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We have recently constructed evolutionary model sequences for
the equilibrium cores of rotating, low-mass protostars during their
accretion phase. The cloud that collapses to form the core is as-
sumed to be a pressure-supported, singular isothermal sphere in
uniform rotation. The equilibrium core is assumed to be an isen-
tropic, monatomic ideal gas. When T/|W| = 0.1, where T is the
rotational kinetic energy and W is the gravitational potential en-
ergy, these core models represent the early disk formation stage.
A linear stability analysis suggests that, for T/|W| = 0.13, the
star/disk systems are dynamically unstable to nonaxisymmetric
disturbances, with the fastest growth predicted for disturbances
with four- or fivefold symmetry. By using one of our protostellar
core models with T/|[W| = 0.157 as the initial configuration in a
three-dimensional hydrodynamics code, we have confirmed the
dynamic instability of numerous multiarmed spiral disturbances.
A disturbance with fourfold symmetry has the fastest growth rate
and dominates in the linear regime. Swing amplification seemns to
be the mechanism that drives the dynamic growth. In the nonlinear
regime, power shifts to threefold and then to twofold disturbances,
but we do not detect any significant transport of mass or angular
momentum nor any tendency for the disk to fragment by the

" end of a calculation spanning six and a half rotations. In one
calculation, we also detect dynamic growth of a onefold distur-
bance. We conclude that fast-growing nonaxisymmetric instabilit-
ies set in as soon as Keplerian disks form during star formation,
even when the disks have only limited radial extent. © 1991 Academic
Press, Inc.

1. INTRODUCTION

It has been confirmed observationally that young low-
mass stars are commonly surrounded by disks of solar
system size with masses up to a few tenths of M, (Beck-
with et al. 1990, Beckwith and Sargent 1990). These disks
are presumably Keplerian, as confirmed by observations
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in some cases (Sargent and Beckwith 1987). The disk
phase usually lasts about 10° to 107 years (Strom 1990),
and, in many cases, the falloff of the temperature with
distance is less steep than expected for an accretion disk
which has only local dissipation of gravitational energy.
This suggests some form of ‘‘activity,” such as nonlocal
energy transport by waves (Adams and Shu 1986, Beck-
with et al. 1990). Simultaneously, theorists have accumu-
lated results which indicate that rapidly rotating disks
and tori are susceptible to a wide range of hydrodynamic
instabilities (see Adams and Lin 1990 and Sellwood 1989
for reviews). In this paper, we report that for star/disk
systems built from the inside-out collapse of a centrally
condensed cloud (Shu 1977, Cassen and Moosman 1981,
Yuan and Cassen 1985, Shu et al. 1987, Durisen et al.
1989), the disks are dynamically unstable to nonaxisym-
metric disturbances as soon as they begin to form.

From classical work on incompressible fluid ellipsoids,
it is well known that rotating, self-gravitating equilibrium
stars are subject to a variety of global secular and dynamic
instabilities (Chandrasekhar 1969, Durisen and Tohline
1985). Some aspects of this classical work, particularly
those concerning the barlike or two-armed Kelvin modes
for oblate stars, have been tested by means of numerical
three-dimensional hydrodynamic simultations, using ro-
tating, self-gravitating polytropic fluids. A polytropic fluid
has a power-law relation between pressure P and density
p given by

P= Kp”l/", (1)
where K and n are constants and n is called the
“polytropic index.”” In these studies, the angular mo-
mentum distribution with mass is usually assumed to be
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that of a uniform-density sphere in solid body rotation,
which is also the angular momentum distribution of a
Maclaurin spheroid (see Section 2a). Just as for the
incompressible Maclaurin spheroids, the first nonaxi-
symmetric dynamic instability encountered, as the rota-
tion parameter 7/|W| (T = rotational kinetic energy,
W = gravitational potential energy) increases along
sequences of axisymmetric equilibrium polytropes, is
the instability of global two-armed barlike modes for
T/[W| = 0.26 (Tohline et al. 1985, Durisen and Gingold
1986, Durisen et al. 1986, Williams and Tohline 1987,
1988). These results, with n ranging from 0.5 to 1.8,
have been argued to show that, as far as the lowest-
order modes are concerned, the stability of rotating
polytropic stars is insensitive to model details (Durisen
and Tohline 1985). The numerical experiments with
protostar-like configurations reported in this paper dem-
onstrate, however, that this is not correct. Large-scale
instabilities are quite sensitive to the choice of angular
momentum distribution, even when n and T/|W| are
held fixed.

Consider an isothermal gas cloud in slow but uniform
rotation which has undergone a protracted phase of ambi-
polar diffusion. Such a cloud will tend to acquire the
density distribution of a singular isothermal sphere as a
result of its subsonic evolution (see Shu et al. 1987 and
references therein). If the equilibrium protostellar core
formed by the collapse of a singular isothermal sphere
retains the specific angular momentum distribution of its
parent cloud, a slowly rotating, low-mass central star
forms first with low 7/|W|. As the inside-out collapse of
the cloud proceeds, material with higher specific angular
momentum falls in, so that 7/|W| increases monotonically
and a nearly Keplerian disk eventually develops when
T/|W| = 0.1 (Cassen and Moosman 1981, Yuan and Cas-
sen 1985). Recently, we have computed a series of equilib-
rium n = 3/2 polytrope models that have the angular mo-
mentum distribution of a uniformly rotating, singular
isothermal sphere (Durisen et al. 1989). These models are
reasonably good approximations for rotating protostellar
equilibrium cores during their accretion phase, when
Stahler’s (1988) interior entropies are adopted to account
for accretion and deuterium burning. Using the Lagran-
gian normal mode equation (Lynden-Bell and Ostriker
1967) with trial eigen-functions appropriate for the Mac-
laurin spheroids, we have tested the linear stability of
these models. We find that nonaxisymmetric instabilities
set in for 7/|W| = 0.13 and that the most unstable modes
are of four- or fivefold symmetry. Using a modified ver-
sion of J. E. Tohline’s 3D hydrodynamics code (Tohline
1980, Williams 1988), we appear to have detected these
dynamic instabilities in a protostellar core model with
T/|W| = 0.157. In this paper, we shall describe these

results in detail and propose a mechanism for the instabil-
ities.

