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1. Preliminaries

There have existed in the past some very important ¢g-Mellin-Barnes integrals. Some
important examples include those given by Askey—Wilson [4, (2.1)], Nassrallah-Rahman
[9, (6.3.9)] as well as those given in Askey—Roy [3, (2.8)] and in Gasper [8, (1.8)]. In
this paper we take advantage of the powerful methods following the pioneering work of
Bailey [5, Chapter 8], and his student Slater which were fully recapitulated by Gasper
& Rahman in [9, Chapter 4]. We are able to use well-known formulas for certain highly
symmetric basic hypergeometric functions to obtain new g-Mellin—Barnes integrals and
from them derive a new class of transformation and summation formulas.

We adopt the following set notations: Ny := {0}UN = {0,1,2, ...}, and we use the sets
Z, R, C which represent the integers, real numbers and complex numbers respectively,
C*:=C\ {0}, and CT := {2 € C* : |2| < 1}. We also adopt the following notation and
conventions. For any sequence (aj,...,a4) of length A € N, define the corresponding
finite multiset a := {a1,...,a4} (see [17, §1.2]) and for 1 < k < A define

ag:==a \{ar} ={a1,...,ap-1,ak41,...,04}. (1.1)
Furthermore, define the following multiset scalar product and sum notations, namely

ba=ab=b(a)=(a)b:={baj,bas,...,baa}, (1.2)
at+b=bt+a=(a)+b=b+(a):={a;+b,az+b,...,as+0b}, (1.3)

where b,ay,...,a4 € C.

Remark 1.1. Observe in the following discussion we will often be referring to a collection
of constants a, b, c,d, e, f. In such cases, which will be clear from context, then the con-
stant e should not be confused with Euler’s number e, the base of the natural logarithm,
i.e., loge = 1. Observe the different (roman) typography for Euler’s number.

We assume that the empty sum vanishes and the empty product is unity. We will also
adopt the following symmetric sum notation.

Definition 1.2. For some function f(ai,...,a,;b), where b is some multiset of parame-
ters. Then
ai;az,...,an

flay,aa,...,an;b) = f(a1,a2,...,a,;b) +idem(as;az,...,a,), (1.4)

where “idem(aq;aq,...,a,)” after an expression stands for the sum of the n — 1 ex-
pressions obtained from the preceding expression by interchanging a; with each ag,
k=23,...,n.
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Definition 1.3. We adopt the following conventions for succinctly writing elements of
sets. To indicate sequential positive and negative elements, we write

+a:= {a,—a}.
We also adopt an analogous notation
e:i:iO = {ew’e—io}.
In the same vein, consider the numbers f; € C with s € S C N, with S finite. Then, the
notation { fs} represents the set of all complex numbers f; such that s € S. Furthermore,
consider some p € S, then the notation {f,}s», represents the sequence of all complex

numbers fs such that s € S\{p}.

Consider g € Ct, n € Ny. Define the sets

Q ={¢":keNy, 0<k<n-—1}, (1.5)
Q=0 ={q¢ " : ke Ny}, (1.6)
T,:={¢":keZ}. (1.7)

In order to obtain our derived identities, we rely on properties of the g-shifted factorial
(a; q)n. We refer to (a; q),, as a g-shifted factorial (it is also referred to as a g-Pochhammer
symbol). For any n € Ny, a,b,q € C, the ¢-shifted factorial is defined as

(a;9)n == (1 —a)(1 —aq)--- (1 —ag"""). (1.8)
One may also define
(a;Q)oo = H(l 7aqn)7 (19)
n=0

where |g| < 1. Furthermore, one has the following identities

(0% @)oo = (£a, 2205 q)oc (1.10)
(@ ¢%) o0 = (£a;¢) 0. (1.11)

One also has
(7"a;q)00 = (¢7"05¢)n(a; q)oo- (1.12)

One also has the definition of the g-gamma function, namely [13, (1.9.1)]
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o (90
Ly(z) == T (1.13)

and also the gamma function T' : C \ =Ny — C defined in [15, (5.2.1)]. Note that [13,
p. 13]

lim I'y(z) =T(z). (1.14)

qg—1—

We will also use the following notational product conventions, ay € C, k € N, n €
No U {OO},

(ah...,ak;Q)n = (01;(1)n"‘(ak;Q)m (115)
Ty(ar,...,ax) :==T4(a1)---Tylar), (1.16)
I(ay,...,a;) :==T(a1) - -T(ak). (1.17)

The basic hypergeometric series, which we will often use, is defined for z € C, ¢ € CT,
s€Ng, reNgU{-1},b; ¢ Qq,7=1,...,s,as [13, (1.10.1)]

A1y ..y Qryd = (a/la"'7a/’r+1;q)k k (k) s=r k
r410s 3¢, 2 | = -1 2 z". 1.18
+1¢ ( b17"'7b8 1 ) /;) (Q7b17"'7b$;Q)k (( ) 1 ) ( )

For s > r, .4+1¢ is an entire function of z, for s = r then ,11¢5 is convergent for |z| < 1,
and for s < r the series is divergent unless it is terminating. Note that when we refer
to a basic hypergeometric function with arbitrary argument z, we simply mean that the
argument does not necessarily depend on the other parameters, namely the a;’s, b;’s
nor q. However, for the arbitrary argument z, it very-well may be that the domain of
the argument is restricted, such as for |z| < 1.

We will use the following notation ,,¢.", m € Z (originally due to van de Bult &
Rains [18, p. 4]), for basic hypergeometric series when some parameter entries are equal

to zero. Consider p € Ng. Then define

P

—p A1y yQry A
195 (0,2 | = pp10s | 01502, ar41,0,..,05, 2] (1.19)
bi,... b, Y
s U2y 000y
a a A1,02,y ..., Ar41
Tyooo 41
r-‘,—ld)f ’ o 54,2 ::T+1¢S+p b17627"'7b5703"';0;Q7Z ) (120)
bi,...,bs ~——
p

where by,...,bs ¢ Q, U{0}, and ,, ¢ = ,116s. The nonterminating basic hypergeo-
metric series .10y (a;b;q,2), a:={a1,...,a,41}, b:={b1,...,bs}, is well-defined for
s—r+m > 0. In particular ,,,¢}" is an entire function of z for s —r+4m > 0, convergent
for |z] < 1 for s —r +m = 0 and divergent if s —r +m < 0 unless it is terminating.
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Note that we will move interchangeably between the van de Bult & Rains notation and
the alternative notation with vanishing numerator and denominator parameters which
are used on the right-hand sides of (1.19) and (1.20).

The geometric series is given by [1]

> 1
n— 1.21
I (121)

provided |z| < 1. The g-binomial theorem is given by [13, (1.11.1)]

1¢o(a;q,z> _ (070 (1.22)

(#79)o0

provided |q|, |z] < 1 for convergence of the left-hand side nonterminating basic hyperge-
ometric series.

1.1. The theta function and the partial theta function
The theta function 9(z;q) (sometimes referred to as a modified theta function [9,

(11.2.1)]) is defined by Jacobi’s triple product identity and is given by [9, (1.6.1)] (see
also [14, (2.3)])

W50) = (5,0/25 Qo0 = —— 3 (—1)rg®)am, (1.23)

(45 9) o

n=—oo

where z # 0. Note that 9(¢™;q) = 0 if n € Z. We will adopt the product convention for
theta functions for ay € C for & € N, namely

Hax, ... ak; q) := V(ar; q) - - Hax; q)-
A particular ratio of theta function satisfies the following useful identity

(0,0/0: )0 _ Naia) _ (1.24)

(qa7 1/04 Q)oo ﬁ(qa; q)

where a # 0.

The partial theta function ©(z;q), described as such because it only involves the
partial sum contribution for n > 0 in (1.23) as opposed to summing over all integers as
in the theta function, is defined as follows with alternative representations.

Theorem 1.4. Let € CT, pe N, 2 € C, |z| < 1. Then

1
(45 @)oo

O(z;q) = (—1)g®an = L g1 (3(1&) (1.25)

(45 @)oo

n=0
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/
1) 1¢g<ql_p;ql/pv(_1)p_lz) (126)

(4;9)

(21 @)oo 001 (;;q,q> (1.27)
(qu)oo 0P1 (;;(LqZ) (1.28)
(ii\f’ :ti\/q_z;q,q> . (1.29)

|
IS
<
w

Proof. The representation (1.25) follows the definition of nonterminating basic hyper-
geometric series (1.18). The representation (1.26) follows from direct substitution using
(1.18) and (1.20). The representations (1.27), (1.28) follow from [13, (1.13.8-9)]. The rep-
resentation (1.29) follows from Andrews & Warnaar’s formula for a product of partial
theta functions [2, Theorem 1.1]

ab: +v/ab, +
@(a;q)@(b;q)zM \/7,q, : (1.30)

@0 * a,b, %
with the substitutions (a,b) — (z, —q) and the identity [15, (20.4.3)]

O(=¢;9) = (=4 —4; @)oo (1.31)

This completes the proof. 0O
1.2. Some theorems involving q-Mellin—-Barnes integrals

Now we present a result which allows one to evaluate integrals of products and ratios
of infinite g-shifted factorials in terms of sums of non-terminating basic hypergeometric
functions. The following result is a special case (¢t = 1) of the more general result which
appears in [6, Theorem 2.1]. Note that we adopt a representation for the contour integral
as in [9, (4.9.3)]. However, there are several other alternative integral representations
which can be used (see [9, §4.9]).

Theorem 1.5. Let ¢ € CT, m € Z, 0 € (0,0), a := {a1,...,a4}, b := {by,..., b},
c:={c1,...,cc},d:={dy,...,dp} be sets of non-zero complex numbers with cardinality
A,B,C,D € Ny (not all zero) respectively with |cx| < o, |di| < 1/0, for any a;,b;, cx, d; €
C* elements of a,b,c,d, and z := e'¥. Define the q-Mellin—Barnes integral

Gm = Gm(a,b,c,d;0,q) = (q;g (i) /H sy, (1.32)
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such that the integral exists. In the integrand, we have adopted the multiset scalar product
notation (1.2). Then

Gm(aabac,d;oa q) = G,m(b7a,d,c;0, q)7 (133)

if |ex|,|di] < min{l/o,0}. Furthermore, let dicy, ¢ Qq. If D > B, d;/dy ¢ Qq, 1 # U,
then

D m
Gm:Z (dka,b/dk;Q)oodk C—A ( dkc,qdk/b 'q,qm(qdk)DfB bl"'bB>7

Patp- ;
=1 (dkC7 d[k]/dk§ Q)oo BrevA+D-1 dra, qdk/d[k] di---dp

(1.34)

and/or if C > A, ci/ciy ¢ Qq, k # K, then

c _
(Ckbya/ck;Q)ooCkm D—B de,qck/a _ A0l aA
Gm = Ppic- cq,q " (qer) T —2 ),
; (cxd, i)/ cr; @)oo A+D7B+C-1 kb, qer/cii) (qex) c1-co

(1.35)

where the nonterminating basic hypergeometric series in (1.34) (resp. (1.35)) is entire
if D > B (resp. C > A), convergent for |¢"™by---bg| < |d1---dp| if D = B (resp.
lg~™a1 - aa| <l|e1---cc| if C = A), and divergent otherwise.

Proof. See proof of [6, Theorem 2.1]. O

One can convert the integral in the above theorem to a form which is more similar to
that which appears in Mellin—Barnes integrals by replacing the infinite g-shifted factorials
with g-gamma functions using (1.13).

