,
qb
ed ,

qb
ef

q2b2

cdef ,
q1−n

e , qb
e

; q, q
)

(29)

= en

(
qb
ec ,

qb
ed ,

qb
ef , qb; q

)
n(

qb
c ,

qb
d ,

qb
e ,

qb
f ; q

)
n

4φ3

(
q−n, q−n−1cdef

b2 , q−ne
b , e

q−nec
b , q−ned

b , q−nef
b

; q, q
)
. (30)

Note that the above terminating 4φ3s are balanced.

Proof. Same as in the proof of Corollary 8 except applying the transformation to the terminating balanced 

4φ3s in [4, Theorem 3]. This completes the proof. �
Remark 10. The Askey–Wilson polynomials are symmetric in their four parameters, the 8W7 representa-
tion in which this symmetry is evident demonstrates this symmetry. On the other hand, the polynomial 
nature of the Askey–Wilson polynomials is not clearly evident from the 8W7 representation. In the first 4φ3

representation, the polynomial nature is evident.

3.2. Converse for Watson’s q-analog of Whipple’s theorem

One important transformation for terminating basic hypergeometric series related to the Askey–Wilson 
polynomials is Watson’s q-analog of Whipple’s theorem [6, (17.9.15)]. This result relates a terminating 
balanced 4φ3 to a terminating very-well-poised 8W7. The following corollary, an extension of this theorem, 
is a direct consequence of Corollary 9. Both of the following results directly relate a terminating balanced 4φ3

to a terminating very-well-poised 8W7. The balancing condition for the terminating 4φ3 is q1−nabc = def .

Corollary 11. (Converse for Watson’s q-analog of Whipple’s theorem).
Let n ∈ N0, a, b, c, d, e, f ∈ C∗, q ∈ C†, such that q1−nabc = def (balancing condition for the terminating 

4φ3). Then

4φ3

(
q−n, a, b, c

d, e, f
; q, q

)
=

( fb ,
f
c ; q)n

( f
bc , f ; q)n

8W7

(
q−nbc

f
; q−n,

e

a
,
d

a
, b, c; q, qa

f

)
(31)

=
( efbc ,

e
a , b, c; q)n

( ef
abc ,

bc
f , e, f ; q)n

8W7

(
q−nf

bc
; q−n,

q1−n

d
,
q1−n

e
,
f

b
,
f

c
; q, qa

f

)
(32)

= cn
(dc ,

e
c ,

f
c , b; q)n

( bc , d, e, f ; q)n
8W7

(
q−nc

b
; q−n,

d

b
,
e

b
,
f

b
, c; q, q

a

)
(33)

=
( e
a ,

e
b ,

e
c ; q)n

de e 8W7

(
q−nd

e
; q−n,

q1−n

e
,
d

a
,
d

b
,
d

c
; q, qnf

)
. (34)
(abc , d , e; q)n
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Proof. Consider (27), then solving the following set of algebraic equations
(
A,B,C,D,E,

q1−nBC

DE

)
=

(
qb

ef
, c, d,

q−ncd

b
,
qb

e
,
qb

f

)
, (35)

gives the solution

(b, c, d, e, f) =
(
q−nBC

D
,B,C,

q1−nBC

DE
,
F

A

)
. (36)

Now make these replacements in (20)–(26), and solve for the 4φ3 in (27), while replacing (A, B, C, D, E, F ) �→
(a, b, c, d, e, f), and utilizing the balancing condition q1−nabc = def . Note that one can write (31), (32) as 
equivalent expressions using the balancing condition as follows

4φ3

(
q−n, a, b, c

d, e, f
; q, q

)
=

(
de
ab ,

de
ac ; q

)
n(

de
a , de

abc ; q
)
n

8W7

(
de

qa
; q−n,

d

a
,
e

a
, b, c; q, qa

f

)
(37)

= q(
n
2)
(
−de

bc

)n ( de
qa ,

d
a ,

e
a , b, c; q)n

( de
qa ; q)2n( de

abc , e, d; q)n

× 8W7

(
q1−2na

de
; q−n,

q1−n

d
,
q1−n

e
,
q1−nab

de
,
q1−nac

de
; q, qa

f

)
, (38)

which reduces the number of inequivalent expressions by two. This completes the proof. �
4. The symmetric structure of terminating representations of the Askey–Wilson polynomials

In this section we describe the symmetric nature of the equivalence classes of expressions for the termi-
nating basic hypergeometric representations which correspond to the Askey–Wilson polynomials.