2. PREPARATION

a. Equilibrium Models

The gas cloud which collapses to form the equilibrium
protostellar core is idealized as a singular isothermal
sphere in uniform rotation. The rotation is dynamically
unimportant at the cloud dimension, so it does not affect
the initial equilibrium of the cloud or the initiation of
the collapse. Each fluid element is assumed to conserve
its angular momentum during the inside-out collapse of
the cloud. Such local conservation of angular momentum
guarantees that the distribution of specific angular mo-
mentum j as a function of cylindrical mass fraction
about the rotation axis is the same for the mass of a
central sphere in the cloud and for that same mass after
it collapses into the equilibrium core. The cylindrical
mass fraction JM(r) is defined as the fraction of the mass
within a cylinder of radius » about the rotation axis.
The j(M) for a uniformly rotating, singular isothermal
sphere has a unique functional form given by Eq. (4) of
Durisen et al. (1989). The equation of state in the
protostellar core is assumed to be well-approximated by
an n = 3/2 polytrope, as justified in Stahler (1988).

Rotating protostellar core models are constructed using
an axisymmetric equilibrium polytrope code (Boden-
heimer and Ostriker 1973) based on the self-consistent
field method (Ostriker and Mark 1968). The code is run
with the same numerical accuracy as in Durisen (1975)
and in Imamura ez al. (1985). As demonstrated by Boden-
heimer and Ostriker (1973), given a specific choice of
polytropic index » and a unique functional form for j(At),
a one-parameter family of nondimensional models can be
computed by setting the total mass M, the gravitatational
constant G, and the Kin Eq. (1) to unity and then varying
the total angular momentum J, or equivalently T/|W|. A
variety of functional forms for j(l) can be obtained by
considering the j(M)’s for uniformly rotating polytropic
spheres with various choices for the polytropic index n’
of the spheres (see Bodenheimer and Ostriker 1973). In
this notation, the Maclaurin spheroid angular momentum
distribution would be designated the n’ = 0 j(t), and that
of a uniformly rotating, singular isothermal sphere would
be the n’ = o j(M). Model sequences can then be denoted
by giving n and n' to specify the equation of state and the
JM), respectively. A particular dimensionless model is
denoted by specifying n, n', and T/|W|. As n’ is increased
for fixed n, more angular momentum is concentrated to-
ward the equatorial mass elements so that models resem-
bling stars with Keplerian disks occur at lower T/|W|.
When n = 3/2 and n' = o, the sequence of models of
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different T/|W/| represents protostellar cores at different
evolutionary stages.

Figures 1a and b show the meridional density contours,
the angular velocity distribution Q(r), and the cylindrical
mass fraction distribution J(r) for two protostellar core
models (n = 3/2, n’ = ») with T/|[W| = 0.056 and 0.157,
respectively. Also shown for comparison in Fig. 1b is the
Keplerian Qg (r) for the T/|W| = 0.157 model, where Qg (r)
is defined as the Q required at r for a circular orbit about
a point mass equal to A(r). For protostellar core models
with T/|W| = 0.1 (see Durisen et al. 1989), the angular
velocity  rises steeply to a maximum €, from zero as
rincreases and then decreases to nearly Keplerian values.
These models can be used to represent the early disk
development phase of a protostar.

Although it is convenient to perform the stability analy-
sis in dimensionless units for adiabatic perturbations,
many readers would probably appreciate some feeling for
the physical time scales and dimensions that characterize
this problem. Sections Ilb, 1lla, and the Appendix of
Durisen et al. (1989) describe how to obtain physical units
from the “‘polytropic units” (G = M = K = 1) of the
model. The 7/|W| = 0.056 model is not significantly differ-
ent from the 7/[W| = 0.061 model in Table 3 of Durisen
et al. However, none of the models in Durisen et al. is
close to the T/|W| = 0.157 model. We have, thus, in Table
I, listed some of the useful parameters for the 7/|W| =
0.157 model in both dimensional and dimensionless (poly-
tropic) units. The parameters in dimensional units are
obtained as follows. First, we assume the model is a mem-
ber of an evolutionary sequence where the mass accretion
rate M is 107° M/year (corresponding to an isothermal
cloud temperature = 34 K) and the deuterium-to-hydro-
gen ratio is 2.5 x 107°. Let us suppose that M = 1M,.
Figure Al of Durisen et al. then gives K = 1.16 x 10" in
cgs units from Stahler’s (1988) calculations. Using this K
and Eq. (A1) of Durisen et al., we then convert parameters
from polytropic units to dimensional units. The total angu-
lar momentum J for this model in cgs units, as given in
Table1,is 5.38 x 10°' g cm?s~ . Making use of the correct
form of Eq. (3b)! of Durisen et al., we find that to produce
this much J in the inner 1M, of a 34 K initial cloud, the
angular speed of the precollapse isothermal cloud would
have to be 4.2 x 10~ radian s~ !, which is somewhat
above the lower point d in Fig. 5 of Durisen ef al. The
equatorial radius of the model R,, = 19R,; is considerably
smaller than the semimajor axis of Mercury’s. orbit
(83Ry). If we take the nearly Keplerian () to begin at
rR., = 0.35 (see Fig. 1b), the Keplerian disk contains

! Equation (3b) of Durisen et al. (1989), which relates J and 0, is
incorrect. Its correct form should be J = 0.0537 G¥* M? Qy/M **. How-
ever, all tables and plots in that paper were based on the correct equation.

about 0.16M, so the disk is fairly massive, though small
in radial extent. As discussed in Durisen ef al., this partic-
ular physical model would have already ignited deute-
rium. For the purpose of studying the stability of the star/
disk system, we ignore this additional complication.