Corollary 1.6. Let ¢ € C', m € Z, a := {a1,...,aa}, b = {b,...,bp}, ¢ =
{c1,...,¢cc}, d := {di,...,dp} be sets of non-zero complex numbers with cardinal-
ity A,B,C,D € Ngy (not all zero) respectively, Xa; := Zle a;, Yb; = Zle bj,

C D o : o —o
2cj = Zj:l Cj, Zdj = Zj:l dj; and |Q| € (0,00), ‘qu‘7‘qdl| < mln{|Q| 7|Q| }7
d; + ¢ ¢ —No, for any a;,bj, c,d; € C* elements of a,b, c,d. Define

I, :=1I(a,b,c,d;0;q)

~Tosq
Fyd+o—iz,c—0+1iT) ;. e _
= ’ 1 — q)lr= o) C=DFB=A) 43 (1.36
/ Fq(b—|—a—im,a—a+im)q (1=q) v (136)

s
log q

In the integrand we have adopted the multiset scalar sum notation (1.3). Then if D > B,
dy —dy ¢ —Ng, L £, one has
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j— 2m(1 —q)q™ Z q(di + ¢, dyy — di )qmdk(l _ g)(C=D+B=2)
m —loggq F dk+a,b—dk)

d 1+di—b
qk+c,q+k

. +(D—B)(1+dy)+3b; —3d;
x B+C¢A+D 1 (qkora q1+dk—d[k] 1 g, 4™ ( )(A4di)+Eb; ]) . (1.37)
)

and if C > A, ¢, — ey ¢ —Ng, k # k', one has

—cx(C—D+B—A)

2n(1 — (cx +d, cpy e
p,, = 200 Zr 1) sy g

—logq (ck +b,a —cx)
gertd, gtter—a —mt(C—A)(14cr)+5a; —Se;
X asp - 1<qck+b,q1+%cm sq,q MO A e TRa =Ne ) (].38)
Proof. Using (1.34), (1.35), we respectively start along the lines of Askey & Roy [3,
p. 368] and use the map (a,b,c,d,o,e™) — (¢2,4P,¢% ¢%,q%,¢"). This completes the
proof. O

Note that

. —logq
lim
g—1— 1-— q

=1. (1.39)

So certainly in the case where all infinite g-shifted factorials are composed of parameters
which do not have leading negative factors, we can convert the integral in Theorem 1.9
to one which resembles a Mellin—Barnes integral in the ¢ — 17 limit (1.14). It is this
reason that we refer to these integrals as g-Mellin—Barnes integrals. It is also clear that
there are situations where the ¢ — 1~ limit either vanishes or is perhaps not well-defined.
This is a technicality that may or may not be easily addressed.

Now consider the situation where D = B and C' = A. This produces the following
result.

Corollary 1.7. Let ¢ € C', m € Z, a := {a1,...,aa}, b := {b,...,bg}, ¢ =

{c1,...,¢ca}, d := {d1,...,dp} be sets of non-zero complex numbers with cardinal-
ity A,B,C,D € Ny (not all zero) respectively, Ya; = Z;‘:l a;, ¥b; = Zle bj,

A B . _
ECj = Zj:lcj; Ed] = Zj:ldjy and |q‘a € (ano)f ‘q0k|7|qdl‘ < mln{|‘]|aa‘q| U}:

di + cx ¢ —No, for any a;,b;,cp, dy € C* elements of a,b,c,d. Then

_ T
log q

/ Fq(d+a—?x,c—a+z:x)qimmdx _ 27 (1 —q)qm"A.
Iy(b+o—iz,a—o+ix) —logq

(1.40)

™
logq

In the integrand we have adopted the multiset scalar sum notation (1.3). If dj—dy ¢ —No,
1 #1 one has
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B . )
A Ly (di, + ¢, dpy — di)g™% ’ gte gltdi=b T
- T (dr+ab—dy)  ATE0A4B-1 jarva grrdi—dp @ ,
(1.41)
and if cp — ci € —No, k # k' one has
A
ck +d, ¢y — cr)g ™k gertd glter—a I
A= B : o iSase,
Zl Ck + b a—c¢ ) A+B¢A+B 1 qck+b7 q1+ck_c[k] 54,4 s
(1.42)

where |0 =24 | < 1 and |g~™ % 5% | < 1 respectively.
We now take the limit as ¢ — 1~ and obtain the following result.

Corollary 1.8. Let a := {ai,...,aa}, b := {b1,...,bg}, ¢ = {c1,...,ca}, d =

{di,...,ds}, A,B € Ny (not both zero) respectively, for any a;,bj,ck,di € C* ele-

ments of a,b,c,d, Xa; := Zle a;, Xb; := Zle bj, Xej = Z;‘:l ¢, Xdj = Zle d;,
€ (0,00). Define

1 [ T(d+o—ir)l(c—o+iz)
B:=B(a,b,c,d) := — dx. 1.43
(a,b,c,d) 27T/I’(b+a—ix)1’(a—a+ix) * (1.43)
Then
B
I(dy + ¢, dpy — d) <dk+c 1+d,—b >
B — Faip. ’ 1 1.44
’; de—i-ab dk) A+BEATB-1 dk+a,1+dk—d[k] ( )
A
ek +d, e — cr) (ck—i—d,l—i—ck—a )
- Faip. 1), (145
kz::l I(cx + b, a—c) ATBTATE-L ck +b, 1+ cp — ¢y ( )

where R(Xa; + 3b; — 3c¢; —Xd; — 1) > 0, so that the generalized hypergeometric series
are convergent.

Proof. Starting with Corollary 1.7 and taking the limit ¢ — 1~ using (1.39) completes
the proof. O

If one can write a basic hypergeometric function with a specific argument as a sym-
metric sum of two nonterminating basic hypergeometric functions with argument ¢, then
there is the following useful consequence of Theorem 1.5.

Theorem 1.9. Let ¢ € Ct, a := {ay,...,a4}, c :={c1,...,cc}, be multisets of non-zero
complex numbers with cardinality A, C € Ny (not both zero) respectively, d := {dy,d2},
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crd; ¢ Qq, 0 € (0,00), di,dy € C*, such that |ci| < o, |di],|d2| < 1/0, for any ¢ € c.
Define

dy;do

(dla; q)oo C—A—2 ( dic >
H(a,c,d;q) = 7L g, 1.46
(@ ¢ dia) H (%, diesq) cPart "\ dya, qdr fdy P (149
1 oo

_ (di1a; ) oo ¢C—A—2< dic 'qq)
(g_fadlc;q) A \diaqdi/dy"

(d2a;q) oo C—A—2 < doc >
t+——c? 0,9 ), 1.47
(%adQCQQ) craAr doa, qdz/dy ( )

where di/dy ¢ Qq, L # U, and if C > A+ 2,

C
(a C, d f, = Z 19 fckdl’ dez’q)(a/ckv )

1 de,C /Ck, )oo

C—A-2

crd, gep/a c ap---a
><A+2¢01<k qer/a - qlger) 10 A)) (1.48)

qer/epy T didaer -

where ci /e & Qq, k # K, and sa12¢c_1 is convergent for C = A+ 2 if |qar---aa| <
|didacy -+ - col, and is an entire function if C > A+ 2. Then adopting the multiset scalar
product notation (1.2) (from now on when we adopt these notations their meaning should
be clear) one has,

m q xf L z. dy .
/((fdh fdo)2, (; a)Z; ) - QWﬁ(fvde’Q)H(a&,d;q) (1.49)

q)<>o (¢ @)oo

27
- (q;q)oo‘](a7cad»f7q)v (CZA+2), (150)

where z = ¥, and none of the arguments of the modified theta functions are equal to
some ¢, m € 7.

Proof. See proof of [6, Theorem 2.4]. O

Theorem 1.10. Let g € CT, a = {ay,...,aa}, c := {c1,...,cc}, be multisets of non-zero
complex numbers with cardinality A,C € Ny (not both zero) respectively, d := {d1,d2},
cx +di ¢ —No, |g|7 € (0,00), ", q* € C*, such that |¢**| < |q|”, [¢™],1¢%| < |g|77,
for any c, € c, and fractional powers take their principal values. Then
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/ (1—q)€~A=2(2=T (d+0—iz,c—0o+ir) d
Ly((di+f,doa+1—=f)+o—iz,(f—d2, 1—di— f,a) —o+ix)

I
log q

_ 2m(1—q)
—log(q)Tq(f, 1= f,di—da+f,do—d1+1—f)
dy;do

_a_oIylc+dy,do—dy) A gcth
_ Ndi(c—A-2)1q 1,2 — 01 C—A-2 .
- (1= T,(a+d;) cPati (qa”%q”dl‘dz’q’q (1-51)

_ 27r(1—q) ¢ (l—q)fck(cfAfﬁrq(Ck-i-d,C[k]—Ck)
- lqu —1 Fq(a_clw 1_Ck_d1_f7 1+Ck+d2_f7 Ck+d1+f7 _ck:_d2+f)

k

crtd glmater 1+(C—A—2)(1 Sa;—Se;—dy—d
><A+2¢C1( glter—en g, gt (O ATD Uer) ey —Ee; —di 2)- (1.52)

Proof. Using (1.49), (1.50), we respectively start along the lines of Askey & Roy [3,
p. 368] and use the map (a,c,d,o,e) — (¢2,¢% q%,¢°,¢"®) and the definition of the
g-gamma function (1.13). This completes the proof. O

By assuming that C' = A+ 2, then the problematic (1 —¢)¢~4~2 terms become unity.
This produces the following result.

Theorem 1.11. Let ¢ € C, a := {ay,...,a4}, c := {c1,...,cas2}, be sets of non-zero
complex numbers with cardinality A € N, d := {d1,da}, cx + d; ¢ —No, |q|? € (0,00),
di,dy € C*, such that |¢°*| < |q|, |q™], |¢?2| < |q|=%, for any ¢ € c, and fractional
powers take their principal values. Then

T loggq

/ I'y(d+o—iz,c—o+ix) e
Fq((d1+f, d2+1—f)+0—i377(f—dg,l—dl—f,a)—0+i$)
loggq
_ 2r(1—q)

—log(q)ly(f, 1—f,dy—do+f,do—d1+1—f)

dy;do
Iy(ctdy,dy—dy) ety
H Fq(a+d1) A+2¢A+1 qa+d1,q1+d17d2;q’q (153)

_ 27 (1—q) 20: Fq(ck-i-d,C[k]—Ck)

—logg = Tyla—cp 1—cp—di—f,1+cx+do—f,cx+di+f, —cr—da+ f)

qck+d7 ql_a_‘—mC 1+Ya; —Yc;—dy—ds
Xaradari( " ipeeey 00T 0T : (1.54)

We now take the limit as ¢ — 17 to obtain the following result.
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Theorem 1.12. Let a := {a1,...,a4}, ¢ :={c1,...,cat2}, be multisets of non-zero com-
plex numbers with cardinality A € No, d := {dy,da}, cx +d; ¢ —Ng, 0 € (0,00), d1,ds €
C*, such that |cx| < o, |di|, |d2| < 1/o, for any c; € ¢, R(Xa; —Xc; +1—dy —d2) > 0.
Then

7 I'(d+o—iz,c—o+ix)dx
P((di+f,do+1=f)+o—iz,(f—d2,1—-d1— f,a)—o+ix)
dy;da
_ 2w F(C+d1,d2*d1)
- D(fi1=f,di—do+ f,do—do+1~f) T(a+di)
c+dy
F ;1 1.55
X A42 A+1<a+d1,1—|—d1—d2’ ) ( )
_ 271_20: F(Ck-f—d,C[k]—Ck)
i Dla—cy, l—cp—di— f, 1+ cx+do— f,cp+di+ f, —c—da+ f)

(1.56)

cx+d,1—a+c
X A+2FA+1< ¥ k'1> .

1—|—Ck—C[k] ’

Proof. Start with Theorem 1.11 and letting ¢ — 1~ produces (1.55), (1.56). The con-
dition for convergence of generalized hypergeometric functions with argument unity is
given by [15, (16.2.2)]. This completes the proof. O

Remark 1.13. As just indicated, it is often feasible to convert integrals of products of
infinite g-shifted factorials to integrals of products of g-gamma functions. This makes a
direct g-analogue with Mellin-Barnes integrals for the integrals in question. In some cases
we have undertaken this recasting for the integrals which appear below. For instance in
Corollary 4.2 we recast the integral of a well-poised 3¢ in terms of an integral of products
of terms given by I'; and I'j=. In Theorem 6.1, we are able to write the integral of a very-
well poised W7 as an integral of products of terms given by I';, and in this case a clear
q — 17 limit exists and is computed. Other cases such as Theorems 5.1, 8.1, 8.3 and 9.4
can also be written as products of terms involving I'; and I'j2, and for Theorem 9.1 it
can be recast similarly as above but also including terms of the form I'js. However, we
will leave these recastings to the reader.

2. A g-Mellin—Barnes integral for a ratio of theta functions

If one would like to integrate a ratio of an arbitrary product of theta functions as
a g-Mellin—Barnes integral then Theorem 1.5 provides a powerful tool to evaluate this
integral which provides insight into the connection between theta functions and partial
theta functions. This will be seen in the following theorem.
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Theorem 2.1. Let ¢ € Ct, 0 € (0,00), b € Cc*B, d e C*P with D > B such that
lql/o < |di| < 1/o for k=1,...,D, and d;/di, ¢ T4 for any d;,dy € d with | # k. Then

K

ﬂ(b%ﬂl) i _ 2mo™ q q
[Tz = G Cn (o g ). 2.