Consider the 11 equivalence classes of terminating 4φ3 and 8W7 expressions in Corollaries 8-9, namely 
(20)–(30). There are four equivalence classes of balanced terminating 4φ3 expressions (27)–(30) and 7 equiv-
alence classes of very-well-poised terminating 8W7 expressions (20)–(26). Equivalent expressions within an 
equivalence class are obtained by compositions of the trivial interchange of positions for numerator and/or 
denominator parameters in the basic hypergeometric series and under the 4!=24 permutations of the sym-
metric parameter c, d, e, f labeling.

The above described 11 equivalence classes in Corollaries 8-9 correspond to a total of 7 equivalence 
classes of terminating basic hypergeometric series representations of the Askey–Wilson polynomials. These 
are represented by 3 4φ3 equivalence classes and 4 8W7 equivalence classes which are given in [4, Theorem 
3]. Note that each of these equivalence classes are equivalent under the map θ �→ −θ.

In this section we describe the symmetric nature of these equivalence classes under the mapping of 
inversion (9) and that due to a theorem due to Van der Jeugt and Rao [19] which provides the symmetry 
group of nonterminating very well poised 8W7 basic hypergeometric functions, namely Theorem 12 below. 
The symmetry groups of several relevant basic hypergeometric functions have been studied in the literature 
[10,12,13,19]. For terminating balanced 4φ3 expressions, the following surprisingly simple result has been 
established in [19, Proposition 2].

Theorem 12 (Van der Jeugt and Rao (1999)). Let n ∈ N0, q ∈ C†, x := {x1, x2, x3, x4, x5, x6}, xk ∈ C∗, 
k ∈ {1, 2, 3, 4, 5, 6}, be six parameters satisfying x123456 = q1−n, with f : C∗6 ×C† → C defined by

f(x; q) := q(
n
2) (x1234, x1235, x1236; q)n

n 4φ3

(
q−n, x23, x13, x12 ; q, q

)
. (39)
x123 x1234, x1235, x1236
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Then f(x) is symmetric in the variables xk.

From Van der Jeugt and Rao’s (1999) result, it is clear that the symmetry group of the terminating 
balanced 4φ3 is S6, the symmetric group of degree six, |S6| = 720. This was originally established by [2], 
although the 720 transformations were explicitly written out by Bailey [1, Chapter VII]. Upon examination 
of the terminating balanced 4φ3 expressions in Corollary 9, we see that there are four equivalence classes of 
basic hypergeometric representations for these expressions (27)–(30).

Remark 13. The Van der Jeugt and Rao (1999) result [19, Proposition 2] clearly indicates that the symmetry 
group structure of the terminating balanced 4φ3 is S6, which has order equal to 720. It is interesting to make 
comparison of this result with the four terminating balanced expressions in Corollary 9, namely (27)–(30).

Proposition 14. The number of allowed permutations and rearrangements of the terminating balanced 4φ3s 
(27)–(30) in Corollary 9 is |S6| = 720 (where | · | represents the cardinality).