For T/|[W| = 0.157, Fig. 1c shows the surface mass
density 2. and midplane temperature T distributions as a
function of . The “‘disk’ in our model is not an accretion
disk and has distinctly steeper mass and temperature dis-
tributions than usually assumed for the equilibrium disks
in other studies. For instance, T(r) « =2 and 3(r) « r~*
provide fits of about 15% accuracy over the range rIRg, =
0.3 to 0.8, compared with r~ "2 and r 32, respectively, for
the spatially extensive disks in Adams er al. (1989).

b. Linear Stability Analysis (LSA)

We have used a Lagrangian formulation of lincar stabil-
ity analysis for nonaxisymmetric modes (Lynden-Bell and
Ostriker 1967) as a preliminary exploration of the stability
characteristics of the protostellar core models. As a varia-
tional principle, this scheme accurately locates neutral
points, where real eigenfrequencies of modes become
zero (as in Imamura et al. 1985). In its current form, it
provides only approximate results for dynamic instabilit-
ies, when eigenfrequencies are complex. We have applied
the LSA code to the star/disk models in a manner that is
equivalent to the tensor virial equations of order m for e”**
disturbances (see Tassoul 1978), where ¢ is the azimuthal
angle about the rotation axis. The LSA is equivalent to
the tensor virial equations when the spatial part of the
Lagrangian displacements of the fluid elements are taken
to have the same form as the eigenfunctions of the Maclau-
rin spheroids, namely

Er,¢, ) ~r" (1,4, 0) ™ 2)

in cylindrical coordinates. Because these are not true ei-
genfunctions unless # = 0 and »’ = 0, the LSA is then
merely an approximation of unknown accuracy.

The LSA analysis of models with a wide range of n, n’,
and 7/|W| values will be presented in detail elsewhere
(Imamura et al. 1990). Table II shows the T/|W| values
above which the LSA predicts dynamic instabilities for
various m when n = 3/2and n’ = 0, 1/2, 3/2, and «. Only
modes with m = 5 were studied for this range of »n’. For
n' = 0, m = 2 1s the first mode to become unstable, and
higher -m’s become unstable at successively higher
T/|W/s. This pattern is the same for the n = 0, n’ = 0
Maclaurin spheroids. Hydrodynamic calculations in 3D
have verified many aspects of the n’ = 0 results (Tohline
et al. 1985, Durisen and Gingold 1986, Durisen et al. 1986,
Williams and Tohline 1987). What is new in Table II is
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FIG. 1. (a) Equilibrium protostellar core model for 7/|W| = 0.056. The upper panels give density contours in a meridional plane for p/p, = 0.9,
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 3 x 1072, 1072, 3 x 1073, 1073, and the surface. The z axis is the rotation axis. The lower panels give Q(r)
normalized to Q,,, and cylindrical mass fraction (). (b) Equilibrium protostellar core model for T/|W| = 0.157. Also see the legend to (a). A
Keplerian Qg (r) is shown for a circular orbit at r about a point mass J(r). The “CR’" and ““OLR”’ in the upper panel are the corotation radius and
the outer Lindblad resonance, respectively, for the m = 4 pattern detected in the simulation. Small irregularities in {(r) near R., have been
smoothed over. (c) Surface mass density 3, and the equatorial plane temperature T versus r/R,, for T/|W| = 0.157. Both % and kT/u = Plp are given
in polytrope units, where k = Boltzmann constant and u = average particle mass for the stellar gas. T is computed assuming the gas is ideal with
a constant value of w.
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TABLE 1
Physical Parameters for T/|W| = 0.157
Dimensionless Physical
Parameter units units Definition
J 0.632 5.38(51) g cm? 57! Total angular momentum
R, 9.60 19.1 Ry Equatorial radius
R /R, 4.04 — Ratio of equatorial to
polar radius

Pe 0.0415 0.0312 g cm ™3 Central density
Qax 0.141 3.2(—5) radians s~ Maximum angular speed
MQ ) 0.649 0.649 M, Cylindrical mass at O,

eq 0.030 6.7(—6) radians s~! Equatorial angular speed
Veq 0.29 90 km s~! Equatorial velocity

that as »’ increases, dynamic instabilities set in at mark-
edly lower T/|W|’s and the ordering of the most unstable
m values changes. For the n’ = «, where we have studied
mvalues up to 10, the LSA predicts that dynamic instabili-
ties with m = S will set in first near 7/|W| = 0.13 as T/ |W|
is increased.

The functional form chosen for ¢ contains a so-called
trivial component for differentially rotating objects (Fried-
man and Schutz 1978). The trivial component fails to
conserve circulation and amounts to a relabeling of fluid
elements which destroys the gauge invariance of the en-
ergy functional. Our LSA approach is thus, in a strict
sense, invalid. A priori, however, one cannot predict to
what extent and in what sense trivials affect the results of
stability analyses. We note that in analyses of the neutral
points of the protostellar core models and other polytropic
sequences where the effects of the trivials could be elimi-
nated, trial functions such as Eq. (2) lead to qualitatively
correct results (Imamura ef al. 1985). Thus, the LSA in
its tensor virial equation form has proven to yield surpris-
ingly accurate results in situations in which its accuracy
could be checked.