—T

where z = e, If D > B then

D
d(b/dp: )d™ - Cbyeeeb
> (b/dyiq)di’ .o B(i;q,q (qdp) P8 12 B>, (2.2)

o _ 1
" (@ 9)e = I(dpy/disg) dy---dp

which is an entire function and for D = B, there is a specialized sum using the geometric
series (1.21), provided |by ---bg| < |dy - - dp]

1 ED: (b/dy; g)dy" 1

- : 2.3
(45 @)oo =1 ﬁ(d[k]/dk, q) 1— gmt bl Zg (2.3)

Moreover, for D > B, one also has

ER Clet ) Z B{b/di; g dm@ 0" (ad) b s poB g
m (q,q)oo 19 /dk, dy---dp ) . .

Proof. Start with the integral on the left-hand side of (2.1) and replace the theta function
with its definition (1.23) in terms of infinite g-shifted factorials. Then we can easily
identify the multisets a = ¢/b, ¢ = ¢/d. Direct substitution of these multisets using
Theorem 1.5 provides (2.1). The utilization of (1.34) with these multisets provides (2.2).
Due to the symmetric nature of the arguments (1.35) yields the same expression in
terms of nonterminating basic hypergeometric functions. The function which appears in
the representation of the g-Mellin—Barnes integral of a ratio of theta functions

gp(2:9) = E‘Be;q,z) = i ((fl)"q(g))DfB o
n=0

is connected to the partial theta function (see §1.1). The necessary relation is given by

9p(2:0) = (P P;¢P 7)o O((—1)P B 12 P 5). (2.5)

Inserting this relation in (2.2) yields (2.4). If D = B then the nonterminating basic
hypergeometric series can be evaluated using the geometric series (1.21). This provides
the form of (2.3) which completes the proof. O
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3. Symmetric representation of the Askey—Wilson moments

Define the Askey—Wilson weight function

( . | )._ eiQiG;q)oo B (ieiie’iq%eiia;q)m (3 1)
e Py (aei?; q) ’ '

where a := {a,b,c,d}, x = cosf € [-1,1], a,b,c,d ¢ Q, and we have used the identity
(1.10). Then, the moments of the Askey—Wilson polynomials are given by

(q7 a‘ba ey Cd7 q)oo
4 (abed; Q) oo

fn = / w(z; alq) cos™ 6 d6, (3.2)

—T

where {ab,...,cd} := {ab,ac,ad, be, bd, cd}, and p,, has been normalized so that pg =1
(see [12, p. 170]).

Due to the z = e dependence of the second equality of the Askey-Wilson weight
function (3.1) and a judicious use of the binomial theorem, the moments of the Askey—
Wilson polynomials (3.2) are given by a g-Mellin—Barnes integral. Using the method of
integral representations for nonterminating basic hypergeometric functions (see Theo-
rem 1.5) we are able to obtain a form symmetric in the parameters a, b, ¢, d for the
moments of the Askey—Wilson polynomials.

Theorem 3.1. Let n € Ny, ¢ € Ct, a,b,¢,d € C*, a,b,c,d ¢ Qq. Then, the moments of
the Askey—Wilson polynomials can be given by

_ (ab,...,cd;q)oo " /n
fin = 27+ (abed; q) Z k

k=0
a;b,c,d | ‘
(%EQ)ooa o2k ( 2 q1+n_2k|>
X & Ws| a*; ab, ac, ad; ¢, ———— |, 3.3
H (ab, ac, ad, g, °, %; )oo 67s " Gbed (3:3)

where a/b,a/c,a/d,b/c,b/d,c/d ¢ T,.

Proof. Start with the left-hand side of (3.3) and take account of (3.2). Applying the
binomial theorem [15, (1.2.2)] to the cos™ 6 produces

n

ng __ 1 n 10(n—2k)
cos™ 6 = on Z <k>e . (3.4)

k=0

Applying Theorem 1.5 with m = n—2k € Ny with cardinalities (A4, B, C, D) = (4,4,4,4),
given by
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a=b:={+l,+/q},c=d:={a,b,c,d}, (3.5)

produces the right-hand side of (3.3) by substituting the variables in (1.32). This com-
pletes the proof. O

Remark 3.2. In Kim & Stanton (2014) [12, Theorem 2.10], a representation for the Askey—
Wilson moments which are symmetric in the parameters a,b, ¢, d is given. Let t € C.
Then

n

g (ta,tb, te, td; q)y, t2 . tttt
n = E —q) ———————sWr | —; — Ty == bed
K k:o( %) (t2, abed; @)k A “ovyea? ¢‘abe
n+1 n—2s—k
n n k+p| [n—2s5—p stpm) (" s—m
2 (()-(1) x [ [ e e oo
s=0 p=0 q q

where the g-binomial coefficient [13, (1.9.4)] is defined by

nl o (@Dn
[k]q "G ORG Dk (3.7)

Tt is interesting to note that both (3.6) and (3.3) are symmetric in the parameters a, b,
¢, d. Define 4 := {1, 2, 3,4}. The representation (3.6) is a finite sum over a lattice given
by

{0,...,n} x{0,...,n+1} x{0,...,n— 25 — k}, (3.8)

for each terminating very-well-poised gW7. On the other hand (3.3) is a finite sum over

a rectangular lattice given by {0,...,n} x 4 for each nonterminating very-well-poised
6Ws.

Remark 3.3. It was pointed out by one of the referees that the original proof of the
Askey-Wilson integral (see the Askey—Wilson Memoirs of the AMS article [4, (2.1)])

+2i60

I T (e ;q)oo 27r(ab6d; Q)oo
a6 = _ a0 — 3.9
O/w z;alq) /(ae:tw;q)oo (g, ab,...,cd;q)s’ 39

0

was accomplished by summing 4 very-well poised ¢W5’s and using an elliptic function
identity. Furthermore, this should correspond to Theorem 3.1 for the constant n = 0. The
correspondence of our formula for the Askey—Wilson moments (Theorem 3.1) with their
evaluation of the Askey—Wilson integral (for n = 0 as a symmetric sum of four 4W5’s) is
made clear by the identity [6, Corollary 2.12] (where the elliptic function identity that
Askey & Wilson refer to can be found), namely
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a;b,c,d
(1) oWs(a abac, ad: g, 5i5) _ 2abeds q)oe 510
(ab ac, ad,a,fl,g,q)Oo _(abw”de;q)oo’ .

where |g| < |a1234| < 1. As was indicated on [4, p. 11], the restriction |q| < |abed| can be
removed by analytic continuation. In fact, one can see that the analytic continuation of
the integral follows directly from (3.2) since the only restriction on the convergence of
the integral is that |g|, |al, |b], |¢], |d| < 1.

4. Three, five and six-term transformations for a nonterminating well-poised 3¢

Let ¢,z € CT, 7 € (0,00), a,b,c,h € C*, %292 ¢ O, h,h% ¢ T,. In [6, Corollary
2.15], we presented an integral for a nontermlnatmg well- po15ed 3¢9, namely

" a,b,c L) = (¢, a ,%W)
392 qa ﬂa(Ia _27T19( hqa )(ql:l7 :’q)

bez?

3
/ / / / bez bez) 2
X/ b(‘Z h bcz w’ qh bcz7 h bg 4 abz GZZ’ (q\/)E2 )%’q)‘x’dn (4 1)
— \/ bcz’ \/ Zgz 57 :l:V bCZ,:l:V quZ,q\/ %)%761)00

where w = e and the maximum modulus of the denominator factors in the integrand

is less than unity. This integral (4.1) followed from the following transformation of a
nonterminating well-poised 3¢5 with arbitrary argument z € CT, in terms of a sum of
two nonterminating 5¢4(q, ¢) basic hypergeometric series, presented in cf. [9, (III.35)]

. (%2 @)oo +\/a, +/qa, ﬂ.
54,2 = (bﬂ ) 5¢4 ga ga bez q a 54,4
qa ?1/00 b ¢ q ) bez

bez bez
(a,bz,cz, 125 q) T 222 2
+ b )°° spa| VTV gg (4.2)

qa qa qa 2.2,2 )
(5 L2 i) bz, cz, bgz,—chaz

Remark 4.1. In order to simplify the constraints for the nonterminating infinite g-shifted
factorials, modified theta functions and nonterminating basic hypergeometric series ex-
pressions which we will present below, we will avoid adding the constraints which must
occur in order to prevent vanishing denominator factors which are not defined. For ex-
ample, in (4.1) one must require the constraints

qa ﬂgggq’ h,hﬂ¢“fq7

b’ ¢ bez
and in (4.2) one must require the constraints
qa qa bez b%c? bcz
z,bz,cz, , — g0 — ¢,
b e ¢ ¢a ¢ T q T
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Since it is obvious and sometimes tedious to know for which values this happens, we will
avoid inserting such constraints in the results below.

Corollary 4.2. Let g € CT, a,b,c,z € C*, |¢*| < 1. Then

q° 2m(—q, 43 @)oo (1—q)P TS
" L,(f,1-f,1+f+a—b—c—z,1+b+c+2z—f—1—a,1+a—b,1+a—c)

I'y(a,14+a—b—c)

a b btctz—27—3
q“,q . —log(q)(1+q 2
3¢>2< 14,4 ) (@){1+9)

B 2ix ctz c+z - a—b—c—z -
y / <1+q> o ((trgtz bbetztly iy )0 (4=boe=2 4 7 —ix)
1_q T ((b+c~§z7a7f,f+ afbgcfz)+7_77;x’ 1+f+ afbgcfz +Z.IE77')

[g(bkebe=t 14 r—ig 14 98220=C g —7)

Fq((l—er b+c-&2-z—a’ 1+ a-&-c;—z—b’ 1+ a+b-5z—c’ 3(b+2c+z) _ % 71) +’i£€—7‘)

X

dz. (4.3)

Proof. Start with (4.1) let (a,b,c, 2) — (¢% ¢°,¢%,¢%), and use the definition of the ¢-
gamma function (1.13), and also (1.11) to convert the (£a;¢)o terms. This completes
the proof. O

One can now use Theorem 1.9 and (4.1) to derive a six-term representation of a
nonterminating very-well-poised 3¢9 with arbitrary argument.

Theorem 4.3. Let ¢,z € CT, a,b,c,h € C*, and we assume there are no vanishing de-
nominator factors (see Remark 4.1), e.g., qa/b,qa/c ¢ Qq, and h,ha/(bcz) ¢ Y. Then

-1 pqa. b2 q g qa a’a

?9(]7/2? ahEaQ)(aabvc7 qCQ; 7‘1)00 ¢ Ea;vE7Z7 2c2,
qa . \(ga ga b2c2 . 504 V@%a 2/ D4

ﬁ(hvhbczaqu,T; q2aaZaQ)oo + = ’iqb\c/_

(a, %25 q)s0

J’» a a a
20(h, hi&Zz; ) (%, 25 @)oo

+v/a >
§ I(hy/a, RS q) (Y2, L8, bz g) o ) Vva, Lo, & b e
= box 504 be 14,4
(\/a? ql\)é_v ;\/57(1)00 _Q7:|:\/ayﬁ
Vaa Vaa /qa  bez . b C  bez 5
ﬁ(h\/qayhbczvquvTa\/q37aaQ)oo p \/ a,%7\\//_’%7\b/q_a’ btiza
- = box 5P4 3 . 34,4
(an, \{;i_a bqa;Q)OO 7q7:tq27\/§%
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Proof. In the integrand of (4.1), the multisets of parameters {a, ¢, d} with cardinalities
(A,C, D) = (3,5,2) are given by

3033
a:=1qqy/ a—bz,q %, e’z , €= :I:\/bc + qbcz,qH% , (4.5)
c b qa be
a bcz
d:= — = 7. 4.6
{\/ bcz’\/ q2a} (4.6)

Now we use (1.50) with the multisets of parameters given in (4.5), (4.6) using (1.49).
This completes the proof. 0O

By making a judicious choice for h = ¢"z, then since ¥(¢";q) = 0 for all n € Z, the
six-term transformation reduces to a five-term transformation.

Theorem 4.4. Let ¢,z € Ct, a,b,c € C*, and we assume there are no vanishing denomi-
nator factors (see Remark j.1). Then

a,b,c (a5 9) oo
3¢2< a a§q72> = qa a
&% 20(2; ) (%, 2, %5 )00
+/a .
ﬂ(\/az;q)(Tf,q\f %%‘I)oo \/&%7%7;\7&7%2?
X Vo Do 504 L /o be 14,9
—q, \/67%
be cz c
ﬂ(\/@z;qx%,ﬁﬁf i) (a2, e e e
_ 504 3 be 54,4
(\/qa7 ) _Qaiq27\/§%

(4.7)

Proof. Choose h = ¢"z in Theorem 4.3. Then since ¥(q";q) = 0 for all n € Z, the six-
sformation reduces to a five-term transformation. Then replacing the infinite g-shifted
factorials with arguments involving ¢™ and ¢~"™ using (1.9), (1.12), the factors involving
n all cancel, which completes the proof. O

Similarly, if one chooses a h = q";’—z then the six-term transformation reduces to a
five-formation.