Proof. There are 6 possible variable pair product combinations (cd, ce, cf, de, df, ef). In what proceeds, we 
ignore the positioning of the numerator factor q−n. For (27), (28) there are 6 possible numerator positionings 
for each pair combination and 6 possible denominator positionings for each pair combination, so |(27)| =
63 = 216. Therefore |(27), (28)| = 432. For (29), (30), there are four variables, (c, d, e, f) and again 6 
possible numerator positionings and 6 possible denominator positionings, so |(29)| = 6 × 6 × 4 = 144. 
Since (30) is the inversion of (29), the counting is the same. Hence, |(29), (30)| = 288. Finally we have 
|(27), (28), (29), (30)| = 432 + 288 = 720 = |S6|. �
Remark 15. There is no symmetry analysis for a terminating 8W7 which corresponds to the Van der Jeugt 
and Rao (1999) result for a terminating balanced 4φ3. They do however have a symmetry proposition for 
a nonterminating 8W7, namely [19, Proposition 5], see Theorem 21 below. It is important to note that the 
nonterminating 8W7 does not possess Gasper and Rahman’s inversion symmetry, Theorem 2, and there is 
no nonterminating analog of this symmetry, so the group structure of the terminating 8W7 is not necessarily 
clear. On the other hand, one has the Watson q-analog of Whipple’s theorem [6, (17.9.16)] which relates a 
terminating balanced 4φ3 to a terminating very-well-poised 8W7, so one expects there to be a one-to-one 
relation between these functions.

We now prove this result.

Proposition 16. The number of allowed permutations and rearrangements of the terminating balanced 8W7s 
(20)–(26) in Corollary 8 is |S6| = 720.

Proof. As in Proposition 14, ignore the positioning of the numerator factor q−n. For (20), (21), there are 
4! = 24 permutations of the variables c, d, e, f . For (25), there are four triple-variable product combinations 
(cde, cdf, cef, def), and therefore the number of possibilities for each of the 24 possibilities is 4. Hence 
|(25)| = 24 × 4 = 96. Its inversion pair (26) has the same number of possibilities, namely 96. For (23)
one has 4 variables with four possible three-variable product combinations, for each of the four three-
variable product combinations, there are 4 possible numerator parameter positions for the cdef term, and 
6 possible arrangements of the three remaining variables. Hence there are 24 possible positionings of the 
numerator parameters. Again with four possible three-variable product combinations (cde, cef, cfd, def), 
we arrive again at 96, and as well for its inversion pair (24), so |(23), (24), (25), (26)| = 96 × 4 = 384. 
For (22), which is its own self-inverse, we have 48 possibilities. Since there are 6 two-variable product 
combinations (cd, ce, cf, de, df, ef), then one has |(22)| = 48 × 6 = 288. Summing up the contributions one 
has |(20), (21), (22), (23), (24), (25), (26)| = 24 ×2 +96 ×4 +288 = 720 = |S6|. This completes the proof. �
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Table 1
Total number of arrangements for terminating balanced 4φ3s (27)–(30) and terminating very-well-poised 8W7s 
(20)–(26) expressions (in bold) in Corollaries 8-9. The total number of possibilities, namely the possible arrange-
ments and relabelings, sum separately to the order |S6| = 720, namely for each set of equivalence classes of 4φ3s 
and 8W7s separately. See Propositions 14, 16.

Expression equivalence class (27) (28) (29) (30) (20) (21) (22) (23) (24) (25) (26)
Number of possibilities 216 216 144 144 24 24 288 96 96 96 96

(22)(21)(20) (23) (24) (25) (26) (27) (28) (29) (30)

(13)(14)(15)(18)(19) (17)

(16)

θ �→−θθ �→−θ
θ �→−θ

θ �→−θ

Fig. 1. This figure depicts the equivalence classes of terminating 8W7 (20)–(26) and 4φ3 (27)–(30) expressions in Corollaries 8-9
and their corresponding equivalence classes of terminating Askey–Wilson basic hypergeometric representations in [4, Theorem 3]. 
The expressions (20)–(30) are paired (using thick arrows) using Gasper and Rahman’s inversion formula (9). More specifically, to 
verify the inversion pairings for the 4φ3 expressions, one can use (10), and for the 8W7 expressions, one can use (12), or more 
explicitly the equality of (20) and (21). Note that (22) is the sole expression which is its own self-inverse. For the terminating 
Askey–Wilson hypergeometric representation equivalence classes (13)–(19), arrows indicate which expressions in Corollaries 8-9
are mapped to under the standard map (41) to the terminating representations of the Askey–Wilson polynomials in [4, Theorem 
3]. Arrows marked θ �→ −θ indicate that the expressions in Corollaries 8-9 map to the same terminating Askey–Wilson basic 
hypergeometric representation equivalence class under this mapping.