TABLE II
T/|W| for Onset of Dynamic Instability According to the LSA
n' m=2 m=73 m =4 m=75
0 0.260 0.280 0.292 0.299
172 0.254 0.254 0.252 0.252
32 — — (0.175) 0.164
0 0.20) 0.148 0.133 0.132

Note. Blank entries indicate that equilibrinm models of large enough
T/|W| could not be converged. Entries in parentheses are given for a few
such cases where the stability limit could be extrapolated with some
confidence. All entries are for n = 3/2 polytropes.

c. 3D Hydrodynamics Code

The 3D code used is a version of Tohline’s (1980) hydro-
dynamics code with self-gravity modified to include sec-
ond-order van Leer monotonic advection and operator
splitting (Norman and Winkler 1986, Williams 1988). The
hydrodynamic and Poisson equations are solved by a fi-
nite-difference method on a cylindrical grid (r, ¢, z). The
hydrodynamic structure is advanced in time through an
explicit, first-order time integration of the equations. Dif-
ferent but uniform grid spacing is used in the three cylin-
drical coordinates; and spatial gradients are differenced
in a second-order accurate form. As in Williams (1988), all
quantities are located at cell centers. Reflection symmetry
about the equatorial plane is assumed; hence the calcula-
tions are performed only for the upper hemisphere, using
a 32 x 64 x 16 cylindrical grid. Tests described in the
Appendix show that this code causes significantly less
numerical damping of nonaxisymmetric structure than
Tohline’s original code.

3. HYDRODYNAMIC SIMULATIONS

a. Three Simulations

According to the LSA prediction, our protostellar core
models are unstable to high-order nonaxisymmetric dis-
turbances once T/|W| = 0.13. To test this, two equilibrium
models with T/|W| = 0.056 and 0.157 are selected from
our model sequence. The models are chosen so that their
T/|W| is either well above or far below the critical value
0.13. To stimulate nonaxisymmetric disturbances, both
axisymmetric equilibrium models are given low-level, ran-
dom density perturbations after they are mapped onto the
three-dimensional grid, such that 8p/p in every cell is a
random number between —5 X 103 and 5 x 1073, The
models are then followed for several rotations. The results
of the simulations are summarized in Table III.
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TABLE III
Hydrodynamic Simulations for n’ = «
Number of

T\W| rotations m =1 Outcome

0.056 2.2 On Nonaxisymmetric disturbances
damp slowly.

0.157 4.4 On Multiarmed disturbances grow in
the linear regime; m = 1
dominates later.

0.157 6.5 Off Multiarmed disturbances grow in

the linear regime with m = 4
dominant; power shifts to m = 3
and m = 2 in the nonlinear
regime.

Disturbances with cos ¢ and sin ¢ symmetry are artifi-
cially suppressed in one of the 7/|W| = 0.157 calculations,
because, when they are not, the center of mass of the
whole system drifts as the m = 1 nonaxisymmetric distur-
bance grows. Such a drift is completely unphysical. Al-
though the m = 1 disturbance starts to grow before the
center of mass drifts significantly, suggesting that the
growth of m = 1 may be real, we are more confident about
resolving the behavior of the higher m-value disturbances
if the center of mass is held fixed. Consequently, all of
the details presented in this section for 7/|W| = 0.157 are
from the calculation with m = 1 suppressed. However,
based on a comparison of the two calculations, we find
that the linear regime results for m = 3, 4, and 5 are not
strongly affected by the suppression of m = 1.

b. Method of Analysis

To measure the growth of disturbances with different
symmetry, we employ a method used by Tohline ef al.
(1985). The azimuthal density distribution at each meridio-
nal grid location is Fourier transformed to get

7 &
a,(r,z) = - > p(r, b, 2) cos(mLdd)dd (3a)
L=1
TABLE 1V
Comparison of LSA and Hydrodynamic Results

for T/|W| = 0.157

1, Q,
m Hydro LSA Hydro LSA
3 22 35 0.133 0.0474
4 21 19 0.134 0.0434
5 25 20 0.129 0.0410

Note. t, and (), are given in polytrope units where G = M = K = 1.
In the same units, Q,,, = 0.141 for the 7/|W| = 0.157 protostar model
generated by the equilibrium code.

and

64
b,(r, ) = %; p(r, ¢, 2) sin(mL84)d¢ (3b)

where 8¢ = 27/64 is the grid spacing in ¢ and m takes on
the values m = 0, 1,2, . . ., 31 for a,, and m = 1, 2,
3,...,32forb,,. The amplitude c,, and phase angle ¢,,
of Fourier component m are calculated according to

enlr, 2) = [an(r, 2)* + b, (r, )] (4a)

and

o,.(r, z) = arctan [ — b,,(r, 2)/a,(r, 2)]. (4b)
The relative amplitude A, (r, z) = c,/c, as a function of
time then provides a measure of the growth rate for nonax-
isymmetric disturbances of azimuthal order m. The phase
¢,, as a function of time is used to determine the emer-
gence of a coherent disturbance with a fixed pattern speed
Q, = ¢ /m.