Theorem 4.5. Let ¢,z € CT, a,b,c € C*, and we assume there are no vanishing denomi-
nator factors (see Remark j.1). Then

¢ <a b C ) (a7 Zzy )OO
3P2 34,2 | =
2, g 200, 523 0) (%, 5 ).,
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ZI:\/E 2
1 . ava . b c bez Va
% H ﬁ(q ca’\/az’q)( e ’q)oo 56 \/a’\/ﬁ’\/a’q\/&’qbcz

4 b 14,4
(\/_7 be 7Q) 7qai\/6a7%
b 1 \/(171 V49 bez . b 5
7‘9(\/571 \/quzaQ)( c a\/;siaaq)oo \/qa,\/\/aa7\/\/§; \b/cq%7 bzza~qq
5¥4 3 ab I )
(vaa, ¥, b= ) —q,+q%, Y=

(4.8)

Proof. Choose h = q"% in Theorem 4.3. Then since ¥(¢™; ¢) = 0 for all n € Z, the six-
term transformation reduces to a five-term transformation. Then replacing the infinite
g-shifted factorials with arguments involving ¢™ and ¢~™ using (1.9), (1.12), the factors
involving n all cancel, which completes the proof. O

5. Three, five and six-term transformations for nonterminating very-well-poised s W

In this section we present a g-Mellin—Barnes integral for a nonterminating very-well-
poised 5Wj.

Theorem 5.1. Let ¢,z € Ct, 7 € (0,00), a,b,c,h € C*, hy/ = & Y, and we assume
there are no vanishing denominator factors (see Remark 4.1) and the mazimum modulus
of the denominator factors in the integrand is less than unity. Then

2.2

q,qa, %, C2 5 g) o
5W4(a b G q,z ) ( qa be q q(; bz)cz 3
27(_19(}" hb(-zvq)(Ta ¢ a 7Q)oo

3
[ bez / qa /qa [bez /qacz qabz VA(bez)2 \ .
qa’h bcz w’ h bcz’h qa? \/_ )T7q)°°

X / dn, (5.1)

g v%a\/% = ( (£Vbez, £v/qbez, /%‘ ) oo

where w = e,

Proof. The integral for a nonterminating very-well-poised 5W, with arbitrary argument
z (5.1) follows from the following transformation of a very-well-poised 5W, in terms of
a sum of two nonterminating balanced 5¢4(q, ¢) basic hypergeometric series [9, (3.4.4)]

(€2 gbez; g)oe <i\/q_a iqf, ga )
504 ;

sWa(a;b,c;q,2) =

b2(’222 bez ga gqa 2q ' )
( a ’q_a’ )oo b c’qb ’bcz
bez bez
qga.
(qaﬂb'vaZyEaQ)oo :I: qa?:l:\/_7 52
+(ﬂ a , 49 ) 5¢4 b2c222 bcz’q’q ’ ( : )
b ¢ abcz7q00 bZ,CZ ~a O a

Now apply Theorem 1.9 with cardinalities (A4, C, D) = (3,5, 2), given by
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[qabz acz b3c3z3 az
a:= a , 4 , 4 , € := < +Vbcz,£4/qbcz, gaz ,
c b a be
qa bez
d:= — — 5.4
() »

which generates the integral in (5.1) using (1.49). Clearly h, hiZ- ¢ €, since then one
would have vanishing denominator factors which are not defined. Similarly one must
avoid vanishing denominator factors for other infinite g-shifted factorials. Furthermore,
the denominator factors in the integrand must have maximum modulus less than unity
so that the integral converges. This completes the proof. O

Now we apply (1.50) using the parameters a, ¢, d defined in (5.3), (5.4). Since C' = 5,
we generate a six-term transformation for the general nonterminating very-well-poised
5Wy. This is given in the following theorem.

Theorem 5.2. Let ¢,z € Ct, a,b,c,h € C*, w = €™, and we assume there are no
vanishing denominator factors (see Remark J.1). Then, one has the following siz-term
transformation for a nonterminating very-well-poised s Wy with argument z:

2
(qa, LE2 90,y

ﬁ(h haa . )(b202 22 qa qa )

sWa(a;b,¢;q,2) =

b(‘z7 a b’ ec 4
qb gc bez V/9a
X(ﬁ(h,/qa,h\l{f’q)(\/‘]_ﬂ7 \/q_a bCZ\/— q 4 \/QCMﬁ) V/aa’ /ga’ bez ‘a4
b s 4,
(‘Li\/@ v 4a, g7 b227Q)00 _Q7:|:\/av \/jac

ﬁ(_h\/qa,_h\b/faQ)( ﬂa_\/cq_aa_bcz\/g;q)oo
bez
(717:t\/a77\/q ,7\{;?137\/@7(])
\/— \fb _\[C —bcz —+\/40

' b
X504 \}/lf “ g,
q,i\f
(hq\/_ hbcz7Q)(\/E7 \/6_7 f;fv q\/_ \/— \q/c_ Z:;f, qb\cc.q .
(~L£75.0Va, 3¢, M2 ) —q,%q%, 2
d(—hav/a, —hiLZ;q )(n)ﬁ, 7“,477
( 1, i 1 Q\/> 7 bcz )
b bez qva
_Q\/aa_q ’__’__’_bcz
X504 fi e e 14,4
—q, qza_%
a 222 g9 9 q_ qa
19(%7}%_0"1)( ) 7ba 7q)oo bl ¢’ ) b2¢22 55
L e R 501 L1y %qu,q . (5.5)
Y be? qa 19)oo o
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One can force the last term to vanish by setting for n € Z, h = ¢"z"! or h = ¢"~* %,
providing a naturally symmetric five-term transformation for a nonterminating very-

well-poised 5 W, with argument z.

Theorem 5.3. Let n € Z, ¢,z € CT, a,b,c € C*, w = e, and we assume there are no
vanishing denominator factors (see Remark 4.1). Then, one has the following five-term
transformations for a nonterminating very-well-poised s Wy with argument z:

b2c22 qa
qa/) 9 7q
sWa(a;b,¢;q,2) = 99, g0 b3 Doo

20(qnz, g L q) (—q, BEE 4 98 g)

n+t a a qc bez V494
X( (q n+22\[ q 2\/_ )(E ﬂ,bcz\/g;q)oo e V/qa, \/q_a Jaa \aa: bez
bez

— e 304
(:l:\/_ ) V44, \{)(,_’ qa;Q)OO _qa:l:\/a7 \GE
ntd
I(—q i zv/a, TU Y ) (T S pez [T g)
(i\/@*vq 77\{)?3 \b/cqia’q)

VI e s
—V/qa, ' Jaa o ez
X504

4,9
q,:i:\/_ fbc

I(—g"M 2@, —q" Y2 q)(= @—@,—W-q)w
(iﬁ7_Q\/a7_b ) bcz

_q\/_ \fv fa_f%v_bcz .
X504 gt _q_bc

(n+1z\[q bc’q)(\/_ Va bez. ( qb  gc bez gva

e vaid »Var Va' Va» bez

s Ve 30,4 (5.6)
( qu\/_a\lia[z%a ) _qaiq a?T

b2c2 22

(qa, = 125 @)oo

2'(9((] 1bac7 qz 7q)( q, b252Z27 qba7 qca’q)

qa’ bez
4

- " 104
(i\/@ an, \2?3 \l;qjaq) 7Q7:|:\/aa \/\350
nfl _ _
Jﬁ(*qn*é%, —=14)( VI8 VI bez /T q) o
Vaa  —bez
(£y/7.—/7a bcq,\/q—a7Q)
—/ab —\ac —bez —/qa
—Vaa, a a a’ cz
X504 Iif \/—Zc " g
—q,

X(ﬁ(qn—é%,qﬁz L) (LT T e T \/q—a’%’ s bez /a@
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,19( n _be " .q)(*bx/a Va _ bez )oo

qf’_\/az’ T e v T f7q

( ﬁaiq\/aaibca 13557(])

b b
_Q\/Ea_j_v_Ta_%v_qb\c/j'

X s Yy
504 it _Q_jf
nbc ¢" ! Va Va bez gqc bez gVa
9(e" 75 fz’q)( e Ve Do ava, ViV e (5.7)
( B \/E a bez . ) 5¥V4 g+ 2 LBC y 4,4 . .
ﬁ,q ) , q,Tq ’ Va
n—1 bc

Proof. Start by inserting h € {¢"z,¢" " 2} respectively in Theorem 5.2. This forces the
last term to vanish producing a five-term transformation for a nonterminating very-well-
poised 5 W, with arbitrary argument z. Note that we have used the identity (—1;¢)co =

2(—¢; ¢)o- This completes the proof. O

1 b 1 b .
Remark 5.4. Note that one can also choose h € +¢" iﬁ, %, NGE %}, in Theorem 5.2
with n € Z and this will also produce four-term transformation formulas for nonterminat-
ing very-well-poised 5W,. However, we leave the representation of these transformation

formulas to the reader.

6. Three, four and five-term transformations for the nonterminating very-well-poised
sWr

By starting with Bailey’s transformation of a sum of two nonterminating balanced
4¢3 basic hypergeometric functions expressed as a very-well-poised W7 we derive an
integral representation for the nonterminating very-well-poised gW.

Theorem 6.1. Let g € CT, a,b,c,d,e, f,h € C*, o € (0,00), such that |q?a®| < |bedef|,

h def ¢ Y,. Then, one has the following integral representation for a nonterminating
very- well pozsed sWr:

. . q2a2 (Q;qaa?,?agiaz;>g;,d€f§ )
8W7 a7b7cad767f7Q7 bcdef def . ga ga qa ga ga
27”9(]7‘ het qa ’ )(f7?775?7T7Q>00

T def def a)2 (U«)2 Z.
/((tha %\/ h\/ qaah\/de ’bf/ﬁ’c(\l/%)a"q)oo
X
-7 (( dqe \/ def % \/ qel?f ’\/ dfe de ’b(cqaiif>§;q)oo

where z = e and the mazimum modulus of the denominator factors in the integrand
is less than unity and we assume there are no vanishing denominator factors (see Re-
mark 4.1).
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Proof. We start with Bailey’s transformation of a nonterminating very-well-poised sW7r
[15, (17.9.16)]

2 2 ga 44 49
qa (Ge» 4 o7 9% Doo berdie f
sWr (a;b,c,d,e,f;q, >: (qa qa ga qa ) 4¢3 qac qa def’q’q

deef def’ d’ e’ f?q b’ c a
(qa2 q’a® a,d,e, f1q)s 7’a® ga ga ga
n bdef’cdef’bc’q q gg | Pt de a7 e (6.2)
(q 2q> def qa ga ga gqa qa, ) 493 @2a? ¢2a® q¢2a 4,4 ) .
bedef?’ ga? b ¢’ d? e f7Qoo bdef’ cdef’ def

and applying Theorem 1.9 with
I RCOLINCY T %
' by/def c\/de df 'V de bc ’
_ Jaes [
d:= { s def}’ (6.3)

completes the proof. O

tolw

In the following, we will adopt a generalization of Bailey’s original W notation for a
nonterminating very-well-poised 7Fg of argument unity (see for instance, [10, p. 2]). We
define 11 W,.(a; b), where |b] = r — 1 as follows:

+1,b1,...,b._1
r+1 W ;b = 1l 2 ’ ’ ;1 6.4
aWab) = b, GEEI (6.4)

which is absolutely convergent if [15, (16.2.2)]
R(2a— (b1 +---+b—1)+2)>0. (6.5)
Here the connection to Bailey’s original W notation for a 7Fg is given as follows

W<a7 b7 c, da €, f) = 7W6(a; ba c, da €, f)

5 +1,b,cde,f
= .F . (6.6
76(%1+a b1+a c,1+a—d,14+a—e1+a— f > (6.6)

Theorem 6.2. Let a,b,c,d,e,f € C, 0 € (0,00), h€ C\ Z, d+e+f—a—1,24+a—d—e—
fra=b+1l,a—c+1l,a—d+1,a—e+1,a— f+1 ¢ —Ng. Then
1
Wi(a;b,c,d,e, f) = 2—F(h, 1—h,h+d+e+f—a—1,24a—h—d—e—f)
T

" T(a—b+1,a—c+1l,a—d+1,a—e+1,a— f+1)
I(a+1l,a—b—c+1l,a—d—e+1,a—d—f+1l,a—e—f+1,d,e, f)
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o

/ I‘(W—i—o—ix, W—i—o—i% %(a—i—l)—b—c—%—a—i—ix)
X
D(h+ et ma=l o6 g 1 ht 2Hmd=eoS 64 g

— 0o
F(ia‘qﬂ;*d*e —o+ix, 7‘”1“21767]0 —o+ix, 7a+1+;7d7f —o+ix)

dx. 6.7
PG(at1) b5 tir—o. 3at1) e D5 + iz—o) (&0

X

Proof. First use the map (a,b,c,d,e, f,h,e¥) — (¢*,¢°, ¢, q%,q¢% ¢, q",¢"*) in (6.1).
This converts the sW7 to

f 2a+27bfcfdfeff) ; (68)

sWr(g%d"a%a% % 50,0
which in the limit as ¢ — 1~ becomes W (a; b, ¢, d, e, f). On the right-hand side of (6.1),
the infinite ¢-shifted factorials can be converted to g-gamma functions using [9, (I1.35)].