See Table 1 for a delineation of the total number of possibilities of expressions in Corollaries 8-9.

Remark 17. Even though the set of transformations for the terminating balanced 4φ3s and 8W7s each cor-
respond to the symmetric group S6, the breakdown of equivalence classes does not appear to be isomorphic 
to any of the subgroups of S6 that the authors investigated. However there are many subgroups of S6 (1455) 
[8], so future investigations may provide some insight here.

Remark 18. A straightforward analysis of the transformations implied by Theorem 12 indicates that under 
these transformations, each of the four equivalence classes of the balanced 4φ3 expressions in Corollary 9
maps using Theorem 12 separately to all three other equivalence classes.

Remark 19. Observe that the 4φ3 equivalence classes of expressions (27)–(30) in Corollary 9 are paired 
(27) ↔ (28) and (29) ↔ (30) under Gasper and Rahman’s inversion formula, z = q, r = 3 in (10), for a 
terminating basic hypergeometric 4φ3 representation of the Askey–Wilson polynomial,

4φ3

(
q−n, a1, a2, a3

b1, b2, b3
; q, q

)
=q−(n2)(−1)n (a1, a2, a3; q)n

(b1, b2, b3; q)n 4φ3

⎛
⎝q−n, q1−n

b1
, q1−n

b2
, q1−n

b3
q1−n

a1
, q1−n

a2
, q1−n

a3

; q, q

⎞
⎠ , (40)

where q1−na123 = b123. Furthermore, the 8W7 equivalence classes of expressions (20)–(21) are paired using 
Gasper and Rahman’s inversion formula, namely the equality (20) = (21). See the thick arrows in Fig. 1 for 
a pictorial representation of these inversion pairings.

Remark 20. One can study the mappings of the equivalence classes of expressions in Corollaries 8-9 to the 
terminating representations of the Askey–Wilson polynomials in [4, Theorem 3] by using the standard map

(b, c, d, e, f) �→
(
q−ne2iθ, apeiθ, areiθ, ateiθ, aueiθ

)
. (41)
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Both expressions (27), (28), map to the basic hypergeometric representation (15), except with (28), one has 
θ �→ −θ. For the 4φ3 expressions under the standard map (41), the expression (29) maps to (14) and the 
expression (30) maps to (13). Similarly for the 8W7 expressions using (41), then (20), (21) (θ �→ −θ) map to 
(19); (22) maps to (18); (25), (24) (θ �→ −θ) maps to (16); and (23), (26) (θ �→ −θ) maps to (17). See Fig. 1
for a pictorial representation of these mappings from Corollaries 8-9 to the terminating representations of 
the Askey–Wilson polynomials in Theorem 7.

Now consider the equivalence classes of terminating 8W7 expressions in Corollary 8, namely (20)–(26). 
There is a surprising structure to the behavior under mappings of these equivalence classes. Let us start this 
discussion by reviewing what is known about the symmetry of the nonterminating 8W7. For nonterminating 
very-well-poised 8W7 expressions, the following result has been previously established in [19, Proposition 5].