No growth occurs in the T/|W/| = 0.056 calculation after
two rotation periods. In fact, the A,,’s generally decrease
as discussed in the Appendix. In the T/|W| = 0.157 calcu-
lations, growth is evident after the same number of rota-
tions, so the 7/|W| = 0.157 calculations are continued
over an extended period.

c. Linear Regime for T/|W| = 0.157

Figures 2 and 3 show the amplitudes A,, A5, A,, As,
and the phase ¢, as a function of time at the radius r/R,,
= (.27 in the equatorial plane. Time is measured in these
plots in units of the fluid rotation period of the equilibrium
model at Q... This period is 45 in polytropic time units.
We have carefully examined similar plots of A,, and ¢,,
throughout the equatorial plane for m up to 10. The emer-
gence of a coherent disturbance is determined by the
detection of a sinusoidal pattern in the cos ¢,, plots. For
a well-defined dynamic instability, coherent pattern rota-
tion should emerge at about the same time as the onset of
exponential growth in the corresponding A,,. These crite-
ria are met by m = 3, 4, and § in the linear regime for the
region just outside the radius of Q,, (see Fig. 5), so we
are reasonably confident that we have detected linear
dynamic instabilities for these m’s. The m = 2 disturbance
also grows in amplitude, but there is not a well-defined
exponential phase, and ¢, does not exhibit a coherent
pattern. Coherent pattern rotation and exponential growth
with similar Q, and e-folding time ¢, are seen for m = 4
throughout the region r/R., = 0.23 to 0.43. The onset is at
about the same evolutionary time over these r’s for m =
4 and is somewhat earlier than for m = 3 and 5. Coherence
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FIG. 2. Fourier amplitudes of 8p/p versus time for (a) m = 2, (b) m = 3, (c) m = 4, and (d) m = 5 at /R, = 0.27 in the equatorial plane. Time
is given in units of 45 polytropic units, which is approximately the rotation period at Q.. Only data from every 50th hydro time step are plotted.
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FIG. 5. Gray-scale plots of nonaxisymmetric log(8p/p) in the equatorial plane at various evolutionary times. Two panels are shown at each of
seven times. The left-hand panel is for m = 4 alone; the right-hand panel is the full nonaxisymmetric 8p/p. For contrast, all 8p/p less than 10~* are
set to white. The radii correspond to the corotation and outer Lindblad resonances for m = 4. The gray scale in each plot is normalized to the
maximum value of 8p/p in that plot. Rotation is counterclockwise. Time is given in the lower right in units of rotation periods at Q.

in ¢; and 5 is more restricted in radial extent. The m =
4 disturbance is the dominant coherent disturbance in the
linear regime. Higher m values typically show growth in
A, and coherence in ¢,, much later in the calculation, if
at all. We suspect their growth is due to power from
lower m values being fed into that of higher m values by
nonlinear effects.

Figure 4 and Table IV compare (), and 7, from the
hydrodynamic simulations with the LSA approximate
predictions for m = 3, 4, and 5. It is startling that the

t,’s agree well, while the €),’s disagree badly. Since the
Maclaurin spheroid éigenfunctions used in the LSA have
large amplitudes at large /R, where () is low, it is not
surprising that the LSA (s are lower than those seen in
the hydro code. However, it is remarkable that the LSA
can successfully predict dynamic instabilities which actu-
ally grow with a very different (},. We shall return to this
point in Section 4b. From the discussion in-the Appendix,
we expect m = 5 disturbances to be affected, if not sup-
pressed, by numerical diffusion. We cannot determine
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with the present hydro code at this resolution whether or
not modes with im = 5 may actually grow faster than those
with m = 4.

d. Equatorial Plane Images for T/|W| = 0.157

In the linear regime, a four-armed disturbance domi-
nates for about three rotations. After the disturbance be-
comes nonlinear, its amplitude saturates at about 10 to
20% in 8p/p. Later, Fourier power shifts to disturbances
with lower symmetry. To illustrate these features of the
evolution, Fig. 5 shows a series of gray-scale plots of
log(8p/p) in the equatorial plane both for m = 4 and for
the full nonaxisymmetric disturbances. To enhance the

contrast, values of 8p/p below 10™* are set to white. To
be more precise, we have plotted, for m = 4,

log(8p/p) = log{A4(r, 0) cos[4¢ + dy(r, O]},  (5)

and, for the full nonaxisymmetric plots,

32
log(8p/p) = log{ 22 A, (r, 0)cos [md + &, (r, 0)]}, (6)

when the arguments of the logarithms are =10"*. Note
that only relative densities are shown and the axisymme-
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tric parts are left out. This permits arbitrarily small nonax-
isymmetric disturbances to be displayed clearly.

The corotation resonance (CR) and the outer Lindblad
resonance (OLR) for m = 4, plotted as the two concentric
circles in Fig. 5, are defined, respectively, by

Q, =10, (N

P

which occurs at /R, =~ 0.23 for m = 4, and
Q,=Q + «/m, (8)

which occurs at 7/R,, = 0.42 for m = 4. The value of (),
for m = 4 is determined from the phase ¢,(1), and Q(r)
and k(r) are determined from the equilibrium model. The
quantity «, the epicyclic frequency (see Binney and Trem-
aine 1987), is

KZ:rdﬂz
dr

+ 402, &)

As can be seen from the plots, after one rotation period,
the four-armed disturbance has established a well-defined
pattern with short-wavelength trailing spiral waves out-
side the OLR and what can be interpreted as pieces of
long-wavelength leading and trailing spiral waves between
the CR and the OLR. The lumpy structure of the short
trailing waves is probably the result of interference be-
tween leading and trailing short waves. This pattern per-
sists from ¢ = 1 to 2 until the interference between the
short leading and short trailing waves becomes so strong
that the pattern shatters into arcs and lumps. Wave pat-
terns following this stage are more complicated, continu-
ously changing, and hard to identify. However, a coherent
pattern speed is maintained in the region bounded by the
CR and the OLR during exponential growth, which ends
at ¢ = 3.5, and during the early nonlinear phase from 3.5
to 4.5. Comparison of the left- and righ-hand panels of
Fig. 5 shows that, in the exponential growth regime, repre-
sented by the = 1.35 to 2.14 panels, and, in the early
part of the nonlinear regime, as represented by the 1 =
4.00 panels, m = 4 dominates the appearance of the nonax-
isymmetric structure even though other m values are pres-
ent with substantial amplitude. In the late nonlinear re-
gime, as represented by the ¢ = 5.45 panels, it is evident
that there is more power in the m = 2 and 3 distrubances
than in the m = 4. This can also be seen, to some extent,
by direct comparison of the A,’s in Fig. 2.