Upon taking the limit as ¢ — 1~ using This completes the proof. 0O

Now we present a theorem which gives a representation for a nonterminating very-
well-poised §W7 given as a sum of four balanced 4¢3(¢)’s.

Theorem 6.3. Let g € CT, a,b,c,d, e, f,h € C* such that |¢*a®| < |bedef|, and we assume
there are no vanishing denominator factors (see Remark j.1). Then

2.2
q’a (995 9) o
8W7<a;b,c,d,€,f;q,b d f = def qa qa qa qa qa
s === B e a0 e Fo [e’e]
cae ﬁ(h h qa q)( b’ecrd’e’ f q)
qa pbedef. \rgqa ga ga . ®a® qa q ¢
(O Pt ) G G e b d e fi D) bdef > be? b7 ¢
(e bed bee bel o) 1931 g2a g2a g2 D1
bedef’ ga’ ga’ qa ' 1/ bed? bee? be

Ohf hie o) (e, 7. 5. % 5. does @)oo

(= 4 eg).

+ﬁ<hd,h;—§;q>(%,%,%,%,%e,mm (q—f Z—d,%d_q q)

(%7 %a ng)OO

d;
O(he,hdL:q) (42, 42,492, 92, L d, f;q)o0

(qa d f. )OO

bce’e’e’q

Proof. Applying a, c and d in (6.3) to (1.50) produces the result. O

Remark 6.4. If one takes either d, e, f equal to ¢~ for some n € Ny then (6.9) becomes
Watson’s g-analogue of Whipple’s theorem [15, (17.9.15)].

Remark 6.5. The authors failed to obtain Bailey’s transformation of a nonterminating
very-well-poised W7 as a sum of two balanced 4¢3’s [15, (17.9.16)] as a limit case of (6.9).
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Furthermore, they were neither unable to express (6.9) as a sum of two nonterminating
very-well-poised sW+7’s (using [9, (II1.37)]).

As the parameter h is free, one may choose h = ¢"bc/(qa) or h = ¢"*2a?/(bedef)
n (6.9). Then the first term in (6.9) vanishes and they are left with a symmetric sum
of three 4¢3’s as a representation of a nonterminating very-well-poised §W7, namely the
following theorem.

Remark 6.6. One might also consider the limit of (6.9) as h — oo. However, this limit
produces a multiplicative elliptic function in proportion, which is doubly periodic on the
entire complex plane. Therefore this limit does not exist.

Theorem 6.7. Let n € Z, ¢ € C, a,b,c,d, e, f € C* such that |¢*a®| < |bedef]|, and we
assume there are no vanishing denominator factors (see Remark j.1). Then

2.2 qa .
7‘a (90, 123 @)oo
8W7<a;b,c,d,e,f;q, ) = n—1p n—2ped
bede f I(L— a <, 4 a2c ef;Q)(%a%v%7%’%;q)oo
d;e’f q”_lbcd q"_chef ga ga ga gqa qga bd cd
% 19( a ’ a2 Z(I)(m7aa£7§7e7f§@oo gvzvad. 6.10
(ﬂgi- 4¢3 Mﬂﬂ,q,q ( )
bed? d> a4 a e’ f

Proof. Choose h = ¢" 'bc/a in (6.9). This causes the first term to vanish and one is left
with a symmetric sum of three nonterminating balanced 4¢3’s as a representation of the
nonterminating very-well-poised W7, namely the following theorem. O

Alternatively one could have chosen h = ¢?a?/(bedef) in (6.9). This produces the
following result.

Theorem 6.8. Let n € Z, ¢ € Ct, a,b,c,d,e, f € C* such that |¢*a®| < |bedef]|, and we
assume there are no vanishing denominator factors (see Remark J.1). Then

2.2 qa.
g a (qa, 3239)
8W7<a/;b7c7dae7f;Qa bcdef) = 9 q"t2a2 ¢"tla. ’cha’ qaooqa qa qa.
(Feger 5 D5 0 T 6 Fi oo

d.
7€,f " t2a2 qrtlg )(ﬂ ga ga ga . f ) ga bd cd d
beef 0 bed ' 9N\bdr cdr der df 0 © ’q°°4¢3<ef’ a’a’ ) (6.11)

X bed qd gd SD4

a’ e’ f
Proof. Replace h = ¢""2a?/(bedef) in (6.9) and simplifying completes the proof. O

Remark 6.9. Note that one can also choose for n € Z, h € ¢" {l 1192 ga ga }, and

then the five-term representation of the nonterminating very-well-poised sW7 in (6.9)
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reduces to a four-term transformation. However, these representations are not symmetric
and we leave their depictions to the reader.

7. Summation and transformation formulas for nonterminating balanced
very-well-poised s W+

By starting with Bailey’s three-term transformation formula for a nonterminating
very-well-poised gWr, we are able to prove a generalized g-beta integral which will be
useful to generate further transformation and summation formulas in the special case
where the nonterminating very-well-poised W7 are also balanced.

Theorem 7.1. Let g € CT, 0 € (0,00), a,b,¢,d,e,h € C*, h,h\/T ¢ T,. Then, one has
the following q-Mellin—-Barnes integral:

/ h\/;’h\/:% hﬁ’h\/:7i\/_ ab, 2v/ab, (2)* cde) 21 q)oo
S WEDE iqf\/_bc\fd e/L ok, aedyzg)

. qa ga ga ga bed b bd
ﬂ(h7h%,q)(7,a,;,%,%,%, ae’Q)

ga bc bd be ga ga< .,
( 777777a;ab7cad e’@’bcde7q)‘x}

de

=27

; (7.1)

where z = e and the maximum modulus of the denominator factors in the integrand
is less than unity and we assume there are no vanishing denominator factors (see Re-

mark 4.1).

Proof. Start with Bailey’s three-term transformation of a nonterminating very-well-
poised W7 [9, (II1.37)]. Then as in the discussion surrounding [9, (2.11.7)], replace
f using the substitution ga? = bedef. This converts the nonterminating very-well-
poised §W7 with argument bd/a to a nonterminating very-well-poised W5 with the
same argument. This nonterminating very-well-poised ¢Ws can then be summed using
the nonterminating sum for a nonterminating very-well-poised ¢W5 [9, (I1.20)]

gqa ga qa
(qa, be ) bd? d’q)

GWS(adeQubCzl) (qa ga ga qa .

. (7.2)
b er do mﬂ)m

The remaining two nonterminating very-well-poised sW7’s both now have argument ¢
and the application of Theorem 1.9 with cardinalities (A, C, D) = (6,8, 2), given by

a:= {i\/l_), %\/E, %\/@ g\/ﬁ (2) cde}, (7.3)

:{f i‘M\f f \[ \f dqf} (74)
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{5 )

generates the integral in (7.1). This completes the proof. O

Now that we’ve generated the definite integral in Theorem 7.1, we can apply (1.50)
to this definite integral to obtain in principle, a new summation theorem which is an
eight-term sum of nonterminating very-well-poised sW7’s with argument q. However,
when one applies (1.50), two of the terms vanish because of leading factors of ¢~! in the
list of numerator infinite g-shifted factorials. So we are left with a summation formula
for six-terms each of which are nonterminating very-well-poised gWW7’s with argument g.
This is given as follows.

Theorem 7.2. Let ¢ € Ct, a,b,c,d,e,h € C*, and we assume there are no vanishing
denominator factors (see Remark J.1). Then, one has the following siz-term summation
formulas for nonterminating balanced very-well-poised sWr with argument q:

d(ha, %;Q)(i}7 &4 %, b;‘ie,q

ab b, c d ¢ ?)oo

Ya’a’ala’l b('dp’

) 2
( = 8W7 <a;b7 c, d7ev %7qvq>
cae
\/77

19(}?, qa h%;q)(ibcde bed bece bde b2c2d2e?

bede ? a2’a7a7a’ qa’ 7)00

+(:|:bc e qa®? qa bede b2cde bc?de bed2?e  bede? . )
% » bede? cde’ qa  qa? ' qa? ' qa? ’ qa? ! os}

o, [ LE . 9a® ga ga ga ga
ST\ 1222e? bede’ bed’ bee bde cde’ Y

b;c,d, e
U(hb, hipiq) (%", 42, 4, 42, 22 g) o B, be bd be ga
> 2 8W7 ’ Ty Ty T )
(:l:q\/_bb a c d e qa ) a’ a’ a cde

Y a’b’b’ b b?bzcde7q

. bed b bd
O hgia)(%, 5, g bl e ey o)

bc bd be ga qa
(b,C,d 6777777a%7 bcde’q)

Proof. Starting with Theorem 7.1, we apply (1.50). This produces an eight-term sum
of nonterminating very-well-poised gW;’s with argument ¢q. However two of the terms

1 in the numerator infinite

vanish because of the appearance of leading factors of ¢~
g-shifted factorials. This leaves us with six-terms each of which are nonterminating very-

well-poised gW7’s with argument ¢, which completes the proof. O

Corollary 7.3. Letn € Z, g € Ct, a,b,¢,d, e € C*, and we assume there are no vanishing
denominator factors (see Remark j.1). Then, one produces the following siz-term trans-
formation formulas for nonterminating balanced very-well-poised W7 with argument q:



28

ﬁ(qna,qT:l;q)(:t 449 bede oy

2
f,cada e’ a2 ) )
0= e qa . sW7 a,b,qd,e,ﬁ,q,q
(EFab g 60 6 s Do cde
n+1 a? n—1cde. bede bed bee bde b2crd?e?.
U™ e € S O FE T T T T T e

bcde gqa? ga  bede bQCde bc?2de bed?e  bede? .
(£ )
% » bede? cde’ qa  qa? ' qa? ’ qa? ’ qa? [e'e}

2

><8W7( g°a®  ga® qa qa qa
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)

qa
b2c2d2e? bede’ bed bee’ bde cde’ q)

b;c,d, e

b, 0" D5 G B 8, 05 0)e ﬂ%(wb
2 )
(EL20. 5 60500 6 st @)oo

bc bd be qa

_7E7%;Q7Q) )

DR
a a

bed
19( nb,—,q)(i—a7z,%,%, 2267 )oo q 2
0= e qa . 8W7 a;bvc7d7€7bd 74,9
( \/_7ab7EaE7EaEabcd67Q)oo cae
1 1 bede . bede bed bee bde b2cPdZe? .
ﬁ(anr Cgeaqn a2 ;q)(iqa%,TafaTea qa36 vq)oo
+ (:l:bcde ga? gqa bede b2cde bc2de bed?e  bede? . )
a% Y bede? cde’ qa ’ qa? ° qa? ° qa? ’ qa? [e'e}
¢°a®  ga® qa qa ga qa
X §Wr (s Ao A AL L
b2c2d?e?’ bede’ bed’ bee’ bde’ cde’
b;c,d,e

q\/abeacde

a a

H m,%xwﬁ%%%ﬁw>wwﬁbmwwqa )
+ sWr ) »q
(+ a a’ cde’

q2
p a’E’E’E7E’b2cde7Q)

(7.8)

Proof. Takingh = ¢" and h = q"g, respectively in Theorem 7.2 produces transformation
formulas for nonterminating very-well-poised W, with argument ¢ given by (7.7), (7.8).