Theorem 21 (Van der Jeugt and Rao (1999)). Let q ∈ C†, x := {x1, x2, x3, x4, x5}, xk ∈ C∗, k ∈
{0, 1, 2, 3, 4, 5}, be six parameters with f : C∗6 ×C† → C defined by

f(x0;x; q) := w

(
q−1x3

0x12345;
x012345

x2
1

,
x012345

x2
2

,
x012345

x2
3

,
x012345

x2
4

,
x012345

x2
5

; q
)
, (42)

where

w(b; a, c, d, e, f ; q) =
( q2b2

acdef ,
qb
a ,

qb
c ,

qb
d ,

qb
e ,

qb
f ; q)∞

(qb; q)∞ 8W7

(
b; a, c, d, e, f ; q, q2b2

acdef

)
. (43)

Then f(x0; x; q) satisfies f(x0; x; q) = f(x0; p ·x; q), for every element p ∈ WB5 that has an even number of 
minus signs in its matrix representation. Hence the invariance group of the very-well-poised nonterminating 

8W7 is the group WD5.

Note that the groups WBn and WDn are the Weyl groups of the root systems of types Bn and Dn

(see [9, Chapter III]). It is clear from Van der Jeugt and Rao’s (1999) discussion that the symmetry group 
of the nonterminating very-well-poised 8W7 is WD5, |WD5| = 5!24 = 1920. According to Zudilin [22]
this transformation group was clear in Bailey (1964) [1, Section 7.5] which focused on a study of the 
transformations of the very-well-poised nonterminating 7F6, whose q-analog is the nonterminating very-
well-poised 8W7. (See Zudilin [21, Lemma 8] for a discussion of the computation of the order and some 
properties of this symmetry group which is connected to the group structure of the Riemann zeta value 
ζ(3).)

Now we discuss the symmetric nature of the terminating 8W7s in Corollary 8. Terminating 8W7 expres-
sions may be obtained from nonterminating 8W7 expressions by setting one of the numerator parameters 
equal to q−n, n ∈ N0. If you apply Van der Jeugt and Rao’s Theorem 21 with one of the numerator parame-
ters equal to some q−n, then some subset of the transformations maps to equivalence classes for terminating 
expressions, and the complement maps to equivalence classes of nonterminating expressions (not explicitly 
treated in this paper). The result of the mappings using Theorem 21 from terminating 8W7 equivalence 
classes to terminating 8W7 equivalence classes is listed in Table 2 and displayed pictorially in Fig. 2.

Upon examination of the terminating balanced 8W7 expressions in Corollary 8, we see that there are seven 
equivalence classes of terminating 8W7 expressions (20)–(26). A straightforward computer algebra analysis 
of the transformations implied by Van der Jeugt and Rao’s nonterminating Proposition, Theorem 21 (where 
we have selected only those expressions which result in terminating expressions), has indicated that under 
these transformations, each of the seven equivalence classes of the very-well-poised 8W7 expressions split 
into three separate associations of terminating very-well-poised 8W7 equivalence classes.
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Table 2
Given that the original and mapped 8W7 expressions are terminating, this table provides the map-
ping properties of the 8W7 equivalence classes (20)–(26) under the action of Theorem 21. The 
numbers on the right-part of the table indicate the total number of 8W7 expressions which are 
mapped using Theorem 21, given a specific choice of parameter labeling (dashes represent zero). See 
Fig. 2 for a graphical representation of these mapping properties.

Original 8W7
Expression 

Equivalence Class

Mapped 8W7
Expression 

Equivalence Classes

(20) (25) (21) (24) (22) (23) (26)

{(20)} {(20), (25)} 120 480 – – – – –
{(25)} {(20), (25)} 120 480 – – – – –
{(21)} {(21), (24)} – – 120 480 – – –
{(24)} {(21), (24)} – – 120 480 – – –
{(22)} {(22), (23), (26)} – – – – 120 360 120
{(23)} {(22), (23), (26)} – – – – 120 360 120
{(26)} {(22), (23), (26)} – – – – 120 360 120

Fig. 2. This figure provides a graphical representation of Table 2 together with the action of inversion (9). More specifically, it depicts 
the equivalence classes of terminating very-well-poised 8W7 expressions (20)–(26) in Corollary 8, with thick arrows indicating 
pairings using inversion (9), and thin arrows indicating mappings using Theorem 21. The shaded regions indicate equivalence class 
grouping under Theorem 21.