e. Asymptotic Behavior

We have not yet determined the ultimate nonlinear out-
come of the dynamic instabilities. No consistent behavior
emerges. Equatorial plane patterns for individual m values

continuously change and seem to exhibit both leading and
trailing spiral behavior, usually with indications of strong
interference between leading and trailing waves. As dis-
cussed in the Appendix, we have detected no significant
changes in either the axisymmetric mass distribution Al(r)
or the angular momentum distribution j(J{l). We have also
used the A,,’s as nonlinear time series data and analyzed
them for chaotic behavior without success.

The only noticeable trend is the shift in nonaxisymme-
tric power to m = 2. By the end of the calculation, the m
= 2 amplitude in 8p/p reaches 20 to 30%. At some radii,
as in Fig. 2a, there is a suggestion that m = 2 is still
growing. Whether this leads to disk fragmentation or net
transport remains to be seen through longer calculations.
We should add that when m = 1 disturbances were not
suppressed, power shifted to m = 1 in the nonlinear re-
gime, but we do not have complete confidence in this
result because of the simultaneous drift of the center of
mass.

4. DISCUSSION

a. Swing Amplification as the Instability Mechanism

The equatorial plane patterns present during the expo-
nential growth of m = 4, as illustrated by the left panels
for t = 0.994, 1.35, 1.64, and 2.14 in Fig. 5, suggest that
the dynamic instability mechanism is swing amplification
(see Binney and Tremaine 1987 and references therein).
As mentioned in Section 3d, it is possible to identify all
the components of a four-wave feedback loop, including
pieces of long leading and trailing waves in the regime
between the CR and the OLR, a trailing short wave propa-
gating to the disk edge outside the OLR, and hints, in the
lumpiness and especially near the edge, of a short leading
wave reflected by the edge and propagating inward. At ¢
= 2.14, the breakup of the pattern outside the OLR into
leading and trailing arcs seems to suggest strong interfer-
ence between the short leading and trailing waves. As
swing amplification involves the feedback of short leading
waves (see Adams et al. 1989 and references therein), we
conclude that swing amplification is the driving mech-
anism.

The radial wavelength of the density waves can be cal-
culated using the WKBJ dispersion relation for a gaseous
disk (see Binney and Tremaine 1987),

mAQ — Q) =k - 2nG3lkl + K2, (10

where v, is the adiabatic sound speed, k is the radial
wavenumber, and 3, is the surface mass density. This
relation gives wavelengths A = 277/|k| for the m = 4 short
waves (the greater solutions for ||), in agreement with
our hydro results to within 25% at /R, = 0.6 and 10%
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at r/R., = 0.8. The agreement suggests that the WKBJ
treatment is reasonably accurate for the outer nearly
Keplerian part of our star/disk system, and it again sup-
ports our identification of the linear regime patterns out-
side OLR as short trailing density waves.

Swing amplification has been most extensively studied
for thin gaseous and stellar disks with flat rotation curves,
resembling galaxies. As presented in Toomre (1981), for
m = 2 disturbances, strong amplification in such disks
requires that the X and Q parameters, defined by

— USK

Q_WGE

(1n

and
K 2

X 2rmGY’ (12)
must satisfy X <3 and Q < 3 near the CR. For m = 4 in
the T/|W| = 0.157 model, where both Q and X increase
monotonically with cylindrical radius, the Q and X condi-
tions are satisfied for r/R., < 0.64. X and Q values at the
CR are 0.44 and 1.4, respectively.

Asreviewed in Adams and Lin (1990) and in Papaloizou
and Savonije (1989) [see also Miyama et al. (1984), Hach-
isu et al. (1988), Vishniac and Diamond (1989), and Boss
(1989) for work not cited in these reviews], various types
of nonaxisymmetric instabilities in self-gravitating gas-
eous disks and tori have been reported by other re-
searches. It goes beyond the scope of this paper to discuss
and evaluate all the associated mechanisms. In most
cases, the disks are thinner and more spatially extended
than ours and the central mass is not included explicitly
in the analysis. The evidence described in the preceding
paragraphs, although not conclusive, indicates that our
calculations satisfy many of the necessary conditions for
the swing mechanism to operate. Code improvements sug-
gested in Section 4e, especially for the LSA, should allow
us to delineate the physical mechanism of instability with
greater confidence in the near future.