This completes the proof. 0O

Corollary 7.4. Letn € Z, g € CT, a,b,c,d,e € C*, and we assume there are no vanishing
denominator factors (see Remark 4.1). Then, one has the following siz-term summation

formulas for nonterminating balanced very-well-poised sWr with argument q:

n+l_a n—1cde. bede bed bee bde b2c2d2e?
19((] bede’ 4 204 )(:I: 2’ @’ a’ a’ qad aQ)oo

(ibcde qa?  qa  bede b20d6 bc2de bed?e  bede? )
3 ?bcdevcde7 qa qa2 bl qa2 ’ qa2 bl qa2 a o

TV ¢?a® qa® qa qa qa qa
ST\ 2222’ bede’ bed’ bee’ bde cde’
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b;c,d,e
Y nb L. 5 q G«’ﬂ’ﬂ’ﬂ’cde’q bC bd be a
+ H ( ( a’ b2 )lf bc? bd be a ) 8W7( 7 q g, q)

a cd e )oo a’a’ a cde
7b7b7b7b)b2cde’q

" q". ga ga ga bed bece bde
:ﬂ(a’ b )(cd’ce’de’ a’ a’ a’q) (79)
(b,c,d,e,be, bd be aa qa? ) ’ )
14’ a’ a’ ede’ beder Voo
n+1.a® _n—1bcde bede bed bee bde b2c?d?e?
ﬂ(q cde’q a 7Q)(:I: 2a a ' a ' a qa3 ; )OO
(:I:bc e ga®? qa bede bzcde bc2de bed?e  bede? . )
o5 bede’ cde’ qa ’ ga? ? gqa® 7 qa? ) ga? 4/
¢°a®  qa® qa qa ga qa
XsWil 555 44
b2c2d?e?’ bede’ bed’ bee’ bde’ cde
b;c,d,e

(:tqubzacde aaacdeq

O(q"b?, q" % q)(£¥2, 92 4o ga cde, b2 be bd be ga
4 ( q b >( bc’ bd’ be a q> 8W7< , q 7q)
B, e84 e e D)oo

, bed bee bd
_ 0(q"a,q"b;q) (47, % 5 Pt Pt B ) (7.10)

bc bd be ga gqa
(bucad7e77777g>ﬁ7bcde7q)

Proof. Take h € {¢"a"*!, ¢"b}, with n € Z, in Theorem 7.2 and the first term following
the symmetric sum vanishes and one obtains six-term summation formulas which produce
(7.9), (7.10) respectively. This completes the proof. O

Corollary 7.5. Letn € Z, g € Ct, a,b,c,d, e € C*, and we assume there are no vanishing
denominator factors (see Remark J.1). Then, one has the following siz-term summation
formulas for nonterminating balanced very-well-poised sWr with argument q:

1 bede 1 cde 9 9 q bede
ﬁ(qn a 7qn a27£])(i\f7273,ga a2 aq)

qa®
c 8W7 (0,, ba c, d7 €, 74, Q>
(- anbi g0 600 6 pedes @)oo bede

b;c,d,e va
N 19(qu 1b% cde7qn 1C;ibe7Q)(i a’%7%7%,c2e7q)w
(:l:qf p. b2 a c d e qa?

) a?b?be’b?b?gdeﬂq)

2
X8W7<b_;ba@’%7b_eaﬂ; ’q>
a a a a cde

n— lbcde n—1cde ga ga ga bed bee bde
o 19((] )4 a ,q)(aa ced'de’ a ' a a aq) (7 11)
B (b c,dye,be, bd be ga ga’. . :
b 7a7a’a?cde7bcde7q00

bed
ﬁ(qn+1gje’qn+1bgje;Q)( \/_a%7gvg7 Z2eaQ) qa2
T 8W7abcdebd,q,q
( \/—7a bagaaagaaab“ieatn cae
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b;c,d,e ) i
+1 ab +1 _a . ga gqa qa cde
+ H ﬁ(qn Cdevqn b26d67q>(:l: ' be? bd? be’ a 7(])00

q9va b2 a ¢ d e
(:l: bv a’373’375’b2cde’q)

2
><8W7<b; be bd be qa ,q)
a a’ a’ a’cde’

n+l_a  n+1_a® . yrga ga ga bed bee bde
— ’19((] cde’q bcde’q)(cd’ ce’de’ a’ a’ a ’q) (7 12)

(bcdebc bd be ga gqa
)

a’ a’ a’cde’bcde’q)

Proof. Take h € ~{q"71%,q"+1 %} with n € Z, in Theorem 7.2 and the second term
following the symmetric sum vamshes and one obtains six-term summation formulas
which produce (7.11), (7.12) respectively. This completes the proof. O

Remark 7.6. Note that one can also choose h € ¢" <41 1 L 1 E, é, ﬁ, Gl , in The-
b’c?’d’>e’> a’a’a’ a
orem 7.2 with n € Z and this will also produce six-term summation formulas for

nonterminating balanced very-well-poised §W;. However, we leave the representation
of these summation formulas to the reader.

8. Gasper & Rahman’s product formula for a product of two nonterminating o¢1’s
and for the square of a nonterminating well-poised 2¢;

This section follows from two formulas which can be found in Gasper & Rahman,
namely [9, (8.8.18)] (8.1).

qa
2¢1<a7baq7 ) ¢1< o ,q,Z)
C

gqa
b
abz - ac
(@i (o T
- qa ac gc b 3
(2 %3 9)s ¢ 8Z 5 B be
b qab
(a,a2,b2, 8,951 q)s (2425 a2 £ 28
+ ga ¢ 6¢ b b 3 q (81)
(ZZC babzaq) azbz qazaz Lz

' T e ¢
and [9, (8.8.12)]

a,b 2 (az7b_z7Q) a, ggai%ai%
201 q_l;z;(JaZ =W5¢4 W 10 g0 ga 94
’» qa ’

s h 0 b2 0 h22

( ) ? ZgaQ)OO bZ \[’ q q (8 2)
a,az, bZ bz ¢ 34, : !
(z’ Z, Ib ) Do b2z’q) CLZ,bZ, b2qz27 b2z

However, (8.2) follows directly from their product formula (8.1) using the substitution
¢ =qa/b.
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8.1. Gasper & Rahman’s product of two nonterminating o¢1’s

Using a product formula for a product of two nonterminating ¢1’s with modulus of the
argument less than unity, one can obtain a ¢g-Mellin—Barnes integral as its representation.

Theorem 8.1. Let ¢,z € CT, ¢ € (0,00) a,b,c,h € C*, h\/g ¢ Y,, and we assume
there are no vanishing denominator factors (see Remark j.1). Then, one has the follow-
ing q-Mellin—-Barnes integral for a product of two nonterminating 2¢1’s with arbitrary
argument z:

/ﬂ (/3 5005 /. 1 Vi ay/F a0/ 0y ) d
g (VE 22 (a2, /F £Vaz, £ 787) 25 )

2m0(h, hil; @) (2, ¢ 5 @)oo a,b a, L
= bzc abz : 2¢1 3 g, % 2¢1 qaC 34,2 ) (83)
(g,a, b e 1 q)oo c o

(G

where w = ¥ and the maximum modulus of the denominator factors in the integrand
is less than unity.

Proof. Start with the formula for a product of two nonterminating o2¢;, namely (8.1).
Now use Theorem 1.9 with the following sets of parameters with cardinalities (A, C, D) =
(4,6,2), given by

a:= {\/@a\/? qa\/i,a\/f} = {a\/? \/f,i@,i\/qa—z}, (8.4)
. nia) o5

This completes the proof. O

Now we take advantage of the g-Mellin—Barnes integral for a product of two non-
terminating o¢1’s with arbitrary argument z with modulus less than unity to obtain a
seven-term transformation for the product of two nonterminating 2¢1’s with modulus of
the argument less than unity.

Theorem 8.2. Let ¢,z € Ct, a,b,c,h € C*, h,his & Yy, and we assume there are no
vanishing denominator factors (see Remark 4.1). Then, one has the following seven-term
representation for a product of two nonterminating 2¢1’s with arbitrary argument z:

a,b a, L 1
o ("s0e) o (o) =
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c. ga gb abz g
an)oo b’c’c7 c )z

_c . 3
c ¢ gqa,. ab ab aqv
(67E7E7Taq)oo q :I: q

h. b b
ﬁ(h%,— Q)(a a, b7 qél»aczvaczvq)oo ¢ ( Z7gv(§agaza abz )

( ga ab ab ) ab’i\/Tg’i \/7#17

Zzacvbvcvc7qoo

/T 255000 )
( l,i\/qa y Gy qba’ V ﬁa \/ %7‘])00
/b / ab
\/?’ ac’q bc’q ac’ c’z\/g

X 605 14,9

_Q7:|:\/aaq %7Q\/£
h\/?aff ﬁaf\/%;q) ’Z’alcnz’q)
(_lvi\/aazacv%7_\/ £7_\/ a?b7Q)OC
vV abc7 \/ l:f7 —q bc’ CI\/ —Z\/ ?7
—4,£/q, - =G
qac h\/qaba 757%71/%7\/2_27\/%721/2_35(])00
( 1:|:1 an(‘ anb’\/ Cv \/qu

\/W q a qab

b ’\/ a ’\/ \/ ac7 \/ c ’z\/

><6¢5 b 34,9
—q, g3\ L2 LE

+

X 605

1 qa gac c ab qab
(—L:‘:W,Z,Cva—vT,— qab’ ~\ qc0 % 77Q)<X>

\/W /qbc, /q a / q3b b / qad , _ 1 /q e
X 695 N 14,9
—q, q2 _\/ \/

(8.6)

Proof. Applying a, ¢ and d in (8.4), (8.5) to (1.50) and connecting with Theorem 8.1
completes the proof. O
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8.2. Gasper & Rahman’s formula for the square of a nonterminating well-poised 2¢1

Using the formula for the square of a nonterminating well-poised 2¢; with modu-
lus of the argument less than unity one can obtain a ¢-Mellin—Barnes integral as its
representation.

Theorem 8.3. Let ¢,z € Ct, a,b,h € C*, ¢ € (0,00) \/qa ¢ Y,. Then, one has the
following q-Mellin—Barnes integral for the square of a nontermmatmg well-poised o1
with arbitrary argument z:

qa gb [z h qa qgb [ =z /az3 1 /
/ \/ z' h qa w’ z’h qa’\/qa’Zb ’b

“r ((b q_avﬁv% w? b aqzai\/_7b\/q7’_\/q7)a’q)

2md(h hq2a z7q_7q_ q a,b 2
= (h bzqa)£2 b % 9o <2¢1<ﬂ;q,z>>, (8.7)

(qa 7b27 q7q) b

where w = e and the mazimum modulus of the denominator factors in the integrand
is less than unity and we assume there are no vanishing denominator factors (see Re-
mark 4.1).

Proof. Start with the formula for the square of a nonterminating well-poised 2¢1, namely
(8.2). Now use Theorem 1.9 with the following sets of parameters with cardinalities
(A,C, D) = (3,5,2), given by

3 /a3 /
ai= {\/qa77b £7 qba Z}aC:: {b %a$7i\/a>7_\/qaz}7 (88)
\/ q q

d:— {%\/?b\/qza} (8.9)

This completes the proof. 0O

Now we take advantage of the g-Mellin—Barnes integral for the square of a nontermi-
nating well-poised 2¢1 with arbitrary argument z with modulus less than unity to obtain
a six-term transformation for the square.

Theorem 8.4. Let ¢,z € Ct, a,b,h € C*, and we assume there are no vanishing denomi-
nator factors (see Remark 4.1). Then, one has the following siz-term representation for
a square of a nonterminating well-poised o¢1 with arbitrary argument z:

b ? 1
(2 (§02) = s
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. . b2 B2
% ﬂ(haah%aQ)(%v%7g_ayg_aaQ)oo 5¢4 av@??Tzvg'q q
(%a%ab%?b%;q>oo bQ,ib\/C_L_b’ ’
2
Db e abb T ) (8
+ 594 3 14,9
b2 b2 2 )
(2327?337%7%3(])00 Z—z,ﬂ:%, %
2 a\/q b/q b q%
+19(h¥,hbff7q(\/6,a,%,bf,q)oo i’ V&= e b
5P4 3 54,9
b q.
(7177ﬁa27%7%7ﬁ777Q)00 _Q7_\/aab\/a7%
2
ﬁ(_h¥a_hr\/§7Q) _\/qaa7zj76727Q)w
b q
(717ﬁa27%7%77ﬁ77T7Q)o®
a./q b\/q b q%
VO T T T 6
><5(234 q% 74,9
_Q7\/av_b\/a7_T
Y(—=he _h.o\(=1.q.—2¢ 92 _bz bz
( b’ bz’q)( y Ay = b2 q’ qaq)oo
1 gqa gqa qa 1 b.
(Z7 bz7i%7777a_77_57_67q)o¢
b q°
—q by 12 _ 3 _ 9
xsoa| W Mg, (8.10)
7qb7:tq2377

Proof. Applying a, ¢ and d in (8.8), (8.9) to (1.50) and connecting with Theorem 8.1
completes the proof. O

Remark 8.5. If you choose for some n € Z, h € ¢q" %, I’QTZ, Z—Z,z,:lza%ﬁ, :i:b—'z7 —q%, —bz ¢,
then the six-term transformation formula for the square of a nonterminating well-poised
o¢1 with arbitrary argument z in (8.10) reduces to a five-term transformation formula.