Table 3
This table lists the mappings and their total number of occurrences which 
occur if one applies the converse for Watson’s q-analog of Whipple’s theo-
rem, namely Corollary 11 to the terminating balanced 4φ3 expressions in 
Corollary 9. For each 4φ3 expression, terminating very-well-poised 8W7 ex-
pressions are produced when you include all permutations of the numerator 
parameters and denominator parameters. The numbers on the right-part of 
the table indicate the total number of expression equivalence classes (out of
3!2 = 36 permutations) mapped to for a given choice of parameter labeling. 
Dotted lines represent boundaries of inversion pairs.

Original 4φ3
Expression 

Equivalence Class

(20) (21) (22) (23) (24) (25) (26)

{(27)} 4 4 56 20 20 20 20
{(28)} 4 4 56 20 20 20 20
{(29)} 6 6 60 18 18 18 18
{(30)} 6 6 60 18 18 18 18

Remark 22. The three separate associations of equivalence classes for terminating very-well-poised 8W7s in 
Corollary 8 which are obtained by applying Theorem 21 for nonterminating 8W7 misses the connections 
between the three associations. In order to connect these associations, one must rely on Gasper and Rahman’s 
inversion formula, which have no nonterminating counterpart, so therefore would be undiscoverable using 
Van der Jeugt and Rao’s (1999) analysis [19, Proposition 5] (see Tables 3, 4 and 5).
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Table 4
This table lists the mappings which occur if one 
applies Watson’s q-analog of Whipple’s theorem, 
namely Corollary 9, including all permutations of the 
numerator parameters, to the terminating very-well-
poised 8W7 expressions in Corollary 8. This results 
in the production of terminating balanced 4φ3s for 
each 8W7 expression. The numbers on the right-part 
of the table indicate the total number of expression 
equivalence classes (out of 2 · 4! = 48 permutations) 
mapped to a given choice of parameter labeling. Dot-
ted lines represent boundaries of inversion pairs.

Original 8W7
Expression 

Equivalence Class

(27) (28) (29) (30)

{(20)} 24 24 24 24
{(21)} 24 24 24 24
{(22)} 28 28 20 20
{(23)} 30 30 16 16
{(24)} 30 30 16 16
{(25)} 30 30 16 16
{(26)} 30 30 16 16

Table 5
This table describes mapping properties of the converse for Watson’s q-analog 
of Whipple’s theorem, Corollary 11. It first provides the mapping properties 
for the 8W7 equivalence classes (31)–(34) which are mapped if one applies 
Van der Jeugt and Rao’s nonterminating Proposition, Theorem 21 (where we 
have selected only those expressions which result in terminating expressions). 
The numbers on the right-part of the table indicate the total number of 8W7
expression equivalence classes mapped to for a given choice of parameter la-
beling. Dashes indicate zero mappings. See Fig. 3.

Original 8W7
Expression 

Equivalence Class

Mapped 8W7
Expression 

Equivalence Classes

(31) (34) (32) (33)

{(31)} {(31), (34)} 360 240 – –
{(34)} {(31), (34)} 360 240 – –
{(32)} {(32), (33)} – – 360 240
{(33)} {(32), (33)} – – 360 240

Fig. 3. This figure depicts the relation of equivalence classes of terminating very-well-poised 8W7 expressions (31)–(34) in the 
converse for Watson’s q-analog of Whipple’s theorem, Corollary 11. Thick arrows indicate equivalence classes which are paired 
using Gasper and Rahman’s inversion formula for terminating basic hypergeometric series (9). Thin arrows indicate which nodes 
map terminating 8W7 equivalence classes to terminating 8W7 equivalence classes using Van der Jeugt and Rao’s nonterminating 
Proposition, Theorem 21 (where we have selected only those expressions which result in terminating expressions), see Table 2. 
Shaded regions indicate which equivalence classes are grouped using Theorem 21.