b. Comparison of LSA and Hydro Code Results

In some respects, it is remarkable that, with the nonspi-
ral trial Lagrangian displacements of Eq. (2), the LSA
appears to detect the proper m’s and ¢,’s of spiral density
wave instabilities driven by swing amplification. We are
currently examining both the LSA and hydro code results
in more detail in an effort to understand this. The trial £
clearly concentrates amplitude toward R, so it is not
surprising that the LSA predicts much slower pattern
speeds. For m = 4, Q,(LSA) in Table IV corresponds to
Qat r/R., = 0.82. When we examine the terms in the LSA
which determine whether or not an imaginary part of the

eigenfrequency will occur, leading to exponential growth,
we find that the imaginary part is generated entirely in the
region between () = Q (LSA) and the disk edge. This
suggests that the entire disk, not just the region near Q.,,,,
may be susceptible to dynamic instabilities due to swing
amplification with a wide range of pattern speeds. The
trial function in the LSA, being weighted strongly toward
large r, selects an ), that produces a resonant cavity near
the edge of the disk. The hydro code, on the other hand,
may find growth of disturbances with , near Q,,,,, be-
cause, close to Q... the disk has the lowest Q. We are
currently developing a more accurate LSA which should
clarify some of these questions and determine the m and
T/|W| for onset of instability along the model sequence
with more precision.

c. m = 1 Spiral Modes

Independent work by other researchers (Adams e al.
1989, Shu et al. 1990) has demonstrated that a mechanism
related to swing amplification can destabilize one-armed
spiral modes in massive and spatially large Keplerian
disks around stars. They call this mechanism *‘sling’* am-
plification, because an indirect potential term induced by
the displacement of the star (treated as a point mass) from
the center of mass of the system plays an indispensible
role in the amplification. The instability involves a four-
wave feedback loop which is somewhat similar to the one
we have discussed for swing amplification. The work by
this group is so far limited to characterization of the insta-
bility in the linear regime. The m = 1 character raises
the possibility that the nonlinear outcome could be the
production of a binary companion from the disk.

In fact, when we permit m = 1 disturbances in our own
hydro calculations, they do eventually dominate in the
nonlinear regime. We saw such behavior even in prelimi-
nary calculations from the summer of 1988 (Yang and
Durisen 1989). Unfortunately, we cannot trust this result,
because just after m = 1 begins its exponential growth,
the center of mass begins an exponential deviation from
the grid center. By the end of the m = 1 *‘on’’ calculation
for T/|W| = 0.157, the m = 1 disturbance is at about 10%
amplitude in 8p/p and the center-of-mass deviation is 0.7%
of the equatorial radius or 16% of the radial grid spacing.
This deviation is not large, but is growing exponentially.
We intend to find a way to treat m = 1 more accurately.
At this point, we can only report that an » = 1 disturbance
in T/[W| = 0.157 does grow and that the 7/|W| = 0.157
model does have an extended enough Keplerian disk to
include the resonant cavity necessary for the sling mecha-
nism to work (Adams et al. 1989).

d. Model Improvements

One problem with our protostar models is that we effec-
tively apply the same internal specific entropy to our high
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T/|W| models as Stahler (1988) would assign to a nonrotat-
ing protostellar core of the same mass (Durisen et al.
1989). When the accretion flow misses the starlike, slowly
rotating, central body for 7/|W| = 0.1, the Keplerian disk
in our model is probably assigned too large a specific
entropy and so is too hot and thick. However, this casts
no doubt on our demonstration of dynamic instability. For
both swing and sling amplification, the lower Q’s expected
in lower entropy models would only tend to enhance insta-
bility (Toomre 1981, Shu et al. 1990). We plan, in future
studies, to produce models with lower disk entropy by
using a nonpolytropic P—p relation.

The n' = « j(M) produces the steep rise to (. in the
starlike part of the model. For plausible initial rotation
rates of the cloud out of which the protostar forms (see
Section 2a), the ““star’” would be expected to have ignited
deuterium and be in uniform rotation before the disk forms
(Durisen et al. 1989). By conventional theory, there would
then be an even steeper change in () between star and
disk over a thin boundary layer. We cannot say at present
whether such changes in the form of Q(r) would affect the
instability. Although we describe a four-wave feedback
loop using reflection of short waves at the disk edge, we
cannot rule out a contribution to the feedback from waves
transmitted through the starlike part of our model. We
need to test the sensitivity of the instability to the form of
Q(r) and to the nature of the star/disk boundary.

Another serious concern is that the feedback loop, as
we currently understand it, requires propagation of waves
across the disk and strong reflection at the outer edge.
The sensitivity of the instability to these effects needs to
be tested. The sharp outer edge of our model disk may be
realistic only during the earliest phase of disk develop-
ment, when the accretion streamlines first begin to miss
the central star.

e. Code Improvements

Efforts are underway to improve both the LSA and the
hydro codes. Two of us (J.N.I. and J.T.) are developing
a hydrodynamic code linearized about equilibrium, which
should permit accurate study of waves, feedback loops,
and dynamically growing disturbances. Another two of us
(S.Y. and R.H.D.) are exploring alterations in the nonlin-
ear hydro scheme to improve numerical performance and
to permit finer grid resolution at affordable expenditures
of computer time. For instance, we have already found
that implementation of a second-order time differencing
scheme developed by Christodoulou and Tohline (1990)
permits larger time steps and that adoption of cell face
centering cures the sawtooth discussed in the Appendix.

5. CONCLUSIONS

Both the LSA and 3D hydro calculations have shown
that for T/|W| = 0.13, star/disk models for the equilibrium

cores of low-mass protostars are dynamically unstable to
multiarmed nonaxisymmetric modes. Growth times esti-
mated from both methods agree reasonably well. Distur-
bances with fourfold symmetry have the fastest hydro
code growth rates in the linear regime. The mechanism
for the growth of disturbances seems to be swing amplifi-
cation of spiral density waves through a four-wave feed-
back loop.