However we leave the representation of these transformation formulas to the reader.

An interesting application of these expansions (8.2), (8.10) is given in the following
corollary which gives nonterminating three-term and five-term summation theorems for
sums of nonterminating 4¢3’s.

Corollary 8.6. Let ¢ € Ct, a,b, h € C*, and we assume there are no vanishing denomina-
tor factors (see Remark 4.1). Then, one has the following analogues of the Bailey—Daum
q-Kummer sum in the specialization as z = —q/b for the square of the nonterminating
well-poised 5¢1 :

(_qv —q; Q)oo(qa7 qa, qbza qbza 5 qz)oo
_ 4 a4 ga ga
( b bbb 7Q)oo
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(_ba_%;Q)OO iaT\{av([],_gaa
:#4@% qa2 94

qa
ib7b2

ga ga _p -4
+<(%?%,q7—6§7—%77—b23’,qq)> 4%(?%’_%‘“”) (8.11)
v (e b0 B e | (e
~ 0, hb,q>( (%, & i) 4¢3<b2,ib\/a’q’q>
9138, ~hP:g)(a,a, b, +big)c ¢<z—“,i%,%. )
L e O\ s
+19(h% — L) (V@ a, =0, 155 0)oo af‘b/?l%q?i;/@.q ,
R A Y A
VG o A T SIS ~0, by =Y

Proof. Simply start with (8.2), (8.10), let z = —¢/b and then compare the resulting
expressions to the Bailey-Daum ¢-Kummer sum [15, (17.6.5)]

a,b —; @)oo (40, 555 ¢%) 0o
2(7251( qa 7Q7lq)> = ( () (qa &2 ’ (813)
b

where |g| < b. For the expression which arises from (8.10) one of the terms vanishes due
to the appearance of a unity factor in one of the numerator infinity g-shifted factorials.
This completes the proof. O

Remark 8.7. If you choose for some n € Z, h € q"{ —b, 2a’ -1, a\/_, \/_} then
the five-term summation theorem in (8.12) reduces to a four-term summatlon theorem.

However we leave the representation of these summation theorems to the reader.

Remark 8.8. We also note that using the following transformation of a nonterminating
well-poised 2¢); to a nonterminating very-well-poised gW7, cf. [9, (8.8.16)],

(2, 22b, [T g)uc
2¢1<Cf1ab,q7 )Z ! 8W7<_% ——=,+Va, :I:\/_ bz), (8.14)

(27 —az, :l:b_zqa q)oo

where we assume there are no vanishing denominator factors (see Remark 4.1). Hence, the
above formulas can also be expressed as a product of two nonterminating very-well-poised
sWr’s. However, we leave the representations of these formulas to the reader. Furthermore
since the nonterminating ¢, can also be expressed in terms of a nonterminating oo

[15, (23.5.2)], and as well as a sum of two 3¢2’s with vanishing numerator parameter [15,
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(17.9.3)] or as a sum of two 3¢2’s with vanishing denominator parameter [15, (17.9.3_5)],
there are many alternative ways to represent the above formulas as well as those formulas
given in the previous section.

9. Verma & Jain’s transformations for a very-well-poised nonterminating 12 W77 and
10Wo

In a paper by Verma & Jain (1982) [19], the authors present examples of transforma-
tion formulas for very-well-poised basic hypergeometric series. In this section we exploit
several of these formulas to derive integral representations for these nonterminating very-
well-poised basic hypergeometric series and then use the integral representations to derive
new transformations for these nonterminating very-well-poised basic hypergeometric se-
ries. We will focus in particular on a formula they derived for very-well-poised 12W71
and 10W9.

9.1. The Verma—Jain 12W11 transformation

Using a transformation for a nonterminating very-well-poised 12W71 as a sum of two
nonterminating balanced ¢¢s with argument g we derive the following integral represen-
tation.

Define the multiset notation wa := {a,wa,w?a} fora € C, w = egm, the cube root of

unity. Note that w3 =1, W’ =w ' =w? W =w 2 =w.

Theorem 9.1. Let ¢ € CT, w = e, h,a,z,y,z € C*, 0 € (0,00). Then

3.4
q
12Wi1 (a; T, 9T, ¢°T, Y, 0y, Y, 2,42, ° 25 ¢°, W)

ga ga ga 3.
(q qaaﬁ E’y_z’x yYs 2y wa37Q)oo

- 2md(h, R a) (5, 4 L a0

)y’ oz’
m Yz ¢ q Tya q qa .
\/— E\/ w2 ) oo () Ty e 0y 2y TR 5 Do
X . dy, (9.1)
qa ac qay qaz 2 q w .,
s 1/ \/xyz \/ 2z 0\ my ) VA8 @);J])oo

where w = e and the mazimum modulus of the denominator factors in the integrand
is less than unity and we assume there are no vanishing denominator factors (see Re-
mark 4.1).

Proof. Start with the transformation formula for a nonterminating very-well-poised
12Wh1 in terms of a sum of two balanced ¢¢5 with argument ¢ [19, 6.1]:

2 2 2.3 ¢’a’
12W11 (a;xvqxaq z,Y,49Y,9°Y,2,49%,4 254 7W>
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_ (qa,g—j % %»Q) 605 T,Y,Z, was ‘4.4
(%a%a%vzqyazaq) Tyz :l:\/_ :l:\/qa, 7

4
qa qa qa qa3

(37>y727( 27 ) (qga;qg) zy’ 2 Yz’ TYz
o qij D (T ] T L R
z) oy’ 2z (W?q )OO I—W,iw—yz,iw

Now use Theorem 1.9 with the following sets of parameters with cardinalities (A, C, D) =
(3,5,2), given by

) o RS e
a={ [ [2]. (9.4

This completes the proof. O

Now we compute a seven-term transformation for the 19W7;.

Theorem 9.2. Letq € CT, w = e%”, a,x,y,z € C*, and we assume there are no vanishing
denominator factors (see Remark j.1). Then

qa gqa qa

1
q3a4 o (qa’ T, Y,z Y xy xz) Yz ag;q)oo
xyz)? O(h, Wz ) (5 4 5 a3 ¢)oo

12Wi (a;x,qas, .y, 0y, Y, 7, 42, ¢° 2 ¢°, (

qa z Yy 20
hY = Yz a a %w x
’lghi' h 7q)($_27ya21Q)oo 13,;1/_27:':‘1\/5, q_a
> qa al/3 . 695 @ gz, gz 34,4
7575 Yz Tz )oo y ' oz gl/3
UJ
wiryz .,
+ 9(hwat, h i3 4)
w w2 ’q qwa4/3 w2z wzy w2z . )
zyz 0 all 37a1/33a1/3aQOo
1 4/3 3
OJCL3, 2 7:|:w{1/65i o;?a
X6Ps5 v N 14,9 (9.5)
wal/3 qual/3 qwal/3’ : .
qu, qu?, 15—, 120

Proof. Applying a, ¢ and d in (9.3), (9.4) to (1.50) and connecting with Theorem 9.1
completes the proof. O
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4
n)l 11 ga ga ga w wgasd
Remark 9.3. If you choose for some n € Z, h € q Ty 2wy 120 ye al/s zye , then

the seven-term transformation in (9.5) reduces to a six-term transformation. However
we leave the representation of these transformations to the reader.

9.2. The Verma—Jain 10Wy transformation

There is a transformation for a 19Wy represented as a sum of two balanced 5¢4(q)
which we originally located in [16, (7.11)], where it refers the reader to [19, (4.1)]. In
this subsection we exploit this transformation to write the oWy as a ¢g-Mellin—-Barnes
integral and then from there to obtain six and five term transformation formulas for the
10Wo.

Theorem 9.4. Let ¢ € CT, a,b,x,y,2 € C*, 0 € (0,00). Then

2 2 2
2,72 L2 q3a6 o (q,iqa,x,y,z7%,%,%;q)o@
10W9 a ,b y U, 4T, Y,4Y, 2,425 4, b 2 - Tyz ga qa? qa® qa?
(byz) 2rd(h, Wz @) (£ 5, 4=, 4, -1 4) o

=3

gl

2 2.3
PR Y N e N G e e B e = L=/ I
x/ q y q y V@Y /Ty i, (9.6)

2
Lo (G e E ()8 eV E a8 A5 ) f )

where w = ¥ and the maxzimum modulus of the denominator factors in the integrand

is less than unity and we assume there are no vanishing denominator factors (see Re-
mark 4.1).

Proof. Start with [19, (4.1)]

3,6

qg-a
1OW9 a2;b2ax7qxay,qyazqu;q27 2
(bry2)

2 2 2
(qa®, 55, 45, 453 0o 7.y, %+ /04
= 504 14,4

- 2 2 2 2 2
ga® ga® ga® gqa-, a- Zyz
( Ty ) oz ) axyz)d )oo qbZ ' a2 7:|:\/§a

2 ¢%a’ a q% a? qa2 qa2 qa2 q% a3
(qa y sy Y, 2y b2xyzaj:\/§zai Tyz ; )OO ¢ Ty’ xz ' yz ' bryz . (9 7)
2 2 2 2 343 54 2a?  gZ%a* a3 R RS
ga- gas gar gaz Tyz 4 492a”. ) 4 q + 4
( b2z y ' z ?qa?’ \/aa’7 bryz q)o zyz ’ b2zyz? TYz

where we have replaced (a,b) — (a?,b?) in the original reference. Note that in [19, (4.1)]
there is a typo in the second term, namely the numerator factor ¢%a?/(bz?yz) should be
replaced with ¢?a?/(bxyz). Furthermore note that this same formula appears also in [16,
(7.11)], however there are several typos in the second term of their formula. Now use
Theorem 1.9 with the following sets of parameters with cardinalities (A, C, D) = (3,5, 2),
given by
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(o ) BB B ) o
d;_{i\/?,a\/?yz}. (9.9)

This completes the proof. O

Now we compute a six-term transformation for the 1oWy.

Theorem 9.5. Let ¢ € CT, a,b,2,y,2 € C*, and we assume there are no vanishing
denominator factors (see Remark j.1). Then

2
ga® ga®
W ( 2 b2 2 q3a6 (iqa LyYys 2y " rz ) Yz 7q)
1woWol a; y 2,4, Y,4Y,%,492549 ", 2 = P 2 2
yz ga ga? qa? ga?
(bxyz)?) — 9(h, hiiiiq )(j:b, o 1 ) oo
Ty, 2 PO
z /4% qa ga® | q2z b
ﬂ(h‘rﬂhq%?7q)(i T 7b2maq) €T, yz aj: a ) a2
X .
(x y z ga? i\/aa ) 5¢4 gz gz iﬁbz 74,4
Yx? x? Yz 9 bw ,q Yy ’ oz a
Ve p bryz | q ﬁa Vb ¢*?a’
(:I:b;q)oo ﬁ(h h q3/2a3” ) ¢ +3 b ' a0 bzyz
2(_(]'(])00 (3/2a3 be by ) 5%4 _ 3/2a #/%a ¢3/2a 14,4
? bzyz ’\/ﬁcw\/_a’\/_a’q q; 3z > by ° bz
ﬁa bxyz . da ab 3/2,3
19( h¥Y— —h 3/3(137 ) ? _\/_T7_\/_T’_quyz
+(_M _b_a: —by bz SPUN ¥ g0 g2 DY
bryz > \/qa’ ./qa’ \/ﬁa’q 4, bx by ? bz

(9.10)

Proof. Applying a, ¢ and d in (9.8), (9.9) to (1.50) and connecting with Theorem 9.4
completes the proof. O

3 5
11 b 2a®
Remark 9.6. If you choose for somen € Z, h € ¢" {575 ;,‘gly,q;z, yz,:t\/_a,:t%zgz},

then the six-term transformation in (9.10) reduces to a five-term transformation. However
we leave the representation of these transformations to the reader.

10. Guo & Schlosser’s transformation for a very-well-poised nonterminating 1, W7,
It was brought to our attention by one of the referees that in the appendix of a recent

paper by Guo & Schlosser (2021) [11], the authors present a transformation formula for
a very-well-poised nonterminating 12W71. Furthermore, they indicated that it might be
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possible to exploit this transformation along the lines of the examples given above and
those obtained in [6].