5. A broader perspective on the symmetric structure of the terminating representations of the 
Askey–Wilson polynomials

One can consider a broader interpretation of the symmetric structure of the terminating series represen-
tations of Askey–Wilson polynomials. For instance, it is understood that the Askey–Wilson polynomials are 
limits of Rahman’s family of biorthogonal rational functions [14, (3.1)]

Rn(1
2 (z + z−1); a, b, c, d, e|q) := 10W9

(
a2bcde ; q−n, qn−1abcd, az±, abce, abde, acde; q, q

)
, (44)
q
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which are balanced and very-well-poised and symmetric in b, c, d, e. It was shown in [13] that the symmetry 
group of transformations for Rahman’s biorthogonal rational functions (terminating balanced very-well-
poised 10W9s) is the Weyl group of the exceptional Lie group of the root system E6, namely W (E6), where 
|W (E6)| = 51840. If the limit of (44) is taken as e → 0, then one obtains the unnormalized Askey–Wilson 
polynomials

lim
e→0

Rn(1
2 (z + z−1); a, b, c, d, e|q) = 4φ3

(
q−n, qn−1abcd, az±

ab, ac, ad
; q, q

)
=

anpn(1
2 (z + z−1); a, b, c, d|q)
(ab, ac, ad; q)n

.

As stated previously, the symmetry group for the terminating series representations of the Askey–Wilson 
polynomials is the Weyl group of the root system (alternating group) A5, namely W (A5) which is isomorphic 
to the symmetric group S6, namely |W (A5)| = |S6| = 720 (again see [19]).

The broader perspective we seek is that of the particular elliptic hypergeometric functions which gen-
eralize Askey–Wilson polynomials. We will not go into the details regarding the definition of elliptic 
hypergeometric functions here, these can be found in many references including [15], [20] and see also Chap-
ter 4 by Rosengren in [5]. If one considers Spiridonov’s elliptic extension of Rahman’s family of biorthogonal 
rational functions [16]

Rn(z;B,C,D,E, F ; q, p) := 12V11

(
BC

q
; q−n,

qn−1BC3

DEF
,Bz±, D,E, F ; q, p

)
, (45)

and one makes the substitution (B, C, D, E, F ) = (a, abcde, abce, abde, acde), then we produce the following 
elliptic representation:

Rn(z; a, abcde, abce, abde, acde; q, p) = 12V11

(
a2bcde

q
; q−n, qn−1abcd, az±, abce, abde, acde; q, p

)
.

Taking the limit as p → 0 using [7, (11.2.22)]

lim
p→0 r+1Vr(a1; a6, . . . , ar+1; q, p) = r−1Wr−2(a1; a6, . . . , ar+1; q, q) , (46)

produces

lim
p→0

Rn(z; a, abcde, abce, abde, acde; q, p) = Rn(1
2 (z + z−1); a, b, c, d, e|q).

Hence, it is evident that Spiridonov’s elliptic extension of Rahman’s biorthogonal rational functions is an 
elliptic generalization of the Askey–Wilson polynomials. It was shown in [10] that the symmetry group for 
Spiridonov’s elliptic extension of Rahman’s biorthogonal rational functions Rn(z; a, abcde, abce, abde, acde;
q, p) is isomorphic to W (E6), just like in the non-elliptic case.

One obvious follow-up study would be the identification of the elliptic equivalence class sub-structure, 
similar to what is presented in the analysis above for terminating series representations of the Askey–Wilson 
polynomials. It has been pointed out to us by Ole Warnaar that the inversion transformation for elliptic 
hypergeometric series rEs for the case s = r − 1 completely holds. By combining the elliptic inversion 
transformation along with the well-studied two-term transformations which are known for the very-well-
poised 12V11, one could further investigate the division of the action of W (E6) into equivalence classes.
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