For star formation, this leads to a conclusion of consid-
erable importance. When low-mass protostars form by
inside-out collapse of singular isothermal spheres, the re-
sulting massive disks are susceptible to violent nonaxi-
symmetric instabilities even as they just begin to form.
Our work shows that swing amplification produces
multiarmed spiral disturbances; the work of others (Ad-
ams et al. 1989, Shu et al. 1990) demonstrates a related
sling instability of one-armed modes, which we also seem
to detect. The nonlinear consequences of these instabilit-
ies remain to be determined. Our calculations so far indi-
cate a nonlinear trend toward saturation of the high-m
modes but with continued growth of low-order distur-
bances (m = 1 and 2). These nonlinear trends have not
yet been followed to completion. We hope soon to resolve
whether binary formation, disk fragmentation, or sus-
tained nonlinear turbulence is the final outcome.

APPENDIX: NUMERICAL PERFORMANCE OF THE 3D
HYDRODYNAMICS CODE

In Section 3, we report the dynamic growth of higher-order (up to m
= 5), high-frequency (€1, =~ Q,,) disturbances with short radial wave-
lengths (a few radial zones). This makes rather severe demands on the
performance of the numerical scheme. In this Appendix, we report the
results of several tests which estimate the code’s numerical dissipation
and diffusion.

One of the tests is the recomputation of a standard bar mode (m = 2)
calculation. We choose n = 3/2, n’ = 0, and T/|W| = 0.33 with a grid
resolution similar to that in Tohline ez al. (1985) and Durisen ez al. (1986).
As cited in Tohline et al., for the bar mode, the tensor virial equations
yield an approximate pattern speed Q,(TVE) = 0.019 and an e-folding
time 7.(TVE) = 55 in polytrope units. Simulations done with their first-
order 3D code give a pattern speed (Q(first) = 0.021 and an e-folding
time z,(first) = 120, as deduced from the Fourier amplitudes A, and phase
¢,. The difference between the inverses of t(TVE) and z,(first) gives a
numerical damping rate 1/¢;, where t, is the damping time. The observed
damping time 74(first) = 100 agrees within 10-20% with the damping time
estimated from their code’s truncation error. In terms of the shortest
rotation period in the model, #4(first) is about unity.

Using our present code, we obtain a pattern speed (. (present) = 0.023
+ 0.001 and an e-folding time z,(present) = 67 = 10. The pattern speed
agrees closely with Q(first), suggesting that the true physical Q, for m
= 2 is somewhat greater than O, (TVE) by 15%. Comparison of 7,(TVE)
with ¢, (present) suggests #y(present) = 300, or about'three times the
shortest rotation period, but with a 50% uncertainty. The improvement
over first order is not as large as expected for a fully second-order
scheme. The overall phase coherence of the bar in the present code is
also not nearly as good as in the first-order calculations, and a sawtooth
in the radial momentum density develops.



DYNAMIC INSTABILITIES IN PROTOSTARS 27

For m = 4, we expect 1, to be two to four times shorter than ; for m
= 2. In other words, for m = 4, ty(present) should be about one rotation
period. In the T/|W| = 0.056 protostellar core model, we do observe the
m = 4 disturbances dying out on a time scale 7; = 1.0 = 0.2 in units of
the shortest rotation period. Only instabilities with ¢, less than one or
two rotation periods can grow in our present code. In fact, we find that
m =3, 4, and S disturbances for which we detect growth in the T/IW |
= 0.157 model all have ¢,’s shorter than a rotation period. For m = |
and 2, we detect growth on e-folding times of one or two rotation periods.

As another test, we ran a calculation for the T/|W| = 0.157 model
with the full 32 x 64 X 16 grid but without an initial perturbation.
After nearly two rotations, corresponding to 2500 time steps, the total
energy of the model changed by 0.01%; the energy distribution among
kinetic, internal, and gravitational shifted by about a percent mainly
due to the model’s oscillation about equilibrium. The j(4l) distribution,
recalling M is mass within a cylindrical radius r, is indistinguishable
at the present level between the initial and final times, suggesting that
the time scale for angular momentum transport due to shear viscosity
caused by numerical truncation error is longer than many tens of
rotation periods. Even in the T/|W| = 0.157 calculation with m = 1
off, which ran for about seven rotations and developed large-scale
nonaxisymmetry, no more than a few percent nonsystematic transport
of J is evident comparing the initial and final j(#) away from the
rotation axis. For a few innermost zones which have less than 1 or
2% of J, j tends to become constant due to the large Ar/r but is
restricted to that region only.

The T/|W| = 0.157 protostellar core calculation without an initial
perturbation also shows that nonaxisymmetric numerical noise does
not grow rapidly from round-off error. On the Cray X-MP/48 at
National Center for Supercomputing Applications, after 2500 steps,
the Fourier amplitudes A, are typically at a level of 10", with largest
values in a few zones of about 10”3 in m = 4 and 5. As a comparison,
the expected round-off error is about 10~ 1.

We consider the sawtooth behavior of the radial momentum density
in the bar mode calculation disturbing. Such a sawtooth is also present
in the T/[W| = 0.157 model, but is absent in the T/|W| = 0.056 case.
Shifting the radial momentum density to a face-centered location cures
the sawtooth but produces considerably greater numerical damping
for m = 3 disturbances. We are continuing efforts to cure the sawtooth
without sacrificing our ability to detect high-order modes at affordable
resolution.
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Note added in proof. Calculations currently underway with higher
spatial resolution (64 x 64 X 16) do not exhibit a numerical sawtooth.
For T/|W| = 0.157, dynamic nonaxisymmetric instabilities again occur
but have lower growth rates and are dominated by m = | and 2 even in
the linear regime. A mode similar to the m = 4 reported here is detected
in the new calculation but is less vigorous. So, although details are
somewhat sensitive to numerics, the fundamental conclusion that disks
suffer dynamic nonaxisymmetric instabilities during their earliest stages
of formation seems robust.
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