The nonterminating transformation for a 13W7; given in [11, Theorem A.1] is rep-
resented as a sum of two 4¢3’s (see (10.2) below). The Guo—Schlosser transformation
extends Gasper’s terminating 12711 to 4¢3 transformation [9, Exercise 8.15] (see in par-
ticular [7, (3.2)]). In this section we exploit the Guo—Schlosser nonterminating transfor-
mation to write their 1571 as a ¢g-Mellin—Barnes integral and then from there to obtain
another three-term nonterminating 4¢3 transformation to complement Guo—Schlosser’s
transformation. Note that the relation between the Guo—Schlosser transformation and
the new three-term transformation we derive (see (10.5) below) is encapsulated in [6,
Corollary 2.17] with % = ﬁ and ¢t = 1. Then we give several implications of this new
nonterminating transformatlon and its relation with the Guo—Schlosser transformation.

First we give the ¢-Mellin-Barnes integral representation of the Guo—Schlosser 15W71
which as one will notice is symmetric in the variables ¢,d. The proof of the integral
representation from the Guo—Schlosser transformation becomes clear when one notices
the existence of the factors ¢qd; /dy and qds/dy in the denominator factors of the 4¢3’s
below. This is the typical start for all the transformations we have utilized above.

Theorem 10.1. Let ¢ € CT, a,b,c,d,C*, o € (0,00). Then

12W11<abcdab ab 1/ \/> )_ (¢,9a,¢:d, %, %93 0) oo
2w ab?Ea%7%7%7%vq)

cd ac
/ (0 pea> 1\ aps) 52 (/544 bc )i @0

cd abd abc
d7 ab w’ c? o”

where w = ¥ and the mazimum modulus of the denominator factors in the integrand

dy, (10.1)

is less than unity and we assume there are no vanishing denominator factors (see Re-
mark 4.1).

Proof. Start with [11, Theorem A.1]

ab ab
12W11 (a b,ec,d, — \/ \/7 q, —)

_ (qach%;q)oo é b»acbvliibvacbd. f
= ) 493 ga ga gqab 145

d cd )
(ab, 4, %4 <d. g @ da 4o b
(qa7a_b7a7b’%;q)oo b C, d @ q2
+( b qca qa Zb ) 4¢)3 gqc gqd ch;qab_g . (102)
boe) d? Cd’q b’ b ab

Now use Theorem 1.5 with the following sets of parameters with cardinalities (A4, B, C, D)
= (2,2,2,2), given by
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_ ac ad o a q Jcd
. _{q\/ b’ 1\ bc}’b'_ {q\/ bed’ b3 a}’ (103)
[abc  |abd fab [cd
= - - = —_— —_— . 1 .4
¢ { d’ c }’ d { cd’ ab} (10.4)

This completes the proof. O

Now we exploit Theorem 10.1 in conjunction with (1.35) in Theorem 1.5 to obtain
another three-term nonterminating 4¢3 transformation for the Guo—Schlosser 15W7;.

Corollary 10.2. Let ¢ € Ct, a,b,c,d,C*, (0,00), w = e™. Then

2W11<adeab ab \/ \/7(]7)

(qa’c7ab’qc7) bdab bd q2
— d’ bd 4¢3 ’c’c,q_

(ab, (Civ qbc, q;a q) q:, qbd, q(.d T b2
(qa, d,“b,Zd,q) b, % @7
+ g 193 47 (10.5)
d ) )
(aba ¢ qca’ qb 7q)oo qbc’ qdc7 q; b2

Proof. Starting with Theorem 10.1 and utilizing (1.35) in Theorem 1.5 with the choice of
parameters given by (10.3), (10.4) directly produces (10.5). This completes the proof. O

As is indicated near [11, Corollary A.5], by choosing d = ¢~ in (10.2), one obtains
Gasper’s terminating 12W7; to 4¢3 transformation [9, Exercise 8.15] (see in particular
[7, (3.2)]). Furthermore, if you make the same substitution in (10.2), one obtains a new
terminating transformation between a terminating 1211 and a terminating 4¢s3.

Corollary 10.3. Let n € Ny, ¢ € Ct, a,b,c € C*. Then

12W11(a q ", bcq (lb — i\/ \/7 q,)

(g0, %5 q)n - ¢
= W 193 b ql—n q1 nc 14, b_2
s e 0 ) )

b ab

7?’7, "y
(ga,¢9)n b, 9,4 ¢
= ng @ ¢'- " gin 133 |- (10.6)

> b c b

Proof. Setting d = ¢~™ with n € Ny in (10.5) completes the proof. O

As a consequence of Corollary 10.2, we obtain the following non-q result where we are
using a generalization of Bailey’s notation (6.4) for very-well-poised generalized hyper-
geometric series ¢ Fg with argument unity, where
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9W8(a;bac7d7€7fagvh)
— oF a,5+1,b,¢c,d,e, f,g,h
s 5, 1+a-b1l+a—c,1+a-d,1+a—el+a-f,14+a—g,1+a— h
(10.7)

Corollary 10.4. Let a,b,c,d € C such that R(a+ 2b) < %, Rb < % so that the generalized
hypergeometric series at unity are absolutely convergent. Then

oWs (a;b,c,dya+b—c,a+b—d, 5(a—b+1),5(a—b+2))
_Tla+bc—dc—b+1l,a—d+1) bdia+b—cb+d—c
T Ta+lca+b—de—b—d+1)" 3<ac+1,db+1,dc+1’ )
N (a+b,dfc,a—c+l,d—b+l)4 3( bc,a+b—d,b+c—d .1>
Na+1,dja+b—c,d—b—c+1) c—b+1l,c—d+1l,a—d+1’
(10.8)

Proof. First start with (10.5), perform the map

(a,b,c,d) — (¢*,4", 4% q%),

and apply (1.13). Then taking the ¢ — 1~ limit while utilizing (1.14) and [15, (17.4.2)]
completes the proof. O

Remark 10.5. It is noticed in [11, Corollary A.2] that if you take d = a/c in the Guo—
Schlosser 1577 transformation you obtain a new summation formula and that this is
also equivalent to taking d = ab?/c. We also notice that if you take d = bc then the
transformation (10.5) also produces a summation formula for an 15W;;. However this
summation formula is identical to [11, Corollary A.2].

As remarked in [11, Corollary A.4], the substitution d = ab?/(gc) results in a non-
terminating 10Wy to 3¢ transformation. The application of this same substitution in
(10.5) results in a different g¢o transformation, which has some interesting side-effects.
We will discuss that now.

Corollary 10.6. Let ¢ € Ct, a,b,c € C*. Then
ab qc ¢>. b ab® 2
qCL _afvb_27q)oo C, q’ qc . q
10W9(abc ,/ \/7(17 ) ;ﬂ e ) 32 a g D3
' e 520 d)oo b

2 2 2 3 2 2

q°c” . ab” ab ab ab”. qc

o (qa' ¢, “ab3 7Q)o<> ¢ b’ gc ’ gc? q_2 4 <qa’ c?’ gqc 7q)oo ¢ b’ 6 ab . q_2

- ( b4 2¢ gc2 q) 392 ga  ab? 34, b2 qa_ ab?. 3P2\ q2¢ q2c? 4, p2 |-
5 p2 0 ab??

c’ c?
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Proof. Starting with (10.2) and setting d = ‘Z—bj produces the 1Wy to 3¢9 transformation
(10.9) and the same substitution in (10.5) produces (10.10). This completes the proof. O

One of the interesting facts about Corollary 10.6 is that if you compare only the terms
which are 3¢s’s you obtain a three-term transformation of nonterminating 3¢2’s where
they all have the same argument. Furthermore, that argument is not necessarily ¢. If

you set b> = ¢ then the transformation becomes the nonterminating g-Saalschiitz sum
[15, (17.7.5)].

11. Applications of the g-Gauss sum and a generalization of the nonterminating
g-Saalschiitz sum from the Askey-Roy and Gasper integrals

By starting with the Askey—Roy integral [3, (2.8)]

/ ((fe, 4d)2, (4, £) 25 9)oo g _ 200U i 0)abed: ) 1)
(D2, [@h)zq) (@ ac, ad be, bds oo '
and its generalization, the Gasper integral [8, (1.8)]
/7T ((fe, %d)%, (%, ﬁ,abch)f;Q)oo 4 = 2r9(f, f5;q)(abed, bede, acde; q) 0o (112)
((c:d) %, (a,b,€)Z30) ~ (g.acadbe,bd,ce,deiq)oe T

and applying its alternate realization (1.50), we are able to derive two new summation
theorems which involve the ¢-Gauss sum and the nonterminating g-Saalschiitz sums. The
straightforward application of (1.50) to these integrals produces the following interesting
results. Starting with the left-hand side of (11.1) and applying (1.50) with cardinalities
(A,C,D) = (0,2,2), given by ¢ := {a,b}, d := {¢,d}, and then comparing with the
right-hand side of (11.1) produces the following result:

ﬁ(acf,ﬁ;q) p ac,ad q ﬂ(bcﬁﬁﬂl) be,bd q
(ac,ad, ¥;q)o 1( 1o ’q’abcd>+(bc,bd,‘;;q)m 2‘“( U ’q’@>
a;b
_ H d(act, L q) 2dn(fzc,ad_ q )_ﬁ(f,%;q)(abcd;q)oo
(

= . (11.
ac,ad, ;) i b bed (ac, ad,be, bd; q) oo (11.3)

If you choose for some n € Z, f € ¢"{ad, é,bc, %,ec, e—ld} in (11.3), then the nonter-
minating 5¢; summation becomes a one term summation which is equivalent to the
(nonterminating) ¢-Gauss sum [15, (17.6.1)]. In fact both 2¢1’s in (11.3) can be summed
using the ¢-Gauss sum. Performing a particular replacement converts the above ex-

pression to something close to the form of a ¢-Gauss sum. However, this replacement
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eliminates one the four variables {a,b,c,d} (in this case d). Starting with (11.3) and

replacing (a, b, ¢, d) — (d, q—cd, 2, %) produces:

=, (11.4)

Evaluating these summations produces the following interesting relations for modified
theta functions.

Corollary 11.1. Let ¢ € Ct, a,b,¢,d, f € C*. Then

. 9(fac, £, ad,bd;q) ~ 9(fad, £, ac, be;q)
19( afTvade; Q) = ﬁb(g.q) ﬂ?%Q) ) (115)
I(fa, L, ¢ ¢q) V(&L a,bq)
O(f, 12, £1q) = —blall fad . 11.6
( ' D 7ab’Q) 7_9(0; q) + 19(§7Q) ( )

Proof. Using the ¢-Gauss sum in (11.3), (11.4) completes the proof. O
By utilizing (11.2), we are also able to derive a nonterminating summation formula
for a balanced 3¢ which is a generalization of the nonterminating ¢-Saalschiitz sum [15,

(17.7.5)].

Theorem 11.2. Let ¢ € Ct, a,b,c,e, f,h € C*, h # q™ for some n € Z. Then

a,b,c ﬁ(%?%;qxguavbvgv%;q)m %’q_b,g
302 14,9 )+ 3 302 "2 004

e7f ﬁ(ha'ag;Q)(ga%a%a%a%;q)oo

19( he hac.

bec? e ?

)
J(ha, %5‘1)(; 9 ¢ ae %;Q)OO

, (11.7)

where ef = qabc.

Proof. Starting with the left-hand side of (11.2) and applying (1.50) with cardinalities
(A,C, D) = (1,3,2), given by a := {abcde}, ¢ :={a,b,e}, d := {c¢,d}, and then compar-
ing with the right-hand side of (11.2) produces
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a; b,

e
I(acf, %; q)(bede; q) oo 5 <ac, ad, 34 ) I(f, %; q)(abed, bede, acde; q) oo
392 A .

(ac, ad, g, £ ) 4 L (ac, ad,be, bd, ce, de; q) oo

(11.8)

Then replacing (a,b,c,d, f) — (ab/q,qbcde/a?,c/a,d/a,h), followed by (a,b,c,d)
(d, ¢, a,b) with the restriction ef = gabe, completes the proof. O

Remark 11.3. If you choose for some n € Z, f € ¢"{ad, X, bc, -, ec, i}, then the non-

Y ac? U bd?

terminating 3¢ (11.8) summation becomes a three-term summation. This three-term
summation is equivalent to the nonterminating g-Saalschiitz sum. Therefore (11.7) is
a generalization of the nonterminating ¢-Saalschiitz sum (similarly for Tlllfgrem 11.2).
Note also that if one makes a judicious replacement in (11.7), such as e = 4—- (similarly
for Theorem 11.2), then one of the sums will become terminating and one may there-
fore obtain a terminating summation. However, these terminating summations are a bit
strange because they also will involve two nonterminating 3¢2’s as well.